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Abstract
We give two new quantum algorithms for solving semidefinite programs (SDPs) providing quantum
speed-ups. We consider SDP instances with m constraint matrices, each of dimension n, rank at most
r, and sparsity s. The first algorithm assumes an input model where one is given access to an oracle
to the entries of the matrices at unit cost. We show that it has run time Õ(s2(

√
mε−10 +

√
nε−12)),

with ε the error of the solution. This gives an optimal dependence in terms of m,n and quadratic
improvement over previous quantum algorithms (when m ≈ n). The second algorithm assumes
a fully quantum input model in which the input matrices are given as quantum states. We show
that its run time is Õ(

√
m + poly(r)) · poly(logm, log n,B, ε−1), with B an upper bound on the

trace-norm of all input matrices. In particular the complexity depends only polylogarithmically in n
and polynomially in r.

We apply the second SDP solver to learn a good description of a quantum state with respect
to a set of measurements: Given m measurements and a supply of copies of an unknown state ρ
with rank at most r, we show we can find in time

√
m · poly(logm, log n, r, ε−1) a description of the

state as a quantum circuit preparing a density matrix which has the same expectation values as ρ
on the m measurements, up to error ε. The density matrix obtained is an approximation to the
maximum entropy state consistent with the measurement data considered in Jaynes’ principle from
statistical mechanics.

As in previous work, we obtain our algorithm by “quantizing” classical SDP solvers based on the
matrix multiplicative weight update method. One of our main technical contributions is a quantum
Gibbs state sampler for low-rank Hamiltonians, given quantum states encoding these Hamiltonians,
with a poly-logarithmic dependence on its dimension, which is based on ideas developed in quantum
principal component analysis. We also develop a “fast” quantum OR lemma with a quadratic
improvement in gate complexity over the construction of Harrow et al. [14]. We believe both
techniques might be of independent interest.
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1 Introduction

Motivation. Semidefinite programming has been a central topic in the study of mathematical
optimization, theoretical computer science, and operations research in the last decades. It has
become an important tool for designing efficient optimization and approximation algorithms.
The power of semidefinite programs (SDPs) lies in their generality (that extends the better-
known linear programs (LPs)) and the fact that they admit polynomial-time solvers.

It is natural to ask whether quantum computers can have advantage in solving this
important optimization problem. In Ref. [9], Brandão and Svore provided an affirmative
answer, giving a quantum algorithm with worst-case running time Õ(

√
mns2(RR̃/ε)32) 1,

where n and s are the dimension and row sparsity of the input matrices, respectively,
m the number of constraints, ε the accuracy of the solution, and R, R̃ upper bounds on
the norm of the optimal primal and dual solutions. This is a polynomial speed-up in m

and n comparing to the two state-of-the-art classical SDP-solvers [20, 7] (with complexity
Õ(m(m2 + nω +mns) poly log(R/ε)) [20], where ω is the exponent of matrix multiplication,
and Õ(mns(RR̃/ε)4 + ns

(
RR̃/ε

)7) [7]), and beating the classical lower bound of Ω(m+ n)
[9]. The follow-up work by van Apeldoorn et al. [5] improved the running time giving a
quantum SDP solver with complexity Õ(

√
mns2(RR̃/ε)8). In terms of limitations, Ref. [9]

proved a quantum lower bound Ω(
√
m+

√
n) when R, R̃, s, ε are constants; stronger lower

bounds can be proven if R and/or R̃ scale with m and n [5]. We note all these results are
shown in an input model in which there is an oracle for the entry of each of the input matrices
(see Oracle 1.1 below for a formal definition).

In this paper, we investigate quantum algorithms for SDPs (i.e., quantum SDP solvers)
further in the following two perspectives: (1) the best dependence of parameters, especially
the dimension n and the number of constraints m; (2) whether there is any reasonable
alternative input model for quantum SDP solvers and what is its associated complexity. To
that end, let us first formulate the precise SDP instance in our discussion.

The SDP approximate feasibility problem. We will work with the SDP approximate
feasibility problem formulated as follows: Given an ε > 0, m real numbers a1, . . . , am ∈ R,
and Hermitian n× n matrices A1, . . . , Am where −I � Ai � I, ∀ j ∈ [m], define the convex

1 Õ hides factors that are polynomial in logm and log n.
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region Sε as all X such that

Tr(AiX) ≤ ai + ε ∀ i ∈ [m]; (1.1)
X � 0; Tr[X] = 1.

For approximate feasibility testing, it is required that either (1) If S0 = ∅, output fail; or (2)
If Sε 6= ∅, output an X ∈ Sε. Throughout the paper, we denote by n the the dimension of
the matrices, m the number of constraints, and ε the (additive) error of the solution. For
Hermitian matrices A and B, we denote A � B if B −A is positive semidefinite, and A � B
if A−B is positive semidefinite. We denote In to be the n× n identity matrix.

There are a few reasons that guarantee our choice of approximate SDP feasibility problem
do not lose generality: (1) first, it is a routine2 to reduce general optimization SDP problems
to the feasibility problem; (2) second, for general feasible solution X � 0 with width bound
Tr(X) ≤ R, there is a procedure3 to derive an equivalent SDP feasibility instance with
variable X̂ s.t. Tr(X̂) = 1. Note, however, the change of ε to ε/R in this conversion. Also
note one can use an approximate feasibility solver to find a strictly feasible solution, by
changing ε to ε/RR̃ (see Lemma 18 of Ref. [9]). The benefit of our choice of (1.1) is its
simplicity in presentation, which provides a better intuition behind our techniques and an
easy adoption of our SDP solver in learning quantum states. In contrast to Ref. [5], we do
not need to formulate the dual program of Eq. (1.1) since our techniques do not rely on it.
We will elaborate more on these points in Section 1.4.

1.1 Quantum SDP solvers with optimal dependence on m and n

Existing quantum SDP solvers [9, 5] have close-to-optimal dependence on some key parameters
but poor dependence on others. Seeking optimal parameter dependence has been an important
problem in the development of classical SDP solvers and has inspired many new techniques.
It is thus well motivated to investigate the optimal parameter dependence in the quantum
setting. Our first contribution is the construction of a quantum SDP solver with the optimal
dependence on m and n in the (plain) input model as used by [9, 5], given as follows:

I Oracle 1.1 (Plain model for Aj). A quantum oracle, denoted PA, such that given the
indices j ∈ [m], k ∈ [n] and l ∈ [s], computes a bit string representation of the l-th non-zero
element of the k-th row of Aj, i.e. the oracle performs the following map:

|j, k, l, z〉 → |j, k, l, z ⊕ (Aj)kfjk(l)〉, (1.2)

with fjk : [r] → [N ] a function (parametrized by the matrix index j and the row index k)
which given l ∈ [s] computes the column index of the l-th nonzero entry.

Before we move on to our main result, we will define two primitives which will appear
in our quantum SDP solvers. Our main result will also be written in terms of the cost for
each primitive.

2 To see why this is the case, for any general SDP problem, one can guess a candidate value (e.g., c0) for
the objective function (e.g., Tr(CX) and assume one wants to maximize Tr(CX)) and convert it into a
constraint (e.g., Tr(CX) ≥ c0). Hence one ends up with a feasibility problem and the candidate value
c0 can then be found via binary search with O(log(1/ε)) overhead when Tr(CX) ∈ [−1, 1].

3 The procedure goes as follows: (a) scale down every constraint by a factor R and let X ′ = X/R (thus
Tr(X ′) ≤ 1) (b) let X̂ = diag{X,w} be a block-diagonal matrix with X in the upper-left corner and a
scaler w in the bottom-right corner. It is easy to see that Tr(X̂) = 1 ⇐⇒ Tr(X) ≤ 1.

ICALP 2019



27:4 Quantum SDP Solver: Speed-Up, Optimality, Applications

I Definition 1 (trace estimation). Assume that we have an s-sparse n× n Hermitian matrix
H with ‖H‖ ≤ Γ and a density matrix ρ. Then we define STr(s,Γ, ε) and TTr(s,Γ, ε) as the
number of copies of ρ and the time complexity (in terms of oracle call and number of gates)
of using the plain model (Oracle 1.1) for H, respectively, such that one can compute Tr[Hρ]
with additive error ε with success probability at least 2/3.

I Definition 2 (Gibbs sampling). Assume that we have an s-sparse n× n Hermitian matrix
H with ‖H‖ ≤ Γ. Then we define TGibbs(s,Γ, ε) as the complexity of preparing the Gibbs
state e−H

Tr[e−H ] with additive error ε using the plain model (Oracle 1.1) for H.

Our main result is as follows.

I Theorem 3. In the plain input model (Oracle 1.1), for any 0 < ε < 1, there is a
quantum SDP solver for the feasibility problem (1.1) using s

ε4 Õ
(
STr
(
s
ε2 ,

1
ε , ε
)
TGibbs

(
s
ε2 ,

1
ε , ε
)

+√
mTTr

(
s
ε2 ,

1
ε , ε
))

quantum gates and queries to Oracle 1.1, where s is the sparsity of Aj , j ∈
[m].

When combined with specific instantiation of these primitives (i.e., in our case, we directly
make use of results on STr(s,Γ, ε) and TTr(s,Γ, ε) from Ref. [9], and results on TGibbs(s,Γ, ε)
from Ref. [24]), we end up with the following concrete parameters:

I Corollary 4. In the plain input model (Oracle 1.1), for any 0 < ε < 1, there is a quantum
SDP solver for the feasibility problem (1.1) using Õ(s2(

√
m
ε10 +

√
n

ε12 )) quantum gates and queries
to Oracle 1.1, where s is the sparsity of Aj , j ∈ [m].

Comparing to prior art, our main contribution is to decouple the dependence on m and
n, which used to be O(

√
mn) and now becomes O(

√
m+

√
n). Note that the (

√
m+

√
n)

dependence is optimal due to the quantum lower bound proven in Ref. [9].
I Remark 1.5. Even though our result achieves the optimal dependence on m and n, it
is nontrivial to obtain quantum speed-ups by directly applying our quantum SDP solvers
to SDP instances from classical combinatorial problems. The major obstacle is the poly-
dependence on 1/ε, whereas, for interesting SDP instances such as Max-Cut, 1/ε is linear in
n. In fact, the general framework of the classical Arora-Kale SDP solver also suffers from
the poly-dependence on 1/ε and cannot be applied directly either. Instead, one needs to
specialize the design of SDP solvers for each instance to achieve better time complexity.

Extending this idea to quantum seems challenging. One difficulty is that known classical
approaches require explicit information of intermediate states, which requires Ω(n) time
and space even to store. It is not clear how one can directly adapt classical approaches
on intermediate states when stored as amplitudes in quantum states, which is the case for
our current SDP solvers. It seems to us that a resolution of the problem might require an
independent tool beyond the scope of this paper. We view this as an important direction for
future work.

However, our quantum SDP solvers are sufficient for instances with mild 1/ε, which are
natural in the context of quantum information, such as learnability of the quantum state
problem (elaborated in Section 1.5) as well as examples in [4]. For those cases, we do establish
a quantum speed-up as any classical algorithm needs at least linear time in n and/or m.

1.2 Quantum SDP solvers with quantum inputs
Given the optimality of the algorithm presented before (in terms of m and n), a natural
question is to ask about the existence of alternative input models, which can be justified for
specific applications, and at the same time allows more efficient quantum SDP solvers. This
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is certainly a challenging question, but we can get inspiration from the application of SDPs in
quantum complexity theory (e.g., Refs. [16, 12]) and quantum information (e.g., Refs. [1, 2]).
In these settings, input matrices of SDP instances, with dimension 2`, are typically quantum
states and/or measurements generated by poly(`)-size circuits on ` qubits. For the sake of
these applications, it might be reasonable to equip quantum SDP solvers with the ability to
leverage these circuit information, rather than merely allowing access to the entries of the
input matrices.

In this paper, we propose a truly quantum input model in which we can construct quantum
SDP solvers with running time only poly-logarithmic in the dimension. We note that such
proposal was mentioned in an earlier version of Ref. [9], whose precise mathematical form
and construction of quantum SDP solvers were unfortunately incorrect, and later removed.
Note that since we consider a non-standard input model in this section, our results are
incomparable to those in the plain input model. We argue for the relevance of our quantum
input model, by considering an applications of the framework to the problem of learning
quantum states in Section 1.5.

Quantum input model. Consider a specific setting in which we are given decompositions
of each Aj : Aj = A+

j −A
−
j , where A

+
j , A

−
j � 0. (For instance, a natural choice is to let A+

j

(resp. A−j ) be the positive (resp. negative) part of A.)

I Oracle 1.2 (Oracle for traces of Aj). A quantum oracle (unitary), denoted OTr (and its
inverse O†Tr), such that for any j ∈ [m],

OTr|j〉|0〉|0〉 = |j〉|Tr[A+
j ]〉|Tr[A−j ]〉, (1.3)

where the real values Tr[A+
j ] and Tr[A−j ] are encoded into their binary representations.

I Oracle 1.3 (Oracle for preparing Aj). A quantum oracle (unitary), denoted O (and its
inverse O†), which acts on Cm ⊗ (Cn ⊗ Cn)⊗ (Cn ⊗ Cn) such that for any j ∈ [m],

O|j〉|0〉|0〉 = |j〉|ψ+
j 〉|ψ

−
j 〉, (1.4)

where |ψ+
j 〉, |ψ

−
j 〉 ∈ Cn ⊗ Cn are any purifications of A+

j

Tr[A+
j

] ,
A−

j

Tr[A−
j

] , respectively.

I Oracle 1.4 (Oracle for aj). A quantum oracle (unitary), denoted Oa (and its inverse O†a),
such that for any j ∈ [m],

Oa|j〉|0〉 = |j〉|aj〉, (1.5)

where the real value aj is encoded into its binary representation.

Throughout the paper, let us assume that Aj has rank at most r for all j ∈ [m] and
Tr[A+

j ] + Tr[A−j ] ≤ B. The parameter B is therefore an upper bound to the trace-norm
of all input matrices which we assume is given as an input of the problem. Similar to the
plain input model, we will define the same two primitives and their associated costs in the
quantum input model.

I Definition 6 (trace estimation). We define STr(B, ε) and TTr(B, ε) as the sample complexity
of a state ρ ∈ Cn×n and the gate complexity of using the quantum input oracles (Oracle 1.2,
Oracle 1.3, Oracle 1.4), respectively, for the fastest quantum algorithm that distinguishes
with success probability at least 1−O(1/m) whether for a fixed j ∈ [m], Tr(Ajρ) > aj + ε or
Tr(Ajρ) ≤ aj.

ICALP 2019



27:6 Quantum SDP Solver: Speed-Up, Optimality, Applications

I Definition 7 (Gibbs sampling). Assume that K = K+ −K−, where K± =
∑
j∈S cjA

±
j ,

cj > 0, S ⊆ [m] and |S| ≤ Φ, and that K+, K− have rank at most rK . Moreover, assume
that Tr(K+) + Tr(K−) ≤ BK for some BK . Then we define TGibbs(rK ,Φ, BK , ε) as the gate
complexity of preparing the Gibbs state ρG = exp(−K)/Tr(exp(−K)) to ε precision in trace
distance using Oracle 1.2, Oracle 1.3, and Oracle 1.4.

Our main result in the quantum input model is as follows.

I Theorem 8. For any ε > 0, there is a quantum algorithm for the approximate feasibility
of the SDP using at most 1

ε2 Õ
(
STr(B, ε)TGibbs

(
r
ε2 ,

1
ε2 ,

B
ε , ε
)

+
√
mTTr(B, ε)

)
quantum gates

and queries to Oracle 1.2, Oracle 1.3, and Oracle 1.4.

In contrast to the plain model setting, the quantum input model is a completely new
setting so that we have to construct these two primitive by ourselves. In particular, we
give a construction of trace estimation with STr(B, ε) = TTr(B, ε) = O(B2 logm/ε2) and a
construction of Gibbs sampling TGibbs(rK ,Φ, BK , ε) = O(Φ · poly(log n, rK , BK , ε−1))4. As
a result,

I Corollary 9. For any ε > 0, there is a quantum algorithm for the feasibility of the SDP using
at most (

√
m+ poly(r)) · poly(logm, log n,B, ε−1) quantum gates and queries to Oracle 1.2,

Oracle 1.3, and Oracle 1.4.

We also show the square-root dependence on m is also optimal by establishing the
following result:

I Theorem 10 (lower bound on Corollary 9). There exists an SDP feasibility testing problem
such that B, r, ε = Θ(1), and solving the problem requires Ω(

√
m) calls to Oracle 1.2,

Oracle 1.3, and Oracle 1.4.

Comparison between the plain model and the quantum input model. In the quantum
input model (Oracle 1.2, Oracle 1.3, and Oracle 1.4), our quantum SDP solver has a poly-
logarithmic dependence on n (but polynomial in r) and a square-root dependence on m,
while in the plain input model (Oracle 1.1), the dependence on n needs to be Ω(

√
n) [9].

It is also worth mentioning that our quantum SDP solver in Corollary 9 does not assume
the sparsity of Ai’s, which are crucial for the quantum SDP solvers with the plain model
(such as Corollary 4 and Refs. [9, 5]). This is because the quantum input models provide an
alternative way to address the technical difficulty that was resolved by the sparsity condition
(namely efficient algorithms for Hamiltonian evolution associated with the input matrices of
the SDP).

Comparison between quantum and classical input models. The poly-logarithmic depend-
ence on n in Corollary 9 is intriguing and suggests that quantum computers might offer
exponential speed-ups for some SDP instances. However one has to be cautious as the input
model we consider is inherently quantum, so it is incomparable to classical SDP solvers. As
suggested to us by Aram Harrow (personal communication), we could consider a classical
setting in which we get as input all inner products between all eigenvectors of the input
matrices. Then in that case one could solve the problem classically in time poly(r,m, 1/ε)
(essentially using Jaynes’ principle which will be discussed in Section 1.5 to reduce the problem

4 The construction details are given in Lemma 10 and 12 in the full version of our paper [8].
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to a SDP of dimension poly(r)). We have not formalized this approach, and there seems
to be some technical problems doing so when the input matrices have close-by eigenvalues.
However Harrow’s observation shows the importance of justifying the input model in terms
of natural applications to argue for the relevance of the run time obtained. We present one
application of it in Section 1.5; more applications are given in Ref. [4].

Furthermore, several quantum-inspired classical algorithms were recently proposed origin-
ated from Tang [25]. Such classical algorithms assume the following sampling access:

I Definition 11 (Sampling access). Let A ∈ Cn×n be a matrix. We say that we have the
sampling access to A if we can
1. sample a row index i ∈ [n] of A where the probability of row i being chosen is ‖Ai·‖2

‖A‖2
F

, and5

2. for all i ∈ [n], sample an index j ∈ [n] where the probability of j being chosen is |Aij |2
‖Ai·‖2

with time and query complexity O(poly(log n)) for each sampling.

In particular, we notice that Ref. [10] recently gave a classical SDP solver for (1.1) with
complexity O(m·poly(log n, r, ε−1)), given the above sampling access to A1, . . . , Am. We point
out that this result is incomparable to Corollary 9 because the sampling access (Definition 11)
and our quantum state model (Oracle 1.2, Oracle 1.3, and Oracle 1.4) are incomparable.
Nevertheless, it reminds us that under various input models, the speedup of quantum SDP
solvers (compared to their classical counterparts) can also vary.

1.3 Related works on quantum SDP solvers

Previous quantum SDP solvers [9, 5] focus on the plain input model. A major contribution
of ours is to improve the dependence O(

√
mn) to O(

√
m +

√
n) (ignoring dependence on

other parameters) which is optimal given the lower bound Ω(
√
m+

√
n) in [9]. To that end,

we have also made a few technical contributions, including bringing in a new SDP solving
framework and a fast version of quantum OR lemma, which will be elaborated in Section 1.4.

The quantum input model was briefly mentioned in an earlier version of [9]. The con-
struction of quantum SDP solvers under the quantum input model therein was unfortunately
incorrect. We provide the first rigorous mathematical formulation of the quantum input
model and its justification in the context of learning quantum states (see Section 1.5). We
also provide a construction of quantum SDP solvers in this model with a rigorous analysis.
Moreover, we construct the first Gibbs state sampler with quantum inputs.

Subsequent to a previous version of this paper, an independent interesting result by
van Apeldoorn and Gilyén [4] has improved the complexity of trace-estimation and Gibbs
sampling. After a personal communication [26] introducing our fast version of the quantum
OR lemma, the authors of Ref. [4] observed independently that the application of the quantum
OR lemma [14] can be applied to decouple the dependence of m and n. As a result, Ref. [4]
improved the complexity of Corollary 4 to Õ(s(

√
m
ε4 +

√
n
ε5 )) in the quantum operator model,

a stronger input model than the plain one proposed by Ref. [4]. Using novel techniques, it
also has improved the complexity of Corollary 9 to Õ(B

√
m

ε4 + B3.5

ε7.5 ) in the quantum input
model. Note there is no explicit dependence on the rank r, which is an important advance
(though it can be argued that rank r is implicitly included in the parameter B).

5 Here ‖A‖F is the Frobenius norm of A and ‖Ai·‖ is the `2 norm of the ith row of A.
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27:8 Quantum SDP Solver: Speed-Up, Optimality, Applications

1.4 Techniques
At a high level, and in similarity to Refs. [9, 5], our quantum SDP solver can be seen as
a “quantized” version of classical SDP solvers based on the matrix multiplicative weight
update (MMWU) method [6]. In particular, we will leverage quantum Gibbs samplers as the
main source of quantum speed-ups. In Refs. [9, 5], quantum Gibbs samplers with quadratic
speed-ups (e.g., [24, 11]) have been exploited to replace the classical Gibbs state calculation
step in [6]. Because the number of iterations in MMWU is poly-logarithmic in terms of the
input size, the use of quantum Gibbs samplers, together with a few other tricks, leads to the
overall quadratic quantum speed-up.

However, there are a few key differences (our major technical contributions) which are
essential for our improvements.

Zero-sum game approach for MMW. Our quantum SDP solvers do not follow the primal-
dual approach in Arora-Kale’s SDP solver [7] which is the classical counterpart of previous
quantum SDP solvers [9, 5]. Instead, we follow a zero-sum game framework to solve SDP
feasibility problems, which is also based on the MMWU method. This framework has
appeared in the classical literature (e.g., [15]) and has already been used to in semidefinite
programs of relevance in quantum complexity theory (e.g., [27, 12, 19]). Let us briefly describe
how the zero-sum game framework works when solving the SDP feasibility problem (1.1).

Assume there are two players. Player 1 wants to provide a feasible X ∈ Sε. Player 2,
on the other side, wants to find any violation of any proposed X, which can be formulated
as follows.

I Oracle 1.5 (Search for violation). Inputs a density matrix X, outputs an i ∈ [m] such that
Tr(AiX) > ai + ε. If no such i exists, output “FEASIBLE”.

If the original problem is feasible, there exists a feasible point X0 (provided by Player 1)
such that there is no violation of X0 that can be found by Player 2 (i.e., Oracle 1.5). This
actually refers to an equilibrium point of the zero-sum game, which can also be approximated
by the matrix multiplicative weight update method [6].

We argue that there are a few advantages of adopting this framework. One prominent
example is its simplicity, which perhaps provides more intuition than the primal-dual approach.
Together with our choice of the approximate feasibility problem, our presentation is simple
both conceptually and technically (indeed, the simplicity of this framework has led to the
development of the fast quantum OR lemma, another main technical contribution of ours.)
Another example is that the zero-sum game approach does not make use of the dual program
of SDPs and thus there is no dependence on the size of any dual solution. The game approach
also admits an intuitive application of our SDP solvers to learning quantum states Section 1.5,
which coincides with the approach adopted by [19] in a similar context.

One might wonder whether the simplicity of this framework will restrict the efficiency of
SDP solvers. As indicated by the independent work of van Apeldoorn and Gilyén [4] which
has achieved the same complexity of quantum SDP solvers following both the primal-dual
approach and the zero-sum approach, we conclude that it is not the case at least up to our
current knowledge.

Fast quantum OR lemma. We now outlines what is the main idea to find a solution to
Oracle 1.5 efficiently. Roughly speaking, the idea behind previous quantum SDP solvers [9, 5]
when applied to this context was to generate a new copy of a quantum state X for each
time one would query the expectation value of one of the input matrices on it. The cost of
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generating X (i.e., Gibbs sampling) is O(
√
n) (ignoring the dependence on other parameters)

and one can use a Grover-search-like approach to test for m constraints with O(
√
m) iterations.

The resultant cost is then O(
√
mn). Our key observation is to leverage the quantum OR

lemma [14] to detect a single violation with only a single copy of X.
At a high level, given a single copy of any state ρ and m projections Λ1, . . . ,Λm, the

quantum OR lemma describes a procedure to distinguish between the case that ∃ i ∈ [m] s.t.
Tr[ρΛi] is very large, or 1

m

∑m
i=1 Tr[ρΛi] is very small. It is not hard to see that with some

gap-amplification step and a search-to-decision reduction, the above procedure will output
a violation i∗ if any. By using quantum OR lemma, one can already decouple the cost of
generating X and the number of iterations in violation-detection.

Unfortunately, Ref. [14] has only been focusing on the use of a single copy of ρ, while
its gate complexity is O(m) for m projections. To optimize the gate complexity, we develop
the following fast implementation of the quantum OR lemma with gate complexity O(

√
m),

using ideas from the fast amplification technique in [22]. Overall, this leads to a complexity
of O(

√
m+

√
n).

I Lemma 12. Let Λ1, . . . ,Λm be projections, and fix parameters 0 < ε ≤ 1/2 and ϕ, ξ > 0.
Let ρ be a state such that either ∃ j ∈ [m] Tr[ρΛj ] ≥ 1− ε, or 1

m

∑m
j=1 Tr[ρΛj ] ≤ ϕ. There

is a test using one copy of ρ and O(ξ−1√m(p+ poly(logm))) operations such that: in the
former case, accepts with probability at least (1− ε)2/4− ξ; in the latter case, accepts with
probability at most 3ϕm+ ξ.

The dependence onm is also tight, as one can easily embed Grover search into this problem.

Gibbs sampler with quantum inputs. To work with the quantum input model, as our
main technical contribution, we construct the first quantum Gibbs sampler of low-rank
Hamiltonians when given Oracles 1.2 and 1.3:

I Theorem 13. Assume the n× n matrix K = K+ −K− and K+,K− are PSD matrices
with rank at most rK and Tr[K+] + Tr[K−] ≤ B. Given quantum oracles that prepare
copies of ρ+ = K+/Tr(K+), ρ− = K−/Tr(K−) and estimates of Tr(K+), Tr(K−), there
is a quantum Gibbs sampler that prepares the Gibbs state ρG = exp(−K)/Tr(exp(−K)) to
precision ε in trace distance, using poly(log n, rK , B, ε−1) quantum gates.

Our quantum Gibbs sampler has a poly-logarithmic dependence on n and polynomial
dependence on the maximum rank of the input matrices, while in the plain input model the
dependence of n is Θ(

√
n) [24, 11]. Our construction deviates significantly from [24, 11].

Because of the existence of copies of ρ+ and ρ−, we rely on efficient Hamiltonian simulation
techniques developed in quantum principle component analysis (PCA) [21] and its follow-up
work in [18]. As a result, we can also get rid of the sparsity assumption which is crucial
for evoking results about efficient Hamiltonian simulation into the Gibbs sampling used
in [24, 11].

1.5 Application: Efficient learnability of quantum states
Problem description. Given many realizations of an experiment producing a quantum state
with density matrix ρ, learning an approximate description of ρ is a fundamental task in
quantum information and experimental physics. It refers to quantum state tomography, which
has been widely used to identify quantum systems. However, to tomograph an `-qubit state
ρ (with dimension n = 2`) , the optimal procedure [23, 13] requires n2 number of copies of ρ,
which is impractical already for relatively small `.
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An interesting alternative is to find a description of the unknown quantum state ρ which
approximates Tr[ρEi] up to error ε for a specific collection of POVM elements E1, . . . , Em,
where I � Ei � 0 and Ei ∈ Cn×n, ∀i ∈ [m]. This is an old problem, dating back at least to
the work of Jaynes on statistical mechanics in the 50ies. Jaynes’ principle [17] (also known
as the principle of maximum entropy) gives a general form for the solution of the problem
above. It shows that there is always a state of the form

exp (
∑
i λiEi)

Tr (exp (
∑
i λiEi))

, (1.6)

which has the same expectation values on the Ei’s as the original state ρ, where the λi’s are
real numbers. In words, there is always a Gibbs state with Hamiltonian given by a linear
combination of the Ei’s which gives the same expectation values as the state described by ρ.
Therefore one can solve the learning problem by finding the right λi’s (or finding a quantum
circuit creating the state in Eq. (1.6)).

Applying quantum SDP solvers. By formulating the learning problem in terms of the SDP
feasibility problem (with each Ai replaced by Ei) where one looks for a trace unit PSD σ

matching the measurement statistics, i.e., Tr(σEi) ≈ Tr(ρEi), ∀i ∈ [m], we observe that our
quantum SDP solvers actually provides a solution to the learning problem with associated
speed-ups on m and n.

In fact, our algorithm also outputs each of the λi’s (one can show that poly(log(mn))/ε2

non-zero of them suffices for a solution with error ε), as well as a circuit description of the
Gibbs state in Eq. (1.6) achieving the same expectation values as ρ up to error ε. (This is
mainly because the similarity between the matrix multiplicative update method and Jaynes’
principle.) In this sense our result can be seen as an algorithmically version of Jaynes’
principle. We note that a similar idea was adopted by [19] in learning quantum states,
although for a totally different purpose (namely proving lower bounds on the size of SDP
approximations to constraint satisfaction problems).

It is worthwhile noting that our quantum SDP solvers when applied in this context will
output a description of the state ρ in the form of Eq. (1.6) which has the same expectation
values as ρ on measurements E1, . . . , Em up to error ε. This is slightly different from directly
outputting estimates of Tr(Eiρ) for each i ∈ [m], which by itself will take Ω(m) time.

Relevance of quantum input model. More importantly, we argue that our quantum input
model is relevant in this setting for low-rank measurements Ei’s. Since all Ei � 0 by
definition, we can consider the following (slightly simplified version of) oracles:

Oracle 1.2 for traces of Ei: A unitary OTr such that for any i ∈ [m], OTr|i〉|0〉 = |i〉|Tr[Ei]〉.

Oracle 1.3 for preparing Ei: A unitary O such that for any i ∈ [m], O|i〉〈i| ⊗ |0〉〈0|O† =
|i〉〈i| ⊗ |ψi〉〈ψi|, where |ψi〉〈ψi| is any purification of Ei/Tr[Ei].

We now show how one can implement this oracle in the case where each Ei is a low
rank projector and we have an efficient (with poly log(n) many gates) implementation of the
measurement. Let the rank of Ei’s bounded by r and suppose the measurement operators
Ei’s are of the form

Ei = ViPiV
†
i (1.7)
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for polynomial (in log(n)) time circuits Vi, and projectors Pi of the form

Pi :=
ri∑
i=1
|i〉〈i| (1.8)

with |i〉 the computational basis and ri ≤ r. Then for Oracle 1.2 we just need to output
the ri’s. Oracle 1.3 can be implemented efficiently (in time r poly log(n)) by first creating
a maximally entangled state between the subspace spanned by Pi and a purification and
applying Vi to one half of it. In more detail, consider the following purification of Ei/Tr(Ei):

|ψi〉 := 1
√
ri

ri∑
i=1

(Vi ⊗ I)|i, i〉 (1.9)

This can be constructed first by preparing the state 1√
ri

∑ri

i=1 |i, i〉 in time ri and then
applying Vi ⊗ I to it (which can be done in time poly log(n)).

Efficient learning for low rank measurements. By applying our SDP solver in the quantum
input model, we obtain that

I Theorem 14. For any ε > 0, there is a quantum procedure that outputs a descrip-
tion of the state ρ in the form of Eq. (1.6) (namely the λi’s parameters) using at most
poly(logm, log n, r, ε−1) copies of ρ and at most

√
m ·poly(logm, log n, r, ε−1) quantum gates

and queries to Oracle 1.2 and Oracle 1.3.

Let us briefly sketch how our SDP solver applies to this setting. Note first that we do not
aim to estimate Tr(Eiρ) for each i ∈ [m], which helps us circumvent the Ω(m) lower bound.
What we really want is to generate a state ρ̃ such that Tr(Eiρ̃) ≈ Tr(Eiρ) for each i. Our
SDP solver will maintain and update a description of ρ̃ per iteration. In each iteration, given
copies of ρ̃ and the actual unknown state ρ, we want to know whether Tr(Eiρ̃) ≈ Tr(Eiρ)
∀i ∈ [m] or there is at least a violation i∗. To that end, we design for each i a projection for
the following procedure: (1) perform multiple independent SWAP tests between Ei/Tr[Ei]
(from Oracle 1.3) and ρ, ρ̃ respectively; (2) accept when the statistics of both SWAP tests
(one with ρ, the other with ρ̃) are close. Hence, one can apply our fast quantum OR lemma
on these projections to find such i∗ if it exists.

Note that both the sample complexity and the gate complexity of the above procedure
have a poly-log dependence on n (i.e., the dimension of the quantum state to learn).

Shadow tomography problem. In a sequence of works [1, 2], Aaronson asked whether one
can predict information about a dimension-n quantum state with poly-log(n) many copies.
In Ref. [1], he showed that a linear number of copies is sufficient to predict the outcomes of
“most” measurements according to some (arbitrary) distribution over a class of measurements.
Very recently, in Ref. [2], he referred the following problem as the “shadow tomography”
problem: for any n-dimensional state ρ and two-outcome measurements E1, . . . , Em, estimate
Tr[ρEi] up to error ε, ∀i ∈ [m]. He has further designed a quantum procedure for the shadow
tomography problem with Õ(` · log4 m/ε5) 6 copies of ρ.

6 Here Õ hides factors that are polynomial in log logm, log log n, and log 1/ε.

ICALP 2019



27:12 Quantum SDP Solver: Speed-Up, Optimality, Applications

Noting that the shadow tomography problem is essentially the same problem considered
by Jaynes [17], one can apply Jaynes’ principle and its algorithmic version we discussed before.
Although this can be used to give a version of the result of Ref. [2], Aaronson obtained his
result [2] through a different route, based on a post-selection argument. A drawback of this
approach is that its gate complexity is high, scaling linearly in m and as nO(log logn) (for
fixed error).

Our Theorem 14 can be applied here to improve the time complexity. It gives a quantum
procedure with a square-root dependence on m and nO(1) dependence on n for arbitrary Ei’s.

When we assume r is small, say r = O(poly log n), the gate complexity of the entire
procedure becomes Õ(

√
m poly log(n)). This gives a class of measurement (namely any set of

low-rank measurements which can be efficiently implemented) for which the learning problem
is efficient both in the number of samples and the computational complexity. This solves an
open problem proposed in Ref. [1]

Although we have not worked out an explicit bound of the sample complexity of our
procedure, the authors of [4] followed our approach with more sophisticated techniques and
obtained a sample complexity of Õ(` · log4 m/ε4), improving on the bound from [2]. We
also note that very recently, Aaronson et al. claimed the same sample complexity (i.e.,
Õ(` · log4 m/ε4)) in [3].

1.6 Overview of detailed results and proofs

In the full version of our paper [8], we formulate the SDP feasibility problem and prove
the correctness of the basic framework in Appendix A. Our implementation of the fast
quantum OR lemma is given in Appendix B. We describe our main results the constructions
of quantum SDP solvers in the plain input model and the quantum input model in Appendix
C and Appendix D, respectively. The application to learning quantum states is illustrated
in Appendix E. In Appendix F (with full details in Appendix G) we demonstrate how to
sample from the Gibbs state of low-rank Hamiltonians.

1.7 Open questions

This work leaves several natural open questions for future work. For example:
Are there more examples of interesting SDPs where our form of input is meaningful? We
have shown the example of learning quantum states. Intuitively, we are looking for SDP
instances where the constraints are much “simpler” than the solution space. Is there any
such example in the context of big data and/or machine learning?
Our work has identified one setting where Gibbs sampling has a poly-log dependence on
the dimension? Is there any other setting for the same purpose?
For any reasonable quantum input setting, what is the effect of potential noises on
quantum inputs in practice?
Can we improve further on other parameters (e.g., the dependence on m and 1/ε)? In
particular, is it possible to improve the error dependence to poly log(1/ε)? This probably
implies that we have to consider a quantum version of the interior point method.
Are there other classes of measurements for which the quantum learning problem can
solved in a computationally efficient way beyond the low-rank measurements we consider
in this work? We note that most measurements of interest are not low rank (e.g. local
measurements) and therefore the practical applicability of the present result is limited.
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