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Abstract— A classic reachability problem for safety of dy-
namic systems is to compute the set of initial states from
which the state trajectory is guaranteed to stay inside a
given constraint set over a given time horizon. In this paper,
we leverage existing theory of reachability analysis and risk
measures to devise a risk-sensitive reachability approach for
safety of stochastic dynamic systems under non-adversarial
disturbances over a finite time horizon. Specifically, we first
introduce the notion of a risk-sensitive safe set as a set of initial
states from which the risk of large constraint violations can be
reduced to a required level via a control policy, where risk is
quantified using the Conditional Value-at-Risk (CVaR) measure.
Second, we show how the computation of a risk-sensitive safe
set can be reduced to the solution to a Markov Decision Process
(MDP), where cost is assessed according to CVaR. Third,
leveraging this reduction, we devise a tractable algorithm to
approximate a risk-sensitive safe set and provide arguments
about its correctness. Finally, we present a realistic example
inspired from stormwater catchment design to demonstrate
the utility of risk-sensitive reachability analysis. In particular,
our approach allows a practitioner to tune the level of risk
sensitivity from worst-case (which is typical for Hamilton-
Jacobi reachability analysis) to risk-neutral (which is the case
for stochastic reachability analysis).

I. INTRODUCTION

Reachability analysis is a formal verification method based
on optimal control theory that is used to prove safety or
performance properties of dynamic systems [1]. A classic
reachability problem for safety is to compute the set of
initial states from which the state trajectory is guaranteed
to stay inside a given constraint set over a given time
horizon. This problem was first considered for discrete-
time dynamic systems by Bertsekas and Rhodes under the
assumption that disturbances are uncertain but belong to
known sets [2], [3], [4]. In this context, the problem is solved
using a minimax formulation, in which disturbances behave
adversarially and safety is described as a binary notion based
on set membership [2], [3], [4, Sec. 3.6.2].
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In practice, minimax formulations can yield overly conser-
vative solutions, particularly because disturbances are usually
non-adversarial. Most storms do not cause major floods, and
most vehicles are not involved in pursuit-evasion games.
If there are enough observations of the system, one can
estimate a probability distribution for the disturbance (e.g.,
see [5]), and then assess safety properties of the system in a
more realistic context. For stochastic discrete-time dynamic
systems, Abate et al. [6] developed an algorithm to compute
a set of initial states from which the probability of safety
of the state trajectory can be increased to a required level
by a control policy.1 Summers and Lygeros [7] extended the
algorithm of Abate et al. to quantify the probability of safety
and performance of the state trajectory, by specifying that the
state trajectory should also reach a target set.

Both the stochastic reachability methods [6], [7] and the
minimax reachability methods [2], [3], [4] for discrete-time
dynamic systems describe safety as a binary notion based on
set membership. In Abate et al., for example, the probability
of safety to be optimized is formulated as an expectation of
a product (or maximum) of indicator functions, where each
indicator encodes the event that the state at a particular time
point is inside a given set [6]. The stochastic reachability
methods [6], [7] do not generalize to quantify the distance be-
tween the state trajectory and the boundary of the constraint
set, since they use indicator functions to convert probabilities
to expectations to be optimized.

In contrast, Hamilton-Jacobi (HJ) reachability methods
quantify the deterministic analogue of this distance for
continuous-time systems subject to adversarial disturbances
(e.g., see [1], [8], [9], [10]). Quantifying the distance between
the state trajectory and the boundary of the constraint set in
a non-binary fashion may be important in applications where
the boundary is not known exactly, or where mild constraint
violations are inevitable, but extreme constraint violations
must be avoided.

It is imperative that reachability methods for safety take
into account the possibility that rare events can occur with
potentially damaging consequences. Reachability methods
that assume adversarial disturbances (e.g., [1], [3]) suppose
that harmful events will always occur, which may yield
solutions with limited practical utility, especially in appli-
cations with large uncertainty sets. Stochastic reachability
methods [6], [7] do not explicitly account for rare high-

1Safety of the state trajectory is the event that the state trajectory stays
in the constraint set over a finite time horizon.
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consequence events, as costs are evaluated in terms of an
expectation.

In contrast, in this paper, we harness risk measure theory
to formulate a reachability analysis approach that explicitly
accounts for the possibility of rare events with negative
consequences: harmful events are likely to occur at some
time, but they are unlikely to occur all the time. Specifically,
a risk measure is a function that maps a random variable Z
representing a loss, or a cost, into the real line, according
to the possibility of danger associated with Z [11, Sec.
6.3], [12, Sec. 2.2]. Risk-sensitive optimization has been
studied in applied mathematics [13], reinforcement learn-
ing [14], [15], [16], and optimal control [17], [18]. A risk-
sensitive method may provide more practical and protective
decision-making machinery (versus stochastic or minimax
methods) by encoding a flexible degree of conservativeness.

In this paper, we use a particular risk measure, called
Conditional Value-at-Risk (CVaR). If Z is a random variable
representing cost with finite expectation, then the Conditional
Value-at-Risk of Z at the confidence level α ∈ (0, 1] is
defined as [11, Equation 6.22],2

CVaRα[Z] := min
t∈R

{
t+

1

α
E
[

max{Z − t, 0}
]}
. (1)

CVaR captures a full spectrum of risk assessments from
risk-neutral to worst-case, since CVaRα[Z] increases from
E[Z] to ess supZ, as α decreases from 1 to 0. CVaR
has desirable mathematical properties for optimization [19]
and chance-constrained stochastic control [20]. There is
a well-established relationship between CVaR and chance
constraints that we will use to obtain probabilistic safety
guarantees in this paper. Please see [12] and [21] for ad-
ditional background on CVaR.

Statement of Contributions. This paper introduces a risk-
sensitive reachability approach for safety of stochastic dy-
namic systems under non-adversarial disturbances over a
finite time horizon. Specifically, the contributions are four-
fold. First, we introduce the notion of a risk-sensitive safe set
as a set of initial states from which the risk of large constraint
violations can be reduced to a required level via a control
policy, where risk is quantified using the Conditional Value-
at-Risk (CVaR) measure. Our formulation explicitly assesses
the distance between the boundary of the constraint set and
the state trajectory of a stochastic dynamic system. This is an
extension of stochastic reachability methods (e.g., [6], [7]),
which replace this distance with a binary random variable.
Further, in contrast to stochastic reachability methods, our
formulation explicitly accounts for rare high-consequence
events, by posing the optimal control problem in terms of
CVaR, instead of a risk-neutral expectation. Second, we show
how the computation of a risk-sensitive safe set can be
reduced to the solution to a Markov Decision Process (MDP),
where cost is assessed according to CVaR. Third, leveraging
this reduction, we devise a tractable algorithm to approximate
a risk-sensitive safe set and provide theoretical arguments to

2Conditional Value-at-Risk is also called Average Value-at-Risk, which is
abbreviated as AV@R in [11].

justify its correctness. Finally, we present a realistic example
inspired from stormwater catchment design to demonstrate
the utility of risk-sensitive reachability analysis.

Organization. The rest of this paper is organized as
follows. We present the problem formulation and define risk-
sensitive safe sets in Sec. II. In Sec. III, we show how the
computation of a risk-sensitive safe set can be reduced to the
solution to a CVaR-MDP problem, i.e., an MDP where cost is
assessed according to CVaR. In Sec. IV, we present a value-
iteration algorithm to approximate risk-sensitive safe sets,
along with theoretical arguments that support its correctness.
In Sec. V, we provide numerical experiments on a realistic
example inspired from stormwater catchment design. Finally,
in Sec. VI, we draw conclusions and discuss directions for
future work.

II. PROBLEM FORMULATION

A. System Model

We consider a fully observable stochastic discrete-time
dynamic system over a finite time horizon [4, Sec. 1.2],

xk+1 = f(xk, uk, wk), k = 0, 1, . . . , N − 1, (2)

such that xk ∈ X ⊆ Rn is the state of the system at time k,
uk ∈ U is the control at time k, and wk ∈ D is the random
disturbance at time k. The control space U and disturbance
space D are finite sets of real-valued vectors. The function
f : X × U ×D → X is bounded and Lipschitz continuous.
The probability that the disturbance equals dj ∈ D at
time k is P[wk = dj ] = pj , where 0 ≤ pj ≤ 1 and∑W
j=1 pj = 1. We assume that wk is independent of xk,

uk, and disturbances at any other times. The only source of
randomness in the system is the disturbance. In particular,
the initial state x0 is not random. The set of admissible,
deterministic, history-dependent control policies is,

Π :=
{

(µ0, µ1, . . . , µN−1) | µk : Hk → U
}
, (3)

where Hk := X × . . .×X︸ ︷︷ ︸
(k+1) times

is the set of state histories up

to time k. We are given a constraint set K ⊆ X , and the
safety criterion that the state of the system should stay inside
K over time. For example, if the system is a pond in a
stormwater catchment, then xk may be the water level of
the pond in feet at time k, and K = [0, 5) indicates that the
pond overflows if the water level exceeds 5 feet. We quantify
the extent of constraint violation/satisfaction using a surface
function that characterizes the constraint set. Specifically,
similar to [9, Eq. 2.3], let g : X → R satisfy,

x ∈ K ⇐⇒ g(x) < 0. (4)

For example, we may choose g(x) = x − 5 to characterize
K = [0, 5) on the state space X = [0,∞).

B. Risk-Sensitive Safe Sets

A risk-sensitive safe set is a set of initial states from which
the risk of large constraint violations can be reduced to a
required level via a control policy, where risk is quantified



using the CVaR measure. We use the term risk level to mean
the allowable level of risk of constraint violations. Formally,
the risk-sensitive safe set at the confidence level α ∈ (0, 1]
and the risk level r ∈ R is defined as,

Srα := {x ∈ X |W ∗0 (x, α) ≤ r}, (5a)

where
W ∗0 (x, α) := min

π∈Π
CVaRα

[
Zπx
]
,

Zπx := max
k=0,...,N

{
g(xk)

}
,

(5b)

such that the state trajectory, (x0, x1, ..., xN ), evolves ac-
cording to the dynamics model (2) with the initial state
x0 = x under the policy π ∈ Π. The surface function
g characterizes distance to the constraint set K according
to (4). Note that the minimum in the definition of W ∗0 (x, α)
is attained, as the next lemma states.

Lemma 1 (Existence of a minimizer): For any initial state
x0 ∈ X and any confidence level α ∈ (0, 1], there exists a
policy π∗ ∈ Π such that

CVaRα
[
Zπ
∗

x

]
= inf
π∈Π

CVaRα
[
Zπx
]

= min
π∈Π

CVaRα
[
Zπx
]
.

Proof: Fix the initial state x0. Since the control and
disturbance spaces are finite, the set of states that could
be visited (starting from x0) is finite. Therefore, the set of
policies restricted to realizable histories from x0 is finite.
Hence, the infimum must be attained by some policy π∗.

In the next sections, we will present a tractable algorithm
to approximately compute risk-sensitive safe sets at different
levels of confidence and risk.

C. Discussion

Computing risk-sensitive safe sets, as defined by (5), is
well-motivated for several reasons. Our formulation incor-
porates different confidence levels and non-binary distance
to the constraint set. In contrast, the stochastic reachability
problem addressed by Abate et al. [6] uses a single confi-
dence level and an indicator function to measure distance
to the constraint set, in order to quantify the probability
of constraint violation. Specifically, let ε ∈ [0, 1] be the
maximum tolerable probability of constraint violation (called
safety level in [6]), and choose α := 1, r := ε − 1

2 , and
g(x) := 1K̄(x)− 1

2 , where

1K̄(x) :=

{
1 if x /∈ K
0 if x ∈ K

. (6a)

Then, the risk-sensitive safe set (5) is equal to,{
x ∈ X

∣∣∣ min
π∈Π

E
[

max
k=0,...,N

1K̄(xk)
]
≤ ε
}
, (6b)

which is the maximal probabilistic safe set at the ε-safety
level [6, Eqs. 11 and 13], if we consider non-hybrid dynamic
systems that evolve under history-dependent policies.3

Risk-sensitive safe sets have two desirable mathematical
properties. The first property is that Srα shrinks as the risk

3Abate et al. [6] considers hybrid dynamic systems that evolve under
Markov policies.

level r or the confidence level α decreases. Since Srα is
an r-sublevel set and CVaRα increases as α decreases, one
can show that Sr2α2

⊆ Sr2α1
⊆ Sr1α1

and Sr2α2
⊆ Sr1α2

⊆ Sr1α1

hold for any r1 ≥ r2 and 1 ≥ α1 ≥ α2 > 0. In other
words, as the allowable level of risk of constraint violation
(r) decreases, or as the fraction of damaging outcomes that
are not fully addressed (α) decreases, Srα encodes a higher
degree of safety.

The second property is that risk-sensitive safe sets at the
risk level, r := 0, have probabilistic safety guarantees.

Lemma 2 (Probabilistic safety guarantee): If x ∈ S0
α,

then the probability that the state trajectory initialized at x
exits K can be reduced to α by a control policy.

Proof: The proof follows from the fact that
CVaRα[Zπx ] ≤ 0 =⇒ P[Zπx ≥ 0] ≤ α [11, Sec. 6.2.4,
pp. 257-258]. The event Zπx ≥ 0 is equivalent to the event
that there is a state xk of the associated trajectory that exits
the constraint set, since g(xk) ≥ 0 ⇐⇒ xk /∈ K.
Lemma 2 indicates that S0

α is a subset of the maximal
probabilistic safe set at the safety level α ∈ (0, 1], if
we consider non-hybrid dynamic systems that evolve under
history-dependent policies [6, Eqs. 9 and 11].

A key difference between our risk-sensitive safe set (5)
and the risk-constrained safe set in [18] is that we specify the
CVaR of the worst constraint violation of the state trajectory
(x0, . . . , xN ) to be below a required threshold, while ref. [18]
specifies the CVaR of the constraint violation of xk to be
below a required threshold for each k.

III. REDUCTION OF RISK-SENSITIVE SAFE SET
COMPUTATION TO CVAR-MDP

Computing risk-sensitive safe sets is challenging since the
computation involves a maximum of costs (as opposed to
a summation of costs) and the Conditional Value-at-Risk
measure (as opposed to an expectation). In this section,
we show how computing an under-approximation of a risk-
sensitive safe set can be reduced to solving a CVaR-MDP,
which has been studied, for example, by [15] and [22]. Such
a reduction will be leveraged in Section IV to devise a value-
iteration algorithm to compute tractable approximations of
risk-sensitive safe sets.

A. Preliminaries

The reduction procedure is inspired by Chow et al. [15].
Specifically, we consider an augmented state space, X × Y ,
that consists of the original state space, X , and the space
of confidence levels, Y := (0, 1]. The under-approximations
of risk-sensitive safe sets will be defined in terms of the
dynamics of the augmented state, (x, y) ∈ X × Y .

Let (x0, y0) = (x, α) be a given initial condition. The
augmented state at time k + 1, (xk+1, yk+1), depends on
the augmented state at time k, (xk, yk), as follows. Given a
control uk ∈ U and a sampled disturbance wk ∈ D, the next
state xk+1 ∈ X satisfies the dynamics model (2). The next
confidence level yk+1 ∈ Y is given by,

yk+1 = R̄xk,yk(wk) · yk, (7)



where R̄xk,yk : D → (0, 1
yk

] is a known deterministic
function, which we will specify in Lemma 3. The augmented
state space X ×Y is fully observable. Indeed, the history of
states and actions, (x0, u0, . . . , xk−1, uk−1, xk), is available
at time k by (2). Also, the history of confidence levels,
(y0, . . . , yk), is available at time k, since the functions R̄xk,yk
and the initial confidence level, y0 = α, are known.

We define the set of deterministic, Markov control policies
in terms of the augmented state space as follows,

Π̄t := {(µ̄t, µ̄t+1, . . . , µ̄N−1) | µ̄k : X × Y → U},
t = 0, . . . , N − 1.

(8)

There is an important distinction between the set of policies
Π̄0 as defined above, and the set of policies Π as defined
in (3). Given π̄0 ∈ Π̄0, the control law at time k, µ̄k ∈ π̄0,
only depends on the current state xk ∈ X and the current
confidence level yk ∈ Y . However, given π ∈ Π, the control
law at time k, µk ∈ π, depends on the state history up to
time k, (x0, . . . , xk) ∈ Hk. In particular, the set of policies
Π̄0 is included in the set of policies Π. This is because the
augmented state at time k is uniquely determined by the
initial confidence level and the state history up to time k.

The benefits of considering Π̄0 instead of Π are two-fold.
First, the computational requirements are reduced when the
augmented state at time k, (xk, yk), is processed instead of
the initial confidence level and the state history up to time k,
(y0, x0, x1, . . . , xk). Second, we are able to define an under-
approximation of the risk-sensitive safe set given by (5) using
Π̄0, which we explain below.

B. Under-Approximation of Risk-Sensitive Safe Set

Define the set Urα ⊆ X , at the confidence level α ∈ (0, 1]
and the risk level r ∈ R,

Urα := {x ∈ X | J∗0 (x, α) ≤ βem·r}, (9)

where
J∗0 (x, α) := min

π∈Π̄0

CVaRα
[
Y πx
]
,

Y πx :=
∑N
k=0 c(xk),

(10)

such that c : X → R is a stage cost, and the augmented
state trajectory, (x0, y0, . . . , xN−1, yN−1, xN ), satisfies (2)
and (7) with the initial condition (x0, y0) = (x, α) under the
policy π ∈ Π̄0. The next theorem, whose proof is provided
in the Appendix, states that if the stage cost takes a particular
form, then Urα is an under-approximation of the risk-sensitive
safe set Srα.

Theorem 1 (Reduction to CVaR-MDP): Choose the stage
cost c(x) := βem·g(x), where β > 0 and m > 0 are
constants, and g satisfies (4). Then, Urα as defined in (9)
is a subset of Srα as defined in (5). Further, the gap between
Urα and Srα can be reduced by increasing m. �

In the definition of the stage costs, the parameter β is
included to address numerical issues that may arise, if m is
set to a very large number.

IV. A VALUE-ITERATION ALGORITHM
TO APPROXIMATE RISK-SENSITIVE SAFE SETS

By leveraging Theorem 1, one can use existing CVaR-
MDP algorithms to compute under-approximations of risk-
sensitive safe sets. In this paper, we adapt a value-iteration
algorithm from Chow et al. [15] to compute tractable approx-
imations of the risk-sensitive safe set under-approximations
{Urα}. We start by stating an existing temporal decomposition
result for CVaR that will be instrumental to devising the
value-iteration algorithm.

A. Temporal Decomposition of Conditional Value-at-Risk

In this section, we present an existing result (namely,
Lemma 22 in [23]) that specifies how the Conditional Value-
at-Risk of a sum of costs can be partitioned over time, and
how the confidence level evolves over time, which motivates
the choice of the update function (7).

Lemma 3 (Temporal decomposition of CVaR): At time k,
suppose that the system (2) is at the state xk ∈ X with the
confidence level yk ∈ Y and is subject to a policy πk :=
(µk, πk+1) ∈ Π̄k. Then,

CVaRyk [Z|xk, πk] = max
R∈R(yk,P)

C(R,Z;xk, yk, πk),

C(R,Z;xk, yk, πk) :=

Ewk∼P
[
R(wk) · CVaRykR(wk)[Z|xk+1, πk+1]

∣∣xk, µk],
(11a)

where

R(yk,P) :=
{
R : D →

(
0, 1

yk

] ∣∣ Ewk∼P[R(wk)
]

= 1
}
,

Z :=
∑N
i=k+1 c(xi),

(11b)
such that c : X → R is a stage cost. Further, given the
current state (xk, yk), the current control uk := µk(xk, yk),
and the next state xk+1, the function that was introduced
in (7) R̄xk,yk : D → (0, 1

yk
] is defined as,

R̄xk,yk(wk) = arg max
R∈R(yk,P)

C(R,Z;xk, yk, πk). (12)

Remark 1: The proof of Lemma 3 is a consequence of
Lemma 22 in [23], and its proof is omitted for brevity.

Remark 2: If we do not have access to wk, but only to
(xk, yk, uk, xk+1), then the next confidence level is defined
as yk+1 := R̄xk,yk(w), where w ∈ D is any disturbance that
satisfies xk+1 = f(xk, uk, w).

Remark 3: CVaRyk [Z|xk, πk] is the risk of the cumulative
cost of the trajectory, (xk+1, . . . , xN ), that is initialized at
the state xk with the confidence level yk and is subject to
the policy πk ∈ Π̄k.

B. Value-Iteration Algorithm

Using Lemma 3, we will devise a dynamic programming
value-iteration algorithm to compute an approximation J0 of
J∗0 , and thus, an approximation of Urα at different levels of
confidence α and risk r.



Specifically, compute the functions JN−1, . . . , J0 recur-
sively as follows: for all zk := (xk, yk) ∈ X × Y ,

Jk(zk)

:= min
u∈U

{
c(xk) + max

R∈R(yk,P)
Ewk∼P

[
RJk+1(x′, ykR)

∣∣zk, u]},
for k = N − 1, . . . , 0,

(13)
where JN (xN , yN ) := c(xN ), c(x) := βem·g(x), x′ := xk+1

satisfies (2), and R(yk,P) is defined in (11).
Then, we approximate the set Urα as Ûrα :=
{x ∈ X | J0(x, α) ≤ βem·r}, where we have replaced J∗0
in (9) with J0. The function, J0, is obtained from the last
step of the value iteration (13).

In the Appendix, we present theoretical arguments inspired
by [15] and [4, Sec. 1.5] that justify such an approximation.
In particular, we provide theoretical evidence for the follow-
ing conjecture.

Conjecture (C): Assume that the functions JN−1, . . . , J0

are computed recursively as per the value-iteration algorithm
(13). Then, for any (x, α) ∈ X × Y ,

J0(x, α) = J∗0 (x, α), (14)

where J∗0 is given by (10).
This conjecture is further supported by numerical experi-

ments presented next.

V. NUMERICAL EXPERIMENTS

In this section, we provide empirical results that demon-
strate the following: 1) our value-iteration estimate of J0 is
close to a Monte Carlo estimate of J∗0 , 2) our value-iteration
estimate of Ûry is an under-approximation of a Monte Carlo
estimate of Sry , and 3) estimating J0 (and Ûry ) via the value-
iteration algorithm is tractable on a realistic example inspired
from stormwater catchment design. Item 1 provides empirical
support for the Conjecture. Items 2 and 3 provide empirical
support for reducing the computation of risk-sensitive safe
sets to a CVaR-MDP. In our experiments, we used MATLAB
R2016b (The MathWorks, Inc., Natick, MA) and MOSEK
(Copenhagen, Denmark) with CVX [24] on a standard laptop
(64-bit OS, 16GB RAM, Intel R© CoreTM i7-4700MQ CPU
@ 2.40GHz). Our code is available at https://github.
com/chapmanmp/ACC_2019_Github.

This section demonstrates the utility of computing ap-
proximate risk-sensitive safe sets in a practical setting: to
evaluate the design of a retention pond in a stormwater
catchment system. We consider a retention pond from our
prior work [25] as a stochastic discrete-time dynamic system,

xk+1 = xk +
4t
A

(wk − qp(xk, uk)), k = 0, . . . , N − 1,

qp(xk, uk) :=

{
Cdπr

2uk
√

2η(x− E) if xk ≥ E
0 if xk < E,

(15)
where xk ≥ 0 is the water level of the pond in feet at
time k, uk ∈ U := {0, 1} is the valve setting at time
k, and wk ∈ D := {d1, . . . , d10} is the random surface

runoff in feet-cubed-per-second at time k. (η = 32.2 ft
s2 is the

acceleration due to gravity, π ≈ 3.14, r = 1
3 ft is the outlet

radius, A = 28, 292ft2 is the pond surface area, Cd = 0.61 is
the discharge coefficient, and E = 1ft is the elevation of the
outlet.) We estimated a finite probability distribution for wk
using the surface runoff samples that we previously generated
from a time-varying design storm (a synthetic storm based
on historical rainfall) [25]. We averaged each sample over
time and solved for a distribution that satisfied the empirical
statistics of the time-averaged samples (Table I). We set
4t := 300 seconds, and N := 48 to yield a 4-hour time
horizon. We chose the constraint set K := [0, 5), and g(x) :=
x − 5. We computed over a grid of states and confidence
levels G := Gs×Gc, where Gs := {0, 0.1, . . . , 6.4, 6.5}, and
Gc := {0.999, 0.95, 0.80, 0.65, 0.5, 0.35, 0.20, 0.05, 0.001}.
Since the initial state x0 is non-negative and the smallest
realization of wk is about 8.5 ft3

s , xk+1 ≥ xk for all k. If
xk+1 > 6.5ft, we set xk+1 := 6.5ft to stay within the grid.

We were able to empirically assess the accuracy of our
proposed approach because an optimal control policy is
known a priori for the one-pond system. Since xk+1 ≥ xk
for all k, and the only way to exit the constraint set is if
xk ≥ 5ft, an optimal policy is to keep the valve open over
all time, regardless of the current state, the current confidence
level, or the state history up to the current time.

Our value-iteration estimate of the function J0 is shown
in Fig. 1, and a Monte Carlo estimate of the function J∗0
is shown in Fig. 2. The estimates of J0 and J∗0 are similar
throughout the grid except near the smaller confidence levels.
The average (largest) difference normalized by the estimate
of J∗0 is approximately 1.4 (18.7). The average (largest)
difference normalized by the estimate of J0 is approximately
0.23 (0.95). These results provide empirical support for the
Conjecture.

Our value-iteration estimate of the set Ûrα and a Monte
Carlo estimate of the set Sry are shown in Fig. 3 at different
levels of confidence y and risk r. The empirical results indi-
cate that Ûrα is an under-approximation of Sry . We estimated
the sets {Sry} using a Monte Carlo estimate of the function
W ∗0 , which is shown in Fig. 4.

The computation time for our value-iteration estimate of
J0 was roughly 3h 6min. We deem this performance to
be acceptable because 1) computations to evaluate design

TABLE I

Sample moment Value
Mean 12.16 ft3/s
Variance 3.22 ft6/s2

Skewness 1.68 ft9/s3

Disturbance sample, dj ft3/s Probability, P[wk = dj ]
8.57 0.0236
9.47 10−4

10.37 10−4

11.26 0.5249
12.16 0.3272
13.06 10−4

13.95 10−4

14.85 10−4

15.75 10−4

16.65 0.1237

https://github.com/chapmanmp/ACC_2019_Github
https://github.com/chapmanmp/ACC_2019_Github


choices are performed off-line, 2) the problem entailed
a realistically sized state space (|Gs| · |Gc| = 594 grid
points) and time horizon (N = 48 time points), and 3) our
implementation is not yet optimized. Further, there is recent
work in scalable approximations of reachable sets (e.g., [9])
that we will investigate for possible extensions to the risk-
sensitive case.
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Fig. 1. Our value-iteration estimate of J0(x, α) versus (x, α) ∈ G for
the pond system, see (13). c(x) := βem·g(x), β := 10−3, m := 10, and
g(x) := x− 5. The computation time was roughly 3h 6min.
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Fig. 2. A Monte Carlo estimate of J∗
0 (x, α) versus (x, α) ∈ G for the

pond system. c(x) := βem·g(x), β := 10−3, m := 10, and g(x) := x−5.
100,000 samples were generated per grid point. See also Fig. 1.

Value-iteration implementation. To implement the value-
iteration algorithm, we used the interpolation method over
the confidence levels proposed by Chow et al. [15] to
approximate the expectation in (13) as a piecewise lin-
ear concave function, which we maximized by solv-
ing a linear program. Further, at each α ∈ Gc,
we used multi-linear interpolation to approximate the
value of Jk+1(xk+1, α). We set Jk+1(xk+1, α) :=
(xk+1−xi)·Jk+1(xi+1,α)+(xi+1−xk+1)·Jk+1(xi,α)

xi+1−xi , where xi ∈
Gs and xi+1 ∈ Gs are the two nearest grid points to xk+1

that satisfy xi ≤ xk+1 ≤ xi+1.
Monte Carlo implementations. For each (x, α) ∈ G, we

sampled 100,000 trajectories starting from x0 = x, subject
to keeping the valve open over time, as this is an optimal
policy. For each trajectory sample i, we computed the cost
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Fig. 3. Approximations of {Ûr
y} and {Sry} are shown for the pond system

at various levels of confidence y and risk r. In the legend, Ûr
y is denoted

by Ur
y , and Sry is denoted by Sr

y . Approximations of {Ûr
y} were obtained

from our value-iteration estimate of J0 (see Fig. 1). Approximations of
{Sry} were obtained from a Monte Carlo estimate of W ∗

0 (see Fig. 4).

sample zi := maxk{g(xik)}, and estimated the Conditional
Value-at-Risk of the 100,000 cost samples at the confi-
dence level α. We used the CVaR estimator ĈVaRα[Z] :=

1
αM

∑M
i=1 zi1{zi≥Q̂α}, where Q̂α is the (1− α)-quantile of

the empirical distribution of the samples {zi}Mi=1, and M :=
100, 000 is the number of samples [11, Sec. 6.5.1]. Since this
estimator is designed for continuous distributions, we added
zero-mean Gaussian noise with a small standard deviation,
σ := 10−12, to each cost sample prior to computing the
CVaR. Fig. 4 provides a Monte Carlo estimate of W ∗0 . To
obtain a Monte Carlo estimate of J∗0 , we used the same pro-
cedure but with the cost sample zi := ξi +

∑N
k=0 βe

m·g(xik),
ξi ∼ N (0, σ := 10−7), m := 10, and β := 10−3; see Fig. 2.

VI. CONCLUSION

In this paper, we propose the novel idea of a risk-sensitive
safe set to encode safety of a stochastic dynamic system in
terms of an allowable level of risk of constraint violations
r in the α-fraction of the most damaging outcomes. We
show how the computation of a risk-sensitive safe set can
be reduced to the solution to a Markov Decision Process,
where cost is assessed according to the Conditional Value-
at-Risk measure. Further, we devise a tractable algorithm to
approximate a risk-sensitive safe set, and provide theoretical
and empirical arguments about its correctness.

Risk-sensitive safe sets have the potential to inform the
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Fig. 4. A Monte Carlo estimate of W ∗
0 (x, α), as defined in (5), versus

(x, α) ∈ G for the pond system. 100,000 samples were generated per grid
point, and g(x) := x − 5. The maximum is approximately 1.5ft because
the system state was prevented from exceeding 6.5ft.

design of safety-critical infrastructure systems, by revealing
trade-offs between the risk of damaging outcomes and design
choices at different levels of confidence. We illustrate our
risk-sensitive reachability approach on a stormwater retention
pond that must be designed to operate safely in the presence
of uncertain rainfall. Our results reveal that the current design
of the pond is likely undersized: even if the pond starts
empty, there is a risk of at least 0.25ft of overflow at most
levels of confidence under the random surface runoff of the
design storm (see Fig. 3, r = 0.25 plot at x = 0).

On the methodological side, future steps are: 1) to formally
prove the correctness of the value-iteration algorithm, 2)
to devise approximate value-iteration algorithms to improve
scalability, and 3) to consider a broader class of risk mea-
sures. On the applications side, future steps are: 1) to adjust
the parameters of the dynamics model (e.g., outlet radius)
to reduce the risk of extreme overflows, 2) to apply our
method to a more realistic stormwater system that consists
of two ponds in series on a larger grid, and 3) to develop
an optimized toolbox for the computation of risk-sensitive
safe sets. We are hopeful that with further development, the
concept of risk-sensitive reachability will become a valuable
tool for the design of safety-critical systems.
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APPENDIX

Proof: [Proof of Theorem 1] The proof relies on two
facts. The first fact is,

max{y1, . . . , yp} ≤
1

m
log(emy1 + · · ·+ emyp)

≤ max{y1, . . . , yp}+
log p

m
,

(16a)

for any y ∈ Rp, m > 0. (Use the log-sum-exp relation stated
in [26, Sec. 3.1.5].) So, as m→∞,

1

m
log(emy1 + · · ·+ emyp)→ max{y1, . . . , yp}. (16b)

The second fact is that CVaR is a coherent risk measure, so it
satisfies certain properties. CVaR is positively homogeneous,
CVaRα[λZ] = λCVaRα[Z] for any λ ≥ 0, and monotonic,
CVaRα[Y ] ≤ CVaRα[Z] for any random variables Y ≤
Z [12, Sec. 2.2]. Also, CVaR can be expressed as the supre-
mum expectation over a particular set of probability density
functions [11, Eqs. 6.40 and 6.70]. Using this property and
E[log(Z)] ≤ log (E[Z]), one can show,

CVaRα[log(Z)] ≤ log (CVaRα[Z]) , (17)

for any random variable Z with finite expectation.
By monotonicity, positive homogeneity, (16), and (17),

CVaRα
[
Zπx
]
≤ 1

mCVaRα
[

log
(
Ȳ πx
) ]

≤ 1
m log

(
CVaRα

[
Ȳ πx
])
,

(18)

where Ȳ πx := Y πx /β. Now, if x ∈ Urα, then

em·r ≥ min
π∈Π̄0

CVaRα
[
Y πx /β

]
≥ min

π∈Π
CVaRα

[
Y πx /β

]
,

since Π̄0 is included in Π. By Lemma 1, there exists π ∈ Π
such that

r ≥ 1
m log

(
CVaRα

[
Y πx /β

])
≥ CVaRα

[
Zπx
]
,

where the second inequality holds by (18). So, x ∈ Srα.

Theoretical Justification of Conjecture (C): Let ε > 0. For
all k = 0, . . . , N − 1 and zk := (xk, yk) ∈ X × Y , let
µεk : X × Y → U satisfy,

c(xk)+ max
R∈R(yk,P)

E[RJk+1(xk+1, ykR)|zk, µεk] ≤ Jk(zk)+ε.

(19)
Let Jεk be a sub-optimal cost-to-go starting at time k,

Jεk(zk) := CVaRyk
[∑N

i=k c(xi)
∣∣zk, πεk], (20)

where πεk := (µεk, . . . , µ
ε
N−1) = (µεk, π

ε
k+1).

Recall Jk, as defined in (13). Define J∗k (zk) :=

minπ∈Π̄k CVaRyk
[∑N

i=k c(xi)
∣∣zk, π]. To prove the

Conjecture, we would like to show by induction that
for all zk := (xk, yk) ∈ X × Y and k = N − 1, . . . , 0,

Jk(zk) ≤ Jεk(zk) ≤ Jk(zk) + (N − k)ε, (21a)

J∗k (zk) ≤ Jεk(zk) ≤ J∗k (zk) + (N − k)ε, (21b)

Jk(zk) = J∗k (zk), (21c)

which is the proof technique in [4, Sec. 1.5]. One can
show (21) for the base case, k := N−1, since JN is known.
Assuming (21) holds for index k+ 1 (induction hypothesis),
we want to show that (21) holds for index k (induction step).
The key idea is to use the recursion,

Jεk(zk) = c(xk) + max
R∈R(yk,P)

E[R · Jεk+1(xk+1, ykR)|zk, µεk],

(22)



which we justify next. Let Z :=
∑N
i=k+1 c(xi).

Jεk(zk)− c(xk) = CVaRyk
[
Z
∣∣zk, πεk]

= max
R∈R(yk,P)

E
[
R · CVaRykR[Z|xk+1, π

ε
k+1]

∣∣zk, µεk]
(a)
= max
R∈R(yk,P)

E
[
R · Jεk+1(xk+1, ykR)

∣∣zk, µεk],
where we use (11), (20), and translation invariance
(CVaRα[a + Z] = a + CVaRα[Z] for a ∈ R, see [12, Sec.
2.2]). The last equality (a) is the crux of the Conjecture,
as one needs to justify why the worst-case density R is
equal to the a priori chosen density R̄ that defines the
dynamics of the confidence level. Based on [15], we believe
this equality to be correct, but we leave its formal proof
for future research. Assuming the aforementioned equality is
correct, then we show (21a) for index k using (22) and the
induction hypothesis. Let ε̄k := (N−k−1)ε, and x′ := xk+1.

Jεk(zk) ≤ c(xk) + max
R∈R(yk,P)

E
[
R
(
Jk+1(x′, ykR) + ε̄k

)∣∣zk, µεk]
= c(xk) + max

R∈R(yk,P)
E
[
RJk+1(xk+1, ykR)

∣∣zk, µεk]+ ε̄k

≤ Jk(zk) + (N − k)ε,

since E[R] = 1, and by (19). By (13), sub-optimality of
µεk(zk) ∈ U , Jk+1 ≤ Jεk+1, and (22),

Jk(zk) ≤ c(xk) + max
R∈R(yk,P)

E
[
RJεk+1(xk+1, ykR)

∣∣zk, µεk]
= Jεk(zk),

which would complete the induction step for (21a), if (22)
holds. Next, we show (21b) for index k. By definition, J∗k
is the optimal risk-sensitive cost-to-go from stage k, thus,
J∗k ≤ Jεk. Let ε̂k := (N − k)ε, x′ := xk+1, y′ := ykR, and
Z :=

∑N
i=k+1 c(xi). For any πk := (µk, π

′) ∈ Π̄k,

Jεk(zk) ≤ Jk(zk) + ε̂k

≤ c(xk) + max
R∈R(yk,P)

E
[
RJ∗k+1(xk+1, ykR)

∣∣zk, µk]+ ε̂k

≤ c(xk) + max
R∈R(yk,P)

E
[
RCVaRy′ [Z|x′, π′]

∣∣zk, µk]+ ε̂k

= c(xk) + CVaRyk [Z|zk, πk] + ε̂k

= CVaRyk
[∑N

i=k c(xk)|zk, πk
]

+ (N − k)ε.

The above statement implies

Jεk(zk) ≤ min
π∈Π̄k

CVaRyk
[∑N

i=k c(xk)|zk, πk
]

+ (N − k)ε

= J∗k (zk) + (N − k)ε,

which completes the induction step for (21b).
Thus, if (22) holds, then (21a) and (21b) hold for index k

for any ε > 0. So, (21c) would hold for index k. Assuming
the conjectured equality (a) is correct, this would complete
the proof of the Conjecture.
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[13] A. Ruszczyński, “Risk-averse dynamic programming for Markov
Decision Processes,” Mathematical Programming, vol. 125, no. 2, pp.
235–261, 2010.

[14] T. Osogami, “Robustness and Risk-Sensitivity in Markov Decision
Processes,” in Advances in Neural Information Processing Systems,
2012, pp. 233–241.

[15] Y. Chow, A. Tamar, S. Mannor, and M. Pavone, “Risk-Sensitive
and Robust Decision-Making: a CVaR Optimization Approach,” in
Advances in Neural Information Processing Systems, 2015, pp. 1522–
1530.

[16] L. J. Ratliff and E. Mazumdar, “Risk-sensitive inverse reinforcement
learning via gradient methods,” arXiv preprint arXiv:1703.09842,
2017.

[17] Y.-L. Chow and M. Pavone, “A Framework for Time-consistent,
Risk-Averse Model Predictive Control: Theory and Algorithms,” in
American Control Conference. IEEE, 2014, pp. 4204–4211.

[18] S. Samuelson and I. Yang, “Safety-Aware Optimal Control of Stochas-
tic Systems Using Conditional Value-at-Risk,” in 2018 Annual Amer-
ican Control Conference (ACC). IEEE, 2018, pp. 6285–6290.

[19] R. T. Rockafellar and S. P. Uryasev, “Optimization of Conditional
Value-at-Risk,” Journal of Risk, vol. 2, no. 3, pp. 21–41, 2000.

[20] M. P. Vitus, Z. Zhou, and C. J. Tomlin, “Stochastic control with un-
certain parameters via chance constrained control,” IEEE Transactions
on Automatic Control, vol. 61, no. 10, pp. 2892–2905, 2016.

[21] G. Serraino and S. Uryasev, “Conditional Value-at-Risk (CVaR),”
in Encyclopedia of Operations Research and Management Science.
Springer, 2013, pp. 258–266.

[22] W. B. Haskell and R. Jain, “A convex analytic approach to risk-
aware Markov Decision Processes,” SIAM Journal on Control and
Optimization, vol. 53, no. 3, pp. 1569–1598, 2015.

[23] G. C. Pflug and A. Pichler, “Time-consistent decisions and temporal
decomposition of coherent risk functionals,” Mathematics of Opera-
tions Research, vol. 41, no. 2, pp. 682–699, 2016.

[24] M. Grant, S. Boyd, and Y. Ye, “CVX: Matlab Software for Disciplined
Convex Programming,” 2008.

[25] M. P. Chapman, K. M. Smith, V. Cheng, D. Freyberg, and C. J. Tomlin,
“Reachability Analysis as a Design Tool for Stormwater Systems,” in
6th IEEE Conference on Technologies for Sustainability, Nov. 2018.

[26] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
University Press, 2004.

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2018/EECS-2018-41.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2018/EECS-2018-41.html
https://www.maths.ed.ac.uk/~prichtar/docs/Kisiala_Dissertation.pdf
https://www.maths.ed.ac.uk/~prichtar/docs/Kisiala_Dissertation.pdf

	I Introduction
	II Problem Formulation
	II-A System Model
	II-B Risk-Sensitive Safe Sets
	II-C Discussion

	III Reduction of Risk-Sensitive Safe Set Computation to CVaR-MDP
	III-A Preliminaries
	III-B Under-Approximation of Risk-Sensitive Safe Set

	IV A Value-Iteration Algorithm to Approximate Risk-Sensitive Safe Sets
	IV-A Temporal Decomposition of Conditional Value-at-Risk
	IV-B Value-Iteration Algorithm

	V Numerical Experiments
	VI Conclusion
	References

