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Abstract

Univariate polynomial root-finding has been studied for four millen-

nia and still remains the subject of intensive research. Hundreds if not

thousands of efficient algorithms for this task have been proposed and an-

alyzed. Two nearly optimal solution algorithms have been devised in 1995

and 2016, based on recursive factorization of a polynomial and subdivi-

sion iterations, respectively, but both of them are superseded in practice

by Ehrlich’s functional iterations. By combining factorization techniques

with Ehrlich’s and subdivision iterations we devise a variety of hybrid

root-finders, which improve both of these iteration processes in various

ways. We also improve initialization of subdivision iterations specialized

for real root-finding.

Key Words: Polynomial root-finding; Polynomial factorization; Functional
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1 Introducton

1. The problem and three known efficient algorithms. Univariate poly-
nomial root-finding has been the central problem of mathematics since Sumerian

∗Some results of this paper are scheduled to be presented at CASC 2019.
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times (see [1], [2], [43], [44]) and still remains the subject of intensive research
due to applications to signal processing, control, financial mathematics, geomet-
ric modeling, and computer algebra (see the books [36], [38], a survey [21], the
recent papers [54], [11], [57], [51], [12], [30], and the bibliography therein).

Hundreds if not thousands of efficient polynomial root-finders have been
proposed. The algorithm of [42] and [47], extending the previous progress in
[17], [59], [39], first computes numerical factorization of a polynomial into the
product of its linear factors and then approximates the roots; it solves both
tasks in nearly optimal Boolean time – almost as fast as one can access the
input coefficients with the precision required for these tasks.1

This algorithm is quite involved and has never been implemented. Since
2000 the root-finder of the user’s choice has been the package MPSolve,2 imple-
menting Ehrlich’s iterations of [20], also known from their rediscovery by Aberth
in 1973. In 2016 a distinct nearly optimal polynomial root-finder appeared in
[11] and [12], based on subdivision iterations. It performs slightly faster than
MPSolve for root-finding in a disc on the complex plain [30] but is still inferior
for the approximation of all roots of a polynomial.

2. New hybrid algorithms. Our synergistic combination of the techniques
of these three root-finders enhances their power. We incorporate two distinct
efficient deflation techniques into subdivision and Ehrlich’s iterations, which
one can similarly incorporate into other functional root-finding iterations such
as Weierstrass’s (aka Durand–Kerner’s) and Newton’s.

Our even more significant advance is a faster and more robust algorithm for
counting roots in a disc on the complex plain, which is a key stage of subdivision
algorithms. Its previous improvement versus the immediate predecessors [58]
and [45] was claimed to be a major algorithmic novelty of the papers [11] and
[12]. Unlike [11] and [12] our root-counting algorithm does not involve polyno-
mial coefficients and a can be applied to polynomial given in any basis, e.g.,
Bernstein’s or Chebyshev’s, or more generally to a polynomial represented by
a subroutine for its evaluation,3 which is an important benefit for dealing with
sparse polynomials. Namely we reduce root counting for a polynomial of degree
d just to polynomial evaluation at log2(2d + 1) points, that is, at 11 points in
the case of degree 1,000 and at 21 points in the case of degree 1,000,000.

Our third substantial improvement is of subdivision iterations is simplifica-
tion of their initialization in the case of real root-finding.

Our hybrid root-finders are nearly optimal and should become the user’s
choice. Their implementation, testing and refinement are major challenges.

1Required precision and Boolean time are smaller by a factor of d, the degree of an input
polynomial, for the problem of numerical polynomial factorization, which has various impor-
tant applications to modern computations, besides root-finding, e.g., to time series analysis,
Wiener filtering, noise variance estimation, co-variance matrix computation, and the study of
multi-channel systems (see Wilson [69], Box and Jenkins [7], Barnett [3], Demeure and Mullis
[18] and [19], Van Dooren [66]).

2Some competition came in 2001 from the package EigenSolve of [22], but the latest version
of MPSolve of [10] has combined the benefits of both packages.

3Hereafter we refer to them as black box polynomials, assuming that such a black box
subroutine also covers evaluation of the derivative p′(x).
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3. Our technical background and a research challenge. To a large
extent our progress relies on some advanced techniques hidden in Scönhage’s pa-
per [59]. That long paper contains a realm of intricate and powerful techniques
for theoretical estimation of asymptotic Boolean complexity where extremely
accurate polynomial factorization is required. These advanced techniques have
been too little (if at all) used by researchers since [47].4 In this paper we recalled
an efficient deflation algorithm developed by Schönhage in [59], traced back to
Delves and Lyness [17], and hereafter referred to as DLS algorithm or DLS defla-
tion. Subdivision iterations turned out to be quite friendly to this algorithm and
particularly to the specialization of its simple sub-algorithm to root-counting.
Furthermore we advanced subdivision iterations specialized to real root-finding
by combining DLS deflation with new application of Zhukovsky’s function and
by applying an efficient root radii algorithm from [59]. The DLS deflation can
be incorporated into Ehrlich’s iterations as well, but for that task we devised
more efficient deflation techniques and compared them with alternative ones of
[62]. In our analysis of proposed algorithms we applied some results from [32],
[54], and [55].

We hope that our work will motivate further efforts towards synergistic com-
bination of some efficient techniques well- and less-known for polynomial root-
finding (see, e.g., the little explored methods of [51] and [57]).

Devising practical and nearly optimal factorization algorithms is still an im-
portnat research challenge because for that task both Ehrlich’s and subdivision
iterations are slower by at least a factor of d than nearly optimal solution in [42]
and [47], which, however, is too involved in order to be practically efficient.

5. Organization of the paper. We state variations of the polynomial
root-finding and factorization problems in Section 2 and deduce lower bounds
on their Boolean complexity in Section 3. We cover subdivision iterations with
our three improvements in Section 4. We describe DLS deflation in Sections
5 and 6 and a more straightforward but less accurate deflation in Section 7.
We devote Section 9 to incorporation of deflation into Ehrlich’s iterations. In
Section 10 we cover the complexity of the presented algorithms. We conclude
with Section 11. In Parts I and II of the Appendix we briefly recall some other
algorithms of [59] and [32] directed towards polynomial factorization and its
extension to root-finding. In Part III of the Appendix we cover some auxiliary
and complementary algorithms and techniques for polynomial root-finding.

2 Four fundamental computational problems

Problem 1. Univariate Polynomial Root-finding. Given a real b′ and the

4To some extent such comments can be also applied to the paper [32] by Kirrinnis, which
elaborates upon the techniques of [59] towards simultaneous splitting of polynomial into the
product of a number of factors and is revisited in [55].
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coefficients p0, p1, . . . , pd of a univariate polynomial p(x),

p(x) =

d
∑

i=0

pix
i = pd

d
∏

j=1

(x− xj), pd 6= 0. (1)

approximate all d roots5 x1, . . . , xd within the error bound 1/2b
′

provided that
maxdj=0 |xj | ≤ 1. We can ensure the latter customary assumption at a dominated
computational cost by first approximating the root radius

r1 =
d

max
j=1
|xj |, (2)

and then scaling the variable: x → x/r1 (this implies increasing the computa-
tional (working) precision by log2(max{r1, 1/r1})). We can readily approximate
r1 (cf., e.g., [43]) by

r̃ = max
j≥1

(pd−j/pd)
1/j , r̃/d ≤ r1 < 2r̃, (3)

r̃
√

2/d ≤ r1 ≤ (1 +
√
5)r̃/2 < 1.62r̃ if pd−1 = 0. (4)

With a modest amount of computations we can approximate the root radius
within, say, a 1% error by applying the algorithm that supports the following
result.

Theorem 1. See [59, Corollary 14.3]. Given a polynomial p = p(x) of (1), one
can approximate its root radii rj := |xj | for j = 1, . . . , d within a relative error
bound 1 + 1/dk for a real k at a Boolean cost in O(d2 log2(d)),

All these estimates for r1 and other root radii involve coefficients of an
input polynomial and can be applied neither to polynomials p(x) represented
in Bernstein, Chebyshev and other non-monomial bases of (1) nor to sparse
polynomials defined by a subroutine for their evaluation, e.g., p = ph(x) for a
fixed positive integer h such that

p0(x) = 0, pi+1(x) = pi(x)
2 + x for i = 0, 1, . . . , h. (5)

The roots of this polynomial are known as the centers of hyperbolic components
of Mandelbrot’s set of period h. For another example polynomials can be defined
by the following similar sequence of equations:

p0(x) = x, pi+1(x) = pi(x)
2 + 2 for i = 0, 1, . . . , h. (6)

For both classes the degree of pi(x) is squared in the transition to pi+1(x). One
can estimate the root radius r1 of such polynomials by monitoring the behavior
of Newton’s iterations initialized sufficiently far from the origin and applying
the estimates of [58] or [65].

Before proceeding any further we recall some Basic Definitions.

5We count m times a root of multiplicity m.
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• Hereafter we freely denote polynomials p(x), t(x) =
∑

i tix
i, u(x) =

∑

i uix
i etc. by p, t, u etc. unless this can cause confusion.

• We use the norms |u| =
∑

i |ui| for u =
∑

i uix
i and |u|∞ = maxi |ui|.

• du := deg(u) denotes the degree of a polynomial u; in particular dp = d.

• ǫ-cluster of roots of p is a root set lying in a disc of radius ǫ; in particular
a 0-cluster of m roots of p is its root of multiplicity m.

Problem 2. Approximate Factorization of a Polynomial. Given a real b
and the coefficients p0, p1, . . . , pd of a polynomial p = p(x) of (1), compute 2d
complex numbers uj , vj for j = 1, . . . , d such that

|p−
d
∏

j=1

(ujx− vj)| ≤ 2−b|p|. (7)

Problem 3. Polynomial root-finding in a disc. This is Problem 1 restricted
to root-finding in a disc on the complex plain for a polynomial p that has no
roots lying outside the disc but close to it.

Problem 4. Polynomial root-finding in a line segment. This is Problem 1
restricted to root-finding in a line segment for a polynomial p that has no roots
lying outside the segment but close to it.

The above concept “close” is quantified in Definition 9 for Problem 3 and is
extended to Problem 4 via its reduction to Problem 3 in Section 9.

Remark 2. It is not easy to optimize working precision for the solution of
Problems 1 – 4 a priori, but we can nearly optimize it by action – by applying the
solution algorithms with recursively doubled or halved precision and monitoring
the results (see Section 9.2 and recall similar policies in [5], [10], [54], [12]).

Remark 3. It is customary to reduce Problems 3 and 4 to root-finding in the
unit disc

D(0, 1) := {x : |x| < 1}
and unit segment

S[−1, 1] := {x : − 1 ≤ x ≤ 1}
by means of shifting and scaling the variable (cf. (3) and (4)). Then working
precision and Boolean cost grow but within the nearly optimal bounds.

3 Boolean complexity: lower estimates

Proposition 4. The solution of Problem 2 involves at least db bits of memory
and at least as many Boolean (bit-wise) operations.

5



Proof. The solution of Problem 2 is given by the 2d coefficients uj and vj of the
d linear factors ujx− vj of p for j = 1, . . . , d. Let uj = 1 and 1/2 < |vj | < 1 for
all j. Then each vj must be represented with b bits and hence all vj must be
represented with db bits in order to satisfy (7). A Boolean operation outputs a
single bit, and so we need at least db operations in order to output db bits.

Next we bound from below the Boolean complexity of Problems 1, 3 and 4.

Definition 5. ω = ωK := exp(2πiK ) denotes a primitive Kth root of unity, such
that ωK

K = 1, ωi
K 6= 1 for 0 < i < K.

Lemma 6. Let p(x) = (x − x1)
mf(x) for a polynomial f(x) and a positive

integer m. Fix a real b. Then the polynomial pj(x) = p(x)+2(j−m)b(x−x1)
jf(x)

has m− j roots x1 + ωi
m−j2

−b for i = 0, . . . ,m− j − 1.

Proof. Observe that pj(x) = ((x−x1)
m−j +2(j−m)b)(x−x1)

jf(x) and consider
the roots of the factor (x− x1)

m−j + 2(j−m)b.

Corollary 3.1. Under the assumption of Lemma 6 write f := ⌈log2 |f |⌉,
gj(x) = (x − x1)

jf(x) and j = 1, . . . ,m − 1, and g :=
∑m−1

j=1 ⌈log2 |gj |⌉. Then
one must process at least

Bp =
(

d−m+ 1 +
m− 1

2

)

mb− f − g (8)

bits of the coefficients of p and must perform at least Bp/2 Boolean operations
in order to approximate the m-multiple root x1 of p within 1/2b.

Proof. By virtue of Lemma 6 the perturbation of the coefficients p0,. . . ,pd−m

of p(x) by |f |/2mb turns the (m− j)-multiple root x1 of the factor (x− x1)
m−j

of p(x) into m − j simple roots pj(x), all lying at the distance 1/2b from x1.
Therefore one must access at least (d − m + 1)mb − f bits of the coefficients
p0, . . . , pd−m of p in order to approximate the root x1 within 1/2b.

Now represent the same polynomial p(x) as (x−x1)
m−jgj(x). Apply Lemma

6 for m replaced by m − j and for f(x) replaced by gj(x) and deduce that a
perturbation of the coefficient pd−m+j of p by |gj |/2(m−j)b turns the j-multiple
root x1 of gj(x) = (x−x1)

jf(x) into j simple roots, all lying at the distance 1/2b

from x1. Therefore one must access at least
∑m−1

j=1 ((m− j)b− g = m−1
2 mb− g

bits of the coefficients pd−m+1, . . . , pd−1 in order to approximate the root x1

within 1/2b. Sum the bounds (d−m+ 1)mb− f and m−1
2 mb− g and arrive at

the bound (8) on the overall number Bp of bits to be accessed; this requires at
least Bp/2 Boolean operations – at least one operation per each pair of bits.

Let us specify bound (8) in two cases.
(i) If m = d, f(x) = 1, and |x1| ≤ 0.5

d , then f = 0, |gj | ≤ 2 for all j, g ≤ d−1,
and

Bp ≥ (d+ 1)db/2− d+ 1. (9)

6



(ii) If x1 is a simple root, well-isolated from the other roots of p, then sub-
stitute m = 1 and g = 0 into equation (8), thus turning it into Bp = db − f for

f(x) = p(x)
x−x1

such that |f | ≤ d|p|. Consequently

Bp ≥ (b− |p|)d.

Remark 7. Corollary 3.1 defines lower bounds on the Boolean complexity of
Problems 1, 3, and 4 as long as an input polynomial p has an m-multiple root
in the complex plain, a disc, and a segment, respectively. One can extend all
these bounds to the case where a polynomial has an ǫ-cluster of m roots for a
sufficiently small positive ǫ rather than an m-multiple root.

The algorithm of [42] and [47] solves Problem 2 by using Õ(db) bits of mem-
ory and Õ(db) Boolean operations.6 This Boolean cost bound is within a poly-
logarithmic factor from the information-theoretic lower bound db of Proposition
4. Based on [61, Theorem 2.7] one can extend that estimate to the solution of
Problems 1, 3 and 4 at a Boolean cost in Õ(d2b), which is also nearly optimal
by virtue of (9), and to nearly optimal solution of the problem of polynomial
root isolation (see Corollaries B.1 and B.2).

Finally we state the following information lower bound in the case of a black
box polynomial.

Theorem 8. Approximation of k roots of a black box polynomial p of a degree
d ≥ k with an error bound 2−b′ requires at least 2−b′k Boolean operations.

Proof. Notice that a Boolean operation outputs just a single bit.

4 Subdivision iterations with three improve-

ments

4.1 Subdivision iterations and a Quadtree

Subdivision iterations extend the classical bisection iterations from root-finding
on a line to polynomial root-finding in the complex plain. Under the name of
Quad-tree Construction these iterative algorithms have been studied in [27], [25],
[58], and [45] and extensively used in Computational Geometry. The algorithm
has been introduced by Herman Weyl in [68] and advanced in [27], [25], [58],
and [45]; under the name of subdivision Becker et al. modified it in [11] and
[12].7 Let us briefly recall subdivision iterations for Problem 1; they are similar
for Problem 3.

At the beginning of a subdivision (quad-tree) iteration all the d roots of p
are covered by at most cd congruent suspect squares on the complex plain that
have horizontal and vertical edges, all of the same length where c is a fixed
constant. The iteration outputs a similar cover of all d roots of p with a new

6Here and hereafter we write Õ(s) for O(s) defined up to a poly-logarithmic factor in s.
7The algorithms of [11] and [12] are quite similar to one another.
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set of at most cd suspect squares whose edge length is halved. One needs a
nonexistence test, which decides whether a square contains no roots of p, in
which case it is discarded. Otherwise it is a suspect square to be processed
in the next subdivision iteration. Subdivision process can be described by a
Quadtree, with vertices in suspect squares and edges connecting them to their
suspect subsquares of the next subdivision.

4.2 Nonexistence, proximity and counting tests

Nonexistence test for the roots in a disc can be performed by means of a prox-
imity test, applied in the center of the disc and outputting the distance from
the center to the nearest roots of p.

Conversely, by recursively applying a nonexistence test we can approximate
the distance to a root from a complex point c. Namely apply a nonexistence test
to a sequence of concentric discs D(c, ρi) with ρi+1 = 2ρi, for i = 1, . . . , k, until
a disc D(c, ρk) contains a root. At that point the distance from c to a nearest
root lies in the semi-open segment (ρk−1, ρk]. We can bisect it by applying
the test to disc D(c, (ρk−1 + ρk)/2) and continuing this process recursively, but
instead of doubling the disc radii and halving the error bound, we can apply
the optimal policy of the double exponential sieve of [58].

Nonexistence test in [45] relies on fast estimation (within errors of, say, at
most 1%) of the distances from the origin or any selected point on the complex
plain to all roots based on Theorem 1. This is is actually a counting test, which
approximates the number of the roots of p in every disc centered at the origin;
it outputs their exact number if the disc is 1.01-isolated. The test is restricted
to polynomials given with their coefficients.

At any subdivision iteration that uses this nonexistence test, every root can
make at most four squares suspect, and thus all d roots can make at most 4d
squares suspect. Moreover this single test replaces nonexistence tests for all
suspect squares that have no overlap with the d narrow annuli defined by the
fast algorithm that supports Theorem 1. This is a significant simplification
of subdivision iterations, which is particularly dramatic where subdivision is
applied to real root-finding, but it seems that this resource has not been used
so far.

4.3 Isolation of a complex domain from external roots

For our study we must quantify isolation of a disc on the complex plain from
the external roots of p. Next we define such isolation for more general domains.

Definition 9. Isolation of a domain and its boundary. Let a domain D on the
complex plain allow its dilation from a fixed center. Then this domain has an
isolation ratio of at least θ and is θ-isolated for a polynomial p and real θ > 1
if the root set of p in the domain D is invariant in the θ-dilation of D. The
boundary of such a domain D has an isolation ratio at least θ and is θ-isolated if
the root set of p in D stays invariant in both θ- and 1/θ-dilation of the domain.

8



4.4 A root counting algorithm

First we count roots in the unit disc D(0, 1) = {x : |x| = 1}. Fix a sufficiently
large integer q, let ω denote a primitive qth root of unity of Definition 5, and
approximate the number s of the roots of p in the θ-isolated unit disc as follows
(compare equation (16) for h = 0):

s ≈ s∗ =
1

q

q−1
∑

g=0

ωg p′(ωg)

p(ωg)
, ω = exp

(2π

q

√
−1

)

. (10)

We obtain s by rounding s∗ if |s − s∗| < 1/2, which holds if 2d + 1 < θq or
equivalently if q > logθ(2d+ 1) by virtue of Theorem 14 (cf. Remark 15). For
example, if θ = 2, then choosing any q ≥ 11 is sufficient where d = 1, 000 and
choosing any q ≥ 21 is sufficient where d = 1, 000, 000.

We compute s∗ by means of the evaluation of both p(x) and p′(x) at the qth
roots of unity, which we reduce to performing discrete Fourier transform at q
points twice, and in addition performing discrete Fourier transform at q points
once again. We can perform transforms faster by applying FFT if we choose q
being the power of 2, although the gain decreases as the integer q decreases.

We can extend this algorithm to counting roots of p in any θ-isolated disc
D(c, ρ) on the complex plain. Write t(x) := p(x−c

ρ ) and compute s∗ for the

polynomial t(x) replacing p(x). We do not need to compute the coefficients
of the polynomial t(x) because t′(x) = p′(x)/ρ, and so we can just evaluate
p(x) and p′(x) at the q points c+ ρωg, g = 0, . . . , q − 1, equally spaced on the
boundary circle of the disc D(c, ρ). For this evaluation we can apply “Horner’s”
algorithm 2q times or the algorithms of [37], [48], or [50] for fast multipoint
polynomial evaluation.

4.5 Convergence to the roots and its acceleration

Let us come back to subdivision iterations with a nonexistence test. At every
iteration the centers of the suspect squares approximate the root set of p with
an error of at most one half of their diameter. Every subdivision decreases this
bound by twice, but at some point we can accelerate this linear convergence.

Suppose that at a subdivision step suspect squares form s connected com-
ponents. We can readily compute their minimal covering discs Di, i = 1, . . . , u.
Let D′

i(c
′
i, R

′
i) denote the minimal sub-disc that covers the root sets of p in the

disc and let θ2i denote its isolation ratio. Then θ = maxui=1 θi ≥ 1 is noticeably
separated from 1 in O(log(d)) subdivision iterations [58], [45]. The algorithms
of [58], [45], [11] and [12] yield super-linear convergence at this point.

[58] and [45] apply Newton’s iterations, whose convergence to a disc D′
i is

quadratic right from the start if they begin in its θi-dilation D(c′i, θR
′
i) and if θi

is sufficiently large. Tilli in [65] proves that it is sufficient if θ ≥ 3d− 3, which
improves the earlier estimate θ ≥ 5d2 of [58].

[11] and [12] achieve super-linear convergence to the roots by extending to
the complex plain the QIR iterations, proposed by Abbott for a line segment.

9



We accelerate subdivision iterations by means of DLS deflation under a mild
assumption that θ − 1 exceeds a positive constant, e.g., that θ = 2.

4.6 Root-finding in a disc via DLS deflation: an outline

Let a subdivision iteration define a well-isolated disc D = D(c, ρ) containing
w > 0 roots of a polynomial p, say, x1, . . . , xw. In this case the polynomial
t(x) = p(x−c

ρ ) contains w roots yj =
xj−c
ρ , j = 1, . . . , w, in the unit disc

D(0, 1). By applying DLS deflation we closely approximate the polynomial
f = f(x) =

∏w
j=1(x − yj), then approximate its roots y1, . . . , yw by solving

Problem 1 for that polynomial rather than for p, and finally recover the roots
xj = c+ ryj of p. Appendices A.2 and B bound the errors of the approximation
of the roots yj in terms of the error of the approximation of the polynomial f .

Remark 10. Transition from p to f simplifies root-finding because w =
deg(f) < d = deg(p) and potentially because the maximal distance between
a pair of roots and the number and the sizes of root clusters f may decrease,
but the impact of these favorable factors can be weakened or lost due to the co-
efficient growth and loss of sparseness. Even for the worst case inputs, however,
these deficiencies become less serious as w decreases: the norm |f | reaches its
maximum 2w for f = (x − 1)w, and f may have w + 1 nonzero coefficients.

Remark 11. We can extend the counting algorithm of Section 4.4 and DLS
deflation to any well-isolated domain on the complex plain rather than a disc
(cf. Section 5.3) but cannot bound the computational cost and output accuracy
as strong as in the case of a disc.

4.7 Concurrent and recursive deflation

We can deflate a polynomial p simultaneously for a number of discs D′
i (cf.

Part II of the Appendix) and can recursively deflate the computed lower degree
polynomials. One should guard against coefficient growth and loss of sparseness
in deflation. As a remedy one can delay deflation until the degree of a factor
decreases to a safe level.8 Another motivation for such a delay is potential
dramatic increase of the overall computational complexity of root-finding.

In the following example computational cost becomes too high if we perform
deflation d− 1 times but stays nearly optimal if we properly delay deflation.

Example 12. Let p =
∏d

j=1(x−1+1/2j) for a large integer d. In this case the

roots 1− 1/2j are stronger isolated and better conditioned for smaller j, and so
Ehrlich’s iterations may peel out one such a root of p at a time. Then we would
d− 1 times approximate polynomials of the form pi := gi(x)

∏i
j=1(x− 1+1/2j)

where gi = gi(x) is a polynomial of degree d−i that shares all its d−i roots with
p. Approximation of such a factor of p for i ≥ d/2 involves at least bd2/4 bits and
at least bd2/8 Boolean operations. Indeed such a cluster consists of at least d/2

8An alternative possible remedy is implicit deflation (cf. [31]).
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roots of p, and so we must operate with them with a precision of at least bd/4 bits
(see Corollary 3.1). Hence approximation of these factors for i = 1, . . . , d − 1
involves at least bd3/8 bits and at least bd3/16 Boolean operations. We can
decrease this cubic lower bound to the nearly optimal quadratic level if we skip

deflation at the ith step unless deg(gi)
deg(gi+1)

≥ γ for a fixed γ > 1, e.g., γ = 2. Such

a degree bound ensures that we apply deflation not more than ⌈logγ(d)⌉ times.

4.8 Correctness verification for counting and deflation

Recipe 1. Count the roots of p in all suspect squares at the current subdivision
iteration and verify that the sum over all squares is d.

Recipe 2. Verify correctness of both counting and deflation by means of
extending them to the approximation of the respective roots of p and verify
correctness of the computed approximations either based on the known criteria
(cf. [5], [10]) or heuristically by action: apply p Newton’s or other root-finding
iterations initialized at these approximations and monitor convergence.

Recipe 3. For another heuristic verification of correctness recall that both
counting and deflation begin with approximation of the first power sums of the
roots of the auxiliary polynomial t(x) = p(x−c

ρ ) in an input disc D(c, ρ) and
that the errors of these approximations are bounded in terms of the isolation
ratio of the disc and the number of points used for the auxiliary evaluation of p
and its derivative. By recursively adding new evaluation points and monitoring
the improvement behavior of the approximations, in particular by verifying
convergence to an integer of the computed 0-th power sum, we can empirically
verify correctness of our auxiliary computation of the power sums and estimate
the level of isolation (cf. Theorem 14).

5 DLS deflation: approximation of the power

sums of the roots

5.1 The power sums of the roots in the unit disc D(0, 1)

Next we define the power sums sh of the w = df roots of the factor f of p:

sh :=

df
∑

j=1

xh
j , h = 0,±1,±2, . . . , (11)

and their approximations s∗0, s
∗
1, . . . , s

∗
q−1 for a positive q such that

s∗h :=
1

q

q−1
∑

g=0

ω(h+1)g p′(ωg)

p(ωg)
, h = 0, 1, . . . , q − 1, (12)

where ω = exp(2π
√
−1/q) denotes a primitive qth root of unity for an inte-

ger q > 1 (cf. Definition 5). Compute these approximations by applying the
following algorithm.

11



Algorithm 13. Approximation of the power sums of the roots in the unit disc.
(i) Given the coefficients of the polynomial p(x) of (1), compute the coeffi-

cients p′i = (i+ 1)pi+1, i = 1, . . . , d− 1, of the polynomial p′(x) (by using d− 2
multiplications).

(ii) For a fixed integer q, 1 < q < d, compute the values

p̄g =

⌊(d−g)/q⌋
∑

u=0

pg+uq, p̄′g =

⌊(d−1−g)/q⌋
∑

v=0

p̄′g+vq, for g = 0, 1, . . . , q − 1, (13)

by performing less than 2d additions.
(iii) Compute the values

p(ωg) =

q−1
∑

h=0

p̄hω
gh, p′(ωg) =

q−1
∑

h=0

p̄′hω
gh, for g = 0, 1, . . . , q − 1, (14)

by applying two DFTs,9 each on q points, to the coefficient vectors of the poly-
nomials p̄(x) =

∑q−1
i=0 p̄ix

i and p̂ =
∑q−1

i=0 p̄′ix
i (cf. (13)).

(iv) Compute the vector
(

p(ωg)
p′(ωg)

)q−1

g=0
by performing q divisions.

(v) By applying a single DFT on q points multiply the DFT matrix
(ω(h+1)g)q−1

g,h=0 by this vector.

5.2 Error estimates for the power sums of the roots in the

unit disc D(0, 1)

The following upper estimates from [59] show that the errors of the approxima-
tion of the power sums sh decrease exponentially in the number q of the knots
of evaluation in (12).

Theorem 14. Let the annulus

A(0, 1/z, z) = {x : 1/z ≤ |x| ≤ z} (15)

contain no roots of p. Then

|s∗h − sh| ≤
dfz

q+h + (d− df )z
q−h

1− zq
for h = 0, 1, . . . , q − 1 (16)

(compare this bound for h = 0 with (10)).

Proof. Deduce the following expressions from Laurent’s expansion:

p′(x)

p(x)
=

d
∑

j=1

1

x− xj
= −

∞
∑

h=1

Shx
h−1 +

∞
∑

h=0

shx
−h−1 :=

∞
∑

i=−∞

cix
i (17)

9Here and hereafter “DFT” is the acronym for “discrete Fourier transform.”
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for |x| = 1, sh of (11), and

Sh =

d
∑

j=df+1

1

xh
j

, h = 1, 2, . . . .

The leftmost equation of (17) is verified by the differentiation of the polynomial
p(x) =

∏n
j=1(x−xj). gb The middle equation of (17) is implied by the following

equations for |x| = 1:

1
x−xj

= 1
x

∑∞
h=0

(xj

x

)h
for j ≤ df ,

1
x−xj

= − 1
xj

∑∞
h=0

(

x
xj

)h

for j > df .

Equations (12) and (17) combined imply that

s∗h =

+∞
∑

l=−∞

c−h−1+lq for h ≥ 0.

Moreover, (17) for i = −h − 1, h ≥ 0 implies that sh = c−h−1, while (17) for
i = h− 1, h ≥ 1 implies that Sh = −ch−1. Consequently

s∗h − sh =

∞
∑

l=1

(clq−h−1 + c−lq−h−1) for h ≥ 0.

We assumed in (12) that 0 ≤ h ≤ q − 1. It follows that c−lq−h−1 = slq+h and
clq−h−1 = −Slq−h for l = 1, 2, . . ., and we obtain

s∗h − sh =

∞
∑

l=1

(slq+h − Slq−h) for h ≥ 0. (18)

Furthermore s0 = df , |sh| ≤ df z
h, |Sh| ≤ (d−df )z

h, h = 1, 2, . . ., for z of (15).
Substitute these bounds into (18) and obtain (16).

Remark 15. |s∗ − s| ≤ dzq

1−zq for s = s0 and s∗ = s∗0 by virtue of Theorem 14.

5.3 The power sums of the roots in any region

Expression (12) for the power sums of the roots in the disc D(0, 1) is a special
case of more general expression for the power sums sh of the roots in a complex
domain D via discretization of the contour integrals

Ih :=

∫

Γ

p′(x)

p(x)
xh dx

where Γ denotes the boundary of the domain D and where sh = Ih for all h
by virtue of Cauchy’s theorem. Kirrinnis in [33] presents a fast, although quite
involved algorithm for the approximation of such integrals at a nearly optimal
Boolean cost provided that the contour Γ is θ-isolated for a constant θ > 1, but
the bounds of Theorem 14 are superior in the case where D is the unit disc.

Next we cover two other quite favorable cases, where the region D is the unit
circle and an arbitrary disc.
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5.4 The power sums of the roots in any disc

Let us be given a θ-isolated disc D(c, ρ) = {x : |x − c| ≤ ρ} for a complex
c 6= 0 and a positive ρ. Then the disc D(0, 1) is θ-isolated for the polynomial
t(x) = p(x−c

ρ ), and roots xj of p(x) can be readily recovered from the roots

yj =
xj−c
ρ of t(x) (cf. the end of Section 4.4). We can approximate the power

sums of the roots of the polynomial t(x) by applying Algorithm 13 to that
polynomial rather than to p(x). The computation by Algorithm 13 is reduced
essentially to the evaluation of the polynomials t(x) and t′(x) = 1

ρp
′(x) at the

roots of unity xg = ωg for ω = ωK of Definition 5, g = 0, 1, . . . ,K − 1, K = 2k,
and k = ⌈log2(q)⌉, followed by the application of inverse FFT at K points.

We can perform the evaluation of these two polynomials by applying any of
the two following algorithms.

Algorithm 16. Evaluate the polynomials p(x) and 1
ρp

′(x) at the points vg =
c+ ρωg for g = 0, 1, . . . ,K − 1.

Algorithm 17. (i) Compute the coefficients of t(x) by applying shift and scal-
ing of the variable x to p(x). (ii) Then evaluate the polynomials t(x) and t′(x)
at the K-th roots of unity ωg for g = 0, 1, . . . ,K − 1.

By applying Algorithm 16 we avoid potential coefficient growth and the loss
of sparseness of the polynomial p in its transition to t(x). The computation of
the values p(c+ ρωg) and p′(c+ ρωg) is not reduced to performing three DFTs
anymore, but we can perform it in O(d log2(K)) arithmetic operations by using
the algorithm of [37] (see also Appendix F).

6 Transition from the power sums of the roots

to the coefficients

Given a real c and the power sums s0, . . . , sdf
of the df roots of a monic polyno-

mial f(x) = xdf +
∑df−1

j=1 fjx
j f(x), the following algorithm approximates the

coefficients f0, f1, . . . , fdf−1 within the norm bound 1/2cd.

Algorithm 18. Recovery of the factor by means of applying Newton’s iterations
(see [59, Section 13]).

Write frev(x) := 1 + g(x) =
∏df

j=1(1− xxj) and deduce that

(ln(1 + g(x)))′ =
g′(x)

1 + g(x)
= −

df
∑

j=1

xj

1− xxj
= −

h
∑

j=1

sjx
j−1 mod xh (19)

for h = 1, 2, . . . , df + 1.
Write gr(x) := g(x) mod xr+1, observe that g1(x) = −s1x and g2(x) =

−s1x+ (s21 − s2)x
2, and express the polynomial g2r(x) as follows:

1 + g2r(x) = (1 + gr(x))(1 + hr(x)) mod x2r+1 (20)
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where
hr(x) = hr+1x

r+1 + · · ·+ h2rx
2r (21)

is an unknown polynomial. Equation (20) implies that

h′
r(x)

1 + h′
r(x)

= h′
r(x) mod x2r+1.

Equations (20) and (21) together imply that

ln(1 + g2r(x))
′ =

g′2r(x)

1 + g2r(x)
=

g′r(x)

1 + gr(x)
+

h′
r(x)

1 + hr(x)
mod x2r .

Combine the latter identities with equation (19) for df = 2r + 1 and obtain

g′r(x)

1 + gr(x)
+ h′

r(x) = −
2r
∑

j=1

sjx
j−1 mod x2r . (22)

Having the power sums s1, . . . , s2df
and the coefficients of the polynomials

g1(x) and g2(x) available, recursively compute the coefficients of the polynomials
g4(x), g8(x), g16(x), . . . by using identities (20)–(22).

Namely, having the polynomial gr(x) available, compute the polynomial
1

1+gr(x)
mod x2r and its product with g′r(x). Then obtain the polynomials

h′
r(x) from (22), hr(x) from (21), and g2r(x) from (20).
Notice that 1

1+gr(x)
mod xr = 1

1+g(x) mod xr for all r and reuse the above

polynomials for computing the polynomial 1
1+gr(x)

mod x2r . Its coefficients

approximate the coefficients f1, . . . , fd−1 of f(x) and its reverse polynomial.
The algorithm performs ⌈log2(df )⌉ iterations, at ith iteration amounts to

performing single polynomial division modulo x2i and single polynomial mul-
tiplication modulo x2i , for i = 2, . . . , df . We can perform them by using
O(df log(df )) arithmetic operations.

An alternative solution. We can also recover the factor f as follows.
Define the reverse polynomial

frev(x) = xdf f(1/x) = 1 +

df
∑

i=1

fdf−ix
i

and compute the coefficients of f(x) from a linear system of df Newton’s iden-
tities (cf. [46, equations (2.5.4) and (2.5.5)] for extension to a linear system
of d Newton’s identities and beyond – to a system of any number of Newton’s
identities):

− ifdf−i = s1fdf−i+1 + · · ·+ sifdf−1 + si+1 for i = 1, . . . , df . (23)
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7 Lazy deflation in the case of an isolated cluster

of a small number of roots

Suppose that w roots of p, say, x1, . . . , xw form a cluster strongly isolated from
the other roots of p, covered by a small disc D(c, ρ). This is frequently observed
as a by-product of subdivision iterations. In that special case one can perform
DLS deflation in a lazy way, simply by computing the sum of w + 1 trailing
terms of the polynomial t(y) = p(x−c

ρ ) obtained from p(x) by means of shifting

and scaling the variable x (cf. the study in [34, Section 3.2] of real root-finding).
This deflation amounts to invoking a readily available subroutine, but our next
estimates for its output errors suggest that it tends to be inferior in accuracy
to the DLS deflation.

Write t(x) := p(x− c) =
∑d

j=0 tjx
j , suppose that tw 6= 0, and approximate

f by the following polynomial,

f̃ :=
1

tw

w
∑

j=0

tjx
j =

1

tw
t(x) mod xw+1. (24)

If xj = 0 for j = 1, . . . , w is a w-multiple root of p, then f = xw = f̃ and
p = xwg(x) for some polynomial g = g(x) of degree d − w. If these roots are
moved anywhere within the disc D(0, ρ) for a positive ρ, then the factor g does
not change but the factor changes into a polynomial f̄ρ such that |f̄ρ − f | ≤
(1 + ρ)w − 1. If s = wρ < 1, then

|f̄ρ − f | ≤ (1 + ρ)w − 1 ≤ wρ

1− wρ
,

|f̄ρg mod xw+1| = |f̄ρ(g mod xw+1) mod xw+1| ≤ |f̄ρ| |(g mod xw+1|,
and so

|f̄ρg mod xw+1| ≤ ((1 + ρ)w − 1) |g mod xw+1|.
Perform the routine scaling by 1/r1 of the variable x that moves all roots of p
into the unit disc D(0, 1) and add log2(r1) bits to working precision. Then the
norm |g mod xw+1| is maximized for g = (x+1)d−w, that is, |g mod xw+1| ≤
md,w =

∑w
i=1

(

d− w
i

)

. Assume that 2wρ ≤ 1 and summarizing obtain

|f̄ − f | ≤ ((1 + ρ)w − 1)md,w ≤
md,wwρ

1− wρ
≤ 2md,wwρ,

and then we would need to have ρ ≤ 2−b/(2md,ww) in order to ensure an upper
bound |f̄ρg mod xw+1| ≤ 2−b.

Output error norm of lazy deflation. The latter bound is a strong
restriction on the size of a root cluster {x1, . . . , xw}, and so formal support of
lazy deflation is restricted to the clusters of very small size made up of a small
number of roots. Moreover, as the above analysis shows, the error norm of the
approximation by means of lazy deflation exceeds the half-diameter of the clus-
ter. According to [34], however, lazy deflation was useful for real root-finding,
apparently in the cases where very crude root approximation was sufficient.
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8 Improved root-finding on a line

The lower bounds of Section 3 equally apply to Problems 1, 3 and 4, and so the
algorithms of [42], [47], [11] and [12] are nearly optimal for all three problems.
For Problem 4 the algorithms of [54] and [34] also run in nearly optimal Boolean
time. The algorithm of [34] specializes subdivision iterations to real root-finding;
it is currently the user’s choice algorithm, but next we substantially upgrade it
by extending our improvements of subdivision to real root-finding.

In particular the improvement based on application of Theorem 1 is im-
mediately extended with significantly enhanced power. Indeed the algorithm
supporting Theorem 1 and running at nearly optimal Boolean cost, computes
d narrow annuli covering all roots of p. Their intersection with a line defines at
most 2d small segments that contain all roots of p lying on that line. By weed-
ing out the extraneous empty segments containing no roots of p obtain close
approximations to all roots on the line, including those lying in the segment
S[−1, 1]. See [56] for further details and extensive tests that showed particu-
larly high efficiency of this algorithm for the approximation of the real roots of
p that are sufficiently well-isolated from the other roots.

Remark 19. The paper [51] studies combination of Theorem 1 with random
shift of the variable for root-finding on the complex plain.

Remark 11 motivates extension of the other improvements of subdivision
iterations to Problem 4 by means of reducing it to root-finding in the unit disc.
We first reduce the task to the case of the unit circle. Towards this goal we
recall the two-to-one Zhukovsky’s function z = J(x), which maps the unit circle
C(0, 1) onto the unit segment S[−1, 1], and its one-to-two inverse:

z = J(x) :=
1

2

(

x+
1

x

)

; x = J−1(z) := z ±
√

z2 − 1. (25)

Here x and z are complex variables. Now perform the following steps:

1. Compute the polynomial s(z) := xdp(x)p(1/x) of degree 2d by applying
[9, Algorithm 2.1], based on the evaluation of the polynomials p(x) and
xdp(1/x) at the Chebyshev points and the interpolation to s(z) at the
roots of unity. Recall that the set of the roots of p(x) lying in the segment
S[−1, 1] is well-isolated and observe (see Remark 21) that it is mapped in
one-to-two mapping (25) into a well-isolated set of the roots of s(z) lying
on the unit circle C(0, 1).

2. Let g(z) denote the monic factor of the polynomial s(z) with the root set
made up of the roots of s(z) lying on the unit circle C(0, 1) and such that
deg(g(z)) = deg(f). By applying the algorithm of Corollary 10.2 (cf. [59,
Section 12]) approximate the power sums of the roots of the polynomial
g(z).

3. By applying Algorithm 18 approximate the coefficients of g(z).
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4. Compute the polynomial h(x) := x2dg(12 (x + 1
x)) of degree 4 deg(f) in x

by means of evaluation of the polynomial h(x) at all Kth roots of unity
ωK for K = 2k, k = ⌈log2(4d+1)⌉ (cf. Definition 5) via the evaluation of
g(y) at the Chebyshev’s points yj =

1
2 (ω

j
K +ω−j

K ), j = 0, 1, . . . ,K − 1 (cf.
[9, Section 2]), followed by interpolation to h(x) by means of FFT. The
root set of the polynomial h is made up of the roots of the polynomial p
lying in the segment S[−1, 1] and of their reciprocals; in the transition to
h(x) the multiplicity of the roots of p either grows 4-fold (for the roots 1
and −1 if they are the roots of p ) or is doubled, for all other roots.

5. Approximate all roots of the polynomial h(x) by applying a fixed root-
finder, e.g., MPSolve or the real root-finder of [34].10

6. Among them identify and output deg(f) roots that lie in the segment
S[−1, 1]; they are precisely the roots of p(x).

Remark 20. We can simplify stage 5 by replacing the polynomial h(x) with
its half-degree square root j(x) := xaf(x)f(1/x) at stage 5, but further study
is needed to find out whether and how much this could decrease the overall
computational cost.

Remark 21. Represent complex numbers as z := u + iv. Then Zhukovsky’s
map transforms a circle C(0, ρ) for ρ 6= 1 into the ellipse E(0, ρ) whose points
(u, v) satisfy the following equation,

u2

s2
+

v2

t2
= 1 for s =

1

2

(

ρ+
1

ρ

)

, t =
1

2

(

ρ− 1

ρ

)

.

Consequently it transforms the annulus A(0, 1/θ, θ) into the domain bounded
by the ellipses E(0, 1/θ) and E(0, θ), so the circle C(0, 1) is θ-isolated if and
only if no roots of p lie in the latter domain.

Remark 22. The paper [57] proposes a number of new advanced real root-
finders based on iterating Jukovsky’s function and its matrix analog, called
matrix sign iterations and applied to the companion or generalized companion
matrix of p. Such an application was against the customary advice for matrix
sign iterations, but extensive tests in [57] showed its good practical promise.

9 Ehrlich’s iterations and deflation

9.1 Ehrlich’s iterations and their super-linear convergence

The papers [5] and [10] present two distinct versions of MPSolve based on two
distinct implementations of Ehrlich’s functional iterations.

10Since all roots of h(x) are real, we can compute them also by applying the algorithms of
[13], [8], or [16], which are nearly optimal real root-finders for a polynomial whose all roots
are real.
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[5] applies original Ehrlich’s iterations by updating current approximations
zi to all or selected roots xi as follows:

zi ← zi − Ep,i(zi), i = 1, . . . , d, (26)

Ep,i(x) = 0 if p(x) = 0;
1

Ep,i(x)
=

p′(x)

p(x)
−

d
∑

j=1,j 6=i

1

x− zj
otherwise. (27)

[10] modifies these iterations by replacing polynomial equation p(x) = 0 by
an equivalent rational secular equation11

S(x) :=

d
∑

j=1

vj
x− zj

− 1 = 0 (28)

where zj ≈ xj and vj =
p(zj)l(x)
x−zj

for l(x) =
∏d

j=1(x− zj) and j = 1, . . . , d.

Cubic convergence of these iterations simultaneously to all roots of a poly-
nomial has been proved locally, near the roots, but under some standard choices
of initial approximations very fast global convergence to all roots, right from
the start, has been consistently observed in all decades-long applications of the
iterations worldwide.

9.2 Tame and wild roots and precision management

The condition number of a root defines computational precision sufficient in or-
der to ensure approximation within a fixed relative output error bound (see the
relevant estimates in [5] and [10]). The value of the condition is not known a pri-
ori, however, and MPSolve adopts the following policy: at first apply Ehrlich’s
iterations with a fixed low precision (e.g., the IEEE double precision of 53 bits)
and then recursively double it until all roots are approximated within a selected
error tolerance.

More precisely MPSolve updates approximations only until they become
close enough in order to satisfy a fixed stopping criterion, verified at a low
computational cost. We call such roots tame and the remaining roots wild.

Remark 23. Similarly our study in this section can be applied where all roots
of p are partitioned into tame and wild by another root-finding iteration, e.g.,
by a subdivision iteration (cf. [29]).

MPSolve stops applying Ehrlich’s iterations to a root as soon as it is tamed
but keeps applying them to the wild roots and then recursively double working
precision unless approximations are improved. When a root is tamed we know
that the minimal necessary precision has been exceeded by less than a factor
of two. Recall from [59] and [61, Section 2.7] that working precision does not

11The paper [10] elaborates upon expression of Ehrlich’s iterations via secular equation,
shows significant numerical benefits of root-finding by using this expression, and traces the
previous study of this approach back to [6].
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need to exceed the output precision b by more than a factor of d, and so at
most O(log(db)) steps of doubling precision are sufficient. This natural policy
has been proposed and elaborated upon in [5] and [10], greatly improving the
efficiency of the previous implementations of functional iterations for polynomial
root-finding.

9.3 Deflation for Ehrlich’s iterations: initial comments

Suppose that Ehrlich’s iterations have tamed all roots of p but the w wild
roots x1, . . . , xw. We propose (a) to deflate p by computing its factor f(x) =
∏w

j=1(x − xj) and then (b) to apply Ehrlich’s iterations to this factor rather
than to p. The potential gain of this deflation may be lost because of coefficient
growth, the loss of sparseness, and the cost of performing deflation, but we can
monitor the adverse factors (cf. Remark 10) and delay deflation if they prevail.

Subsequent Ehrlich’s iterations may in turn tame a part of the roots of the
polynomial f(x), and then we can recursively deflate the computed factors as
long as the gain of performing deflation exceeds its cost.12

9.4 Two deflation algorithms for Ehrlich’s iterations

One can try to accelerate Ehrlich’s iterations by means of combining them with
DLS deflation, but next we describe two alternative algorithms, which we further
study in Sections 10.6 and 10.7.

In that description we scale the variable x: x → x/h for h = r1θ, which
moves all roots of p into the disc D(0, 1/θ) for θ > 1. Having computed the
roots yj = hxj of the polynomial t(x) = p(x/h) for all j we readily recover
xj = yj/h for all j, but we must approximate yj within the error bound 2−b/h
in order to approximate xj within the error bound 2−b. For h > 1 this scaling
means the increase of working precision by ⌈log2(h)⌉ and accordingly raises
the Boolean cost but may benefit us overall if it lets us apply more efficient
algorithms.

Algorithm 24. Fix K = 2k, for an an integer k such that K/2 ≤ w < K,
let ωj := exp(2πK ) and compute (i) p(ωj) for ω = ωK = exp(2πiK ) denoting a
primitive Kth root of unity (cf. Definition 5), j = 0, . . . ,K − 1, (ii) f(ωj) =

p(ωj)/
∏d

g=w+1(ω
j − xg) for j = 0, . . . ,K − 1, and (iii) the coefficients of the

polynomial f(x) := p(x)/
∏d

g=w+1(x− xg).

This is just evaluation – interpolation technique traced back to Toom’s pa-
prer [64]. We ensure as large isolation as we like when we remove the impact of
tame roots.

12In a typical partition of a root set observed in Ehrlich’s, Weierstrass’s and other functional
iterations that simultaneously approximate all roots of p as well as in Newton’s iterations in
[63], wild roots are much less numerous than tame roots, that is, the ratio deg(fi+1)/deg(fi)
is small, and then the coefficient growth and the loss of sparseness cannot be dramatic in the
transition from fi to fi+1.
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Algorithm 25. Cf. [62].

(a) Write p′d−i :=
pd−i

pd
and si :=

∑d
j=1 x

i
j , for i = 0, 1, . . . , w − 1, so that

s0 = d, and compute the power sums si of the roots of p, for i = 1, . . . , w − 1,
by solving the following triangular linear system of w Newton’s identities (cf.
(23)),

si +

i−1
∑

j=1

p′d−jsi−j = −ip′d−i, , i = 1, . . . , w, (29)

such that
s1 = −p′d−1,
p′d−1s1 + s2 = −2pd−2,
p′d−2s1 + p′d−1s2 + s3 = −3pd−3,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(b) By subtracting the (i+1)st powers of all d−w tame roots, compute the
(i+1)st power sums si+1,f , for i = 0, 1, . . . , w−2, of the roots of the polynomial
f(x) =

∑w
i=0 fix

i.
(c) Finally recover its coefficients from the associated triangular linear sys-

tem of Newton’s identities:

i−1
∑

j=1

si−j,ff
′
w−j + if ′

w−i = −si,f for f ′
w−i =

fw−i

fw
, i = 1, . . . , w, (30)

such that
f ′
w−1 = −s1,f ,
s1,ff

′
w−1 + 2f ′

w−2 = −s2,f ,
s2,ff

′
w−1 + s1,ff

′
w−2 + 3f ′

w−3 = −s3,f ,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In the next section we supply further details for the latter algorithm, point
out its potential numerical problems, analyze both algorithms, and estimate the
worst case complexity of Algorithm 24.

Remark 26. Algorithm 24 streamlines deflation compared to the DLS algo-
rithm. This improvement is possible because we implicitly achieve θ-isolation
of the wild roots for infinitely large θ when we suppress the impact of the tame
roots.

Remark 27. We can solve Newton’s identities at stage (c) of Algorithm 25 by
applying Algorithm 18, but this cannot make significant improvement because
the arithmetic and Boolean cost of that stage is dominated at stage (b).

Algorithm 24 can be applied to a black box polynomial p. Stage (a) of
Algorithm 25 involves the w+1 leading coefficients of p, but they can be readily
computed at a dominated arithmetic and Boolean cost.
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9.5 Extension to other functional iterations

The recipes of doubling working precision and consequently of partitioning the
roots into tame and wild ones and our recipes for deflation and its analysis can be
extended to Weierstrass’s [67], Werner’s [70], various other functional iterations
for simultaneous approximation of all roots of p [36, Chapter 4], and Newton’s
iterations applied to the approximation of all roots of p. E.g., Schleicher and
Stoll in [63] apply Newton’s iterations to the approximation of all roots of a
polynomial of degree d = 217 and arrive at w ≈ d/1000 wild roots.

10 Complexity estimates

10.1 Some basic estimates

Hereafter µ(u) = O((u log(u)) denotes the Boolean complexity of integer mul-
tiplication modulo a prime of order 2u (cf. [28]), and we can represent Boolean
complexity B of an algorithm by the product Aµ(λ) where A denotes the num-
ber of arithmetic operations involved and λ denotes the maximal precision of
computations required in order to approximate the output within a fixed error
bound 2−λ provided that all input parameters are known up to within 2−λ and
either an input polynomial p of (1) of degree d has norm |p|∞ = 2τ and the
root radius r1 or two input polynomials u and v of degree at most d have norms
|u|∞ = 2τ1 and |v|∞ = 2τ2 and the root radii ru and rv.

Remark 28. We bound the norms of polynomials and the errors of the approx-
imation of their values at the roots of unity by 2−b, rather than 2−b′ , which we
keep for the bounds on root errors, in line with the notation of Problems 1 – 4.

Theorem 29. Write k := ⌈log2 d⌉ and K := 2k. Then

A = O(K log(K)) and λ = b+ τ + k + 3

for the evaluation within the error bound 2−b of a polynomial p of (1) at all the
K-th roots of unity ωj, ω = exp(2πiK ), j = 0, 1, . . . ,K − 1. Furthermore

|p(ωj)| ≤ K|p|∞ = 2k+τ for all j.

Theorem 30. Write k := ⌈log2(2d+ 1)⌉ and K := 2k. Then

A = O(K log(K)) and λ = b+O(τ + d)

for the evaluation within 2−b of the polynomial p at the Chebyshev points

vj =
1

2
(ωj

K + ω−j
K ),

for j = 0, . . . ,K − 1 and ωK = exp(2πiK ). Furthermore

|p(vj)| ≤ K|p|∞ = 2kτ .
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Theorem 31. Write k := ⌈log2(2d+ 1)⌉ and K := 2k. Then

A = O(K log(K)) and λ = b+ 2τ1 + 2τ2 + 5.1k + 4

for the computation within 2−b of the product uv of two polynomials u and v.
Furthermore

|uv|∞ ≤ K |u|∞|v|∞ = 2k+τ1+τ2 .

Theorem 32. Write k := ⌈log2(2d + 1)⌉ and K := 2k. Suppose that |p| ≤ 1
and |s| ≤ 2 for a complex number s. Then

A = O(K log(K)) and λ = b+O(τ + d)

for the computation of the coefficients of the polynomial t̃(x) such that |t̃(x) −
p(x− s)| ≤ 2−b. Furthermore

|p(x− s)|∞ ≤ 1.5|p|∞3K .

10.2 The complexity of the approximation of the power

sums of the roots in the disc D(0, 1), circle C(0, 1),
and segment S[−1, 1]

Perform the three DFTs in Algorithm 13 by applying FFT or generalized FFT
(see [46, Sections 2.1-2.4]). Then less than 3d+O(q log(q)) arithmetic operations
are involved at stages (i) – (v) overall.

Theorem 33. Assume that the disc D(0, 1/θ) is θ2-isolated for θ > 1, that is,
let no roots of p(x) lie in the annulus A(0, 1/θ, θ) = {z : 1/θ ≤ |z| ≤ θ}. Then

A = O(d log(q)) and λ = b+ τ + 2
⌈

log2

(

df +
d

θ − 1

)⌉

+ 6 log2 d+ 11

for the approximation within 2−b of the power sums s0, . . . , sq−1 of the roots
of p lying in the unit disc D(0, 1) by means of application of Algorithm 13.
Furthermore

λ = b+ τ +O(log(d))

if θ − 1 exceeds a positive constant.

Proof. Recall that |p′(x)/p(x)| = |
∑d

j=1
1

x−xj
| ≤

∑d
j=1

1
|x−xj|

and the disc

D(0, 1/θ) is θ2-isolated. Hence

∣

∣

∣

p′(x)

p(x)

∣

∣

∣
=

d
∑

j=1

1

|x− xj |
≤ df

1− 1/θ
+

d− df
θ − 1

= df +
d

θ − 1
for |x| = 1. (31)

Combine this bound with Theorem 29 and deduce that it is sufficient to compute

the ratios p(ωg)
p′(ωg) for all g within 2−b̂, b̂ = b+ ⌈log2(df + d

θ−1)⌉+ ⌈log2 q⌉+ 3, in

order to output the values s∗h within 2−b for all h.
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We can ensure this bound by computing the values p(ωg) and p′(ωg) for all
g with the precision increased by ⌈log2(df + d

θ−1)⌉ bits.
By virtue of Theorem 29 this requires to add just

⌈log2(q)⌉+
⌈

log2

(d

q
max{|p|∞, |p′|∞}

)⌉

+ 3

bits to the precision in the computation at stage (iii). This bound is at most

⌈log2(q)⌉+
⌈

log2

(d2

q
|p|∞

)⌉

+ 3

because |p′|∞ ≤ d|p|∞| = dτ .
It is sufficient to add ⌈log2(d)⌉ and ⌈log2(2d)⌉ bits to the precision in order

to cover its growth at stages (i) and (ii), respectively.
Summarizing we obtain that it is sufficient to perform stages (i) – (v) with

the precision λ of

b+ 2
⌈

log2

(

df +
d

θ − 1

)⌉

+
⌈

log2

(d2

q
|p|∞

)⌉

+ 6 + 3⌈log2(d)⌉+ ⌈log2(2d)⌉

bits in order to compute the values s∗h within 2−b for all h.
Simplify this expression by recalling that q > 1, log(|p|infty) = τ , log2(x) +

log2(y) = log2(y) and ⌈x⌉ ≤ x+ 1 for all real x and y.

Corollary 10.1. For a polynomial p of (1), an integer q > 1, real b, and
θ exceeding 1 by a positive constant, let the disc D(0, 1) be θ-isolated, let
{x1, . . . , xdf

} denote the set of the roots of p lying in the disc D(0, 1), and let

f(x) :=
∏df

j=1(x− xj). Then

A = O(d log(q)) and λ = b+ τ +O(log(d))

for the approximation within 2−b of the power sums s0, . . . , sk of the roots of
the polynomial f = f(x).

Proof. Combine Theorems 33 and 14 and deduce the corollary in the case where
the disc D(0, 1/θ) is θ2-isolated. By scaling the variable x extend this result
to the case where the disc D(0, 1/θ) is θ2-isolated. Replacing θ2 by θ does not
change the claimed cost bound, and if θ − 1 exceeds a positive constant, then
so does θ2 as well.

Corollary 10.2. Corollary 10.1 still holds if {x1, . . . , xdf
} is the root set of a

polynomial p on the θ-isolated circle C(0, 1) rather than in the θ-isolated disc
D(0, 1) and if the task is the approximation of the power sums s1, . . . , sk of
these roots.

Proof. By applying the argument used at the very end of the proof of Corollary
10.1 deduce that it is sufficient to prove Corollary 10.2 under the assumption
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that the circle C(0, 1) is θ2-isolated. Under that assumption the discs D′ =
D(0, 1/θ) and D′′ = D(0, θ) are θ-isolated.

By extending the algorithm that supports Corollary 10.1 approximate within
2−b−1 the first k power sums s′1, . . . , s

′
k and s′′1 , . . . , s

′′
k of the roots of p in the

discs D′ and D′′, respectively. Essentially the same proof is applied, with a
slight modification for the accommodation of the increase of the numbers of
roots of p from df on the circle C(0, 1) to at most d in the discs D′ and D′′.

Finally approximate the power sums sj = s′′j − s′j for j = 1, . . . , 2d′f within

2−b, that is, by at most doubling the previous bound.

Corollary 10.3. Corollary 10.1 still holds if {x1, . . . , xdf
} is the root set of a

polynomial p on the segment S[−1, 1] rather than in the θ-isolated disc D(0, 1),
if all roots of the polynomial p of (1) lie either in the segment S[−1, 1] or outside
the ellipse E(0, θ) of Remark 21 for θ − 1 exceeding a positive constant, and if
the task is the approximation of the power sums s1, . . . , sk of these roots.

Proof. Combine Corollary 10.2 with Theorem 30.

Remark 34. The cost bounds of the corollaries do not cover the cost of com-
puting θ, but we do not use θ in our computations. We just perform them by
first using a smaller number of points q and then recursively double it until the
algorithm succeeds. See Section 4.8 on verification of the success.

10.3 The complexity of the approximation of the power

sums of the roots in any disc

Based on [55, Lemma 21] form = d, n = 1, and Pj = x−(c+rωj), j = 0, . . . , q−1
estimate the complexity of the computation of the values p(vg) for vg = c+ rωg

and g = 0, 1, . . . , q − 1 in Algorithm 16.

Lemma 35. For a polynomial p(x) of (1), an integer q, ω = exp(2πiq ), a complex

c, a positive ρ, a real b, and r1 := maxdj=1 |xj |, let the coefficients of p(x), and

the values c+ ρωg for all g be given within 2−λ for

λ = b+ τ log2(d) + 30(log2(r1) + 3)d+ log2(d) + 60 log2(d) log
2
2(d+ 1),

which implies that

λ = b+ (τ + log2(d+ 1))) log(d) + d log(r1).

Then one can approximate within 2−b the values p(c+ρωg) for all g by perform-
ing A = O(d log2(d+ 1)) arithmetic operations with precision λ. Furthermore

log2 |p(c+ ρωg| ≤ τ + log2((r1 + 1)d) + 1 for all g.

The lemma can be immediately extended to cover the Boolean cost of the
computation of the values 1

ρp
′(vg) for g = 0, 1, . . . , q − 1 if we increase the

precision by at most log2(d) +O(1) bits.
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Notice that bound (31) is extended to the ratios maxq−1
g=0

∣

∣

∣

t′(vg)
t(vg)

∣

∣

∣
, combine

it with the estimates of this lemma, its extension to the latter evaluation and
Theorem 33, and arrive at the following bound on the overall computational
cost of performing Algorithm 16.

Theorem 36. Under the assumptions of Algorithm 16 let q−1 exceeds a positive
constant. Then one can approximate the value p(c+ ρωg) and p′(c+ ρωg)/ρ for
g = 0, 1, . . . ,K − 1 within 2−b for all g by performing Algorithm 16 at the cost
bounded by

A = O(d log2(d)) and λ = b+ τ +O(log(d) + d log(r1) + (df +
d

θ − 1
)K).

Next move a disc D(c, ρ) into the unit disc D(0, 1) by means of scaling the
variable x → x/r1 and then would become ill-conditioned, and then again we
would not ensure any output accuracy.

Nevertheless in the tests by Schleicher [62] the algorithm has consistently
output accurate solutions in the tests of its combination with Newton’s itera-
tions polynomials of the sequences (5) and (6) having high degree in the range
from 107 to 109. Apparently in these applications the wild and tame roots are
always spread more or less in the same regions, so that the ratios |sg/sg(f)| are
reasonably bounded.

One is challenged to study how typically the wild and tame roots are dis-
tributed in such a way, favorable to the application of Algorithm 16.

10.4 Recovery of the coefficients from the power sums of

the roots

Theorem 37. Given the power sums s1, . . . , s2df−1 of the roots of a monic
polynomial f(x) of degree df having all its roots in the unit disc D(0, 1), one
can approximate its coefficients within 2−b at the cost

A = O(df log(df )) and λ = b+ τ +O(df ).

Proof. See [59, Lemma 13.1].

Remark 38. We can move the roots of a polynomial f into the unit disc D(0, 1)
by means of scaling of the variable x → x/r1. Then we could ensure the same
output error bound if we increase working precision by ⌈df log2(r1)⌉.

10.5 Complexity of deflation algorithms: a table

Remark 39. The above complexity bound for lazy deflation is a little more
favorable than that for DLS deflation over any disc, but the opposite is true for
their accuracy according to the estimates in Sections 5 – 7.
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Table 1: Complexity of deflation, τ = log(|p|∞)

Task/Algorithm A λ− b
Unit disc q log(q) τ + log(d)

Any disc d log2(d) (q + log(r1 + 1))d+ τ + log(d)
Recovery df log(df ) df + τ

Lazy deflation d log(d) d+ τ

10.6 Complexity of Algorithm 24

Theorem 40. Suppose that the polynomials p and f are monic and that

r1 := r1(p) :=
d

max
j=1
|xj | ≤

1

θ
< 1, (32)

in which case all roots of p lie in the disc D(0, 1/θ) = {|x| : |x| ≤ 1
θ} for a

constant θ > 1. Then Algorithm 24 computes the coefficients of the polynomial
f(x) with errors at most 1/2b at the cost

A = O(d log(w)) and λ = b+Bd,w,θ + ⌈log2(wd)⌉ + 6

where

Bd,w,θ =
⌈

d log2

(θ + 1

θ

)⌉

+
⌈

w log2

(θ + 1

θ

)⌉

+ (d− w)
⌈

log2

( θ

θ − 1

)⌉

.

Proof. We perform (d−w)q arithmetic operations at stage (ii), ⌈d/w⌉ FFTs on
q points at stage (i), and a single inverse FFT on q points at stage (iii). This
involves O(d log(w)) arithmetic operations overall.

Apply Theorem 29 to the polynomial f replacing p and obtain that it is
sufficient to perform stage (iii) with the precision

b′′ = b′ + ⌈log2(|f |∞)⌉+ ⌈log2(w)⌉ + 3

within a dominated Boolean cost bound in O(w log(w)µ(b′′)).
Bound (32) implies that |ωj − xg| ≥ θ−1

θ for all g and j, and so in the w

division by ωj − xg for all g at stage (ii) we lose at most
⌈

w log2

(

θ
θ−1

)⌉

bits

of precision. Therefore it is sufficient to compute the values p(ωj) for all j with

the precision b̂ = b′′ + ⌈log2((d− w) θ
θ−1)⌉ at stage (i).

Estimate the Boolean cost of performing stage (i) by applying Theorem 29

for b replaced by b̂ and obtain that at that stage it is sufficient to perform
O(d log(d)) arithmetic operations with the precision

b̂+ ⌈log2(|p|∞)⌉+ ⌈log2(d)⌉+ 3.

Substitute bound (32) and obtain the theorem.
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Corollary 10.4. Suppose that under the assumptions of Theorem 40 scaling
of the variable x has ensured an isolation ratio θ ≥ 2. Then it is sufficient to
choose the precision bound

λ = b + (log2(3) + 1)d+ (log2(3)− 1)w + ⌈log2(dw)⌉ + 8

≤ 2.585 d+ 0.585 w + ⌈log2(dw)⌉ + 8.

10.7 Analysis of Algorithm 25

We can solve each of the linear systems (29) and (30) by means of substitution,
by using w2 arithmetic operations. Both systems can be ill-conditioned. E.g.,
the inverse of the matrix of (30) has the southwestern entry ±(f ′

w−1)
w−1 if

f ′
w−i = 0 for all i > 1.
We can, however, ensure strong numerical stability of the solution of linear

systems (29) and (30) by means of substitution if we scale the variable x so

that, say, σp,w =
∑w−1

i=0 |p′i| ≤ 1/2 and σs,w =
∑w−1

i=0 |si,f | ≤ 1/2, respectively.
Then clearly σp,w ≤ 1/2 if we move all roots of p into the disc D(0, γ

2w ) =
{x : |x| ≤ 1

4w}, but by moving them into a smaller discD(0, 1
2d+4w ) = {x : |x| ≤

1
2d+4w} we ensure that |si,f | ≤ 1

4w at stage (b), which implies that σs,w ≤ 1/2.
We can achieve this by scaling the variable

x→ x/h for h = (2d+ 4w)r1

and for r1 denoting the root radius.
Under this scaling we can bound by d + 2w + log2(1/2) = d + 2w − 1 the

increase of working precision versus the output precision b′.
Since (29) is a triangular Toeplitz linear system, one can solve it by using

O(w log(w)) arithmetic operations (see, e.g., [46, Section 2.5]), but the overall
arithmetic cost of recipe 3 is dominated at stage (b), which involves about
3(d− w)w arithmetic operations.

Moreover, in the subtractions at that stage we lose about

bloss = log2

(∣

∣

∣

∑d
j=1 x

g
j

∑w
j=1 x

g
j

∣

∣

∣

)

bits of precision of the power sum sg,f of the roots of the polynomial f for any
g. This value is unbounded for the worst case input, and so the output errors
of Algorithm 25 are unbounded for the worst case input under any fixed bound
on working precision.

The value bloss, however, can be moderate for many inputs, and possibly in
some sense for most of inputs. According to [62] the tests of the combination of
Algorithm 25 with Newton’s iterations consistently succeeded in approximation
of all roots of the polynomials defined by the recurrence sequences (5) and (6)
and having degrees in the range from 107 to 109.
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10.8 Boolean complexity of Problems 1 – 4 with and with-

out MPSolve

Let us briefly compare the complexity of Ehrlich’s iterations and MPSolve versus
the algorithms of [42], [47], [11], and [12] for the solution of Problems 1 – 4.

Empirically Ehrlich’s iterations have simpler structure and smaller overhead
in comparison with the algorithms of the latter papers, but unlike them have
only empirical support for being nearly optimal.

Moreover super-linear convergence of Ehrlich’s iterations has only been ob-
served for simultaneous approximation of all roots, and so these iterations solve
Problems 3 and 4 of root-finding in a disc and on a line interval about as fast and
as slow as Problem 1 of root-finding on the complex plain, while the nearly op-
timal cost of root-finding by the algorithms of [42], [47], [11], and [12] decreases
at least proportionally to the number of roots in the input domain.

As we have already said in the introduction, MPSolve, [11] and [12] can solve
Problem 2 of factorization of p within the same Boolean cost bound as Problem
1, whereas the algorithm of [42] and [47] solves Problem 2 faster by a factor of
d, reaching a nearly optimal Boolean cost bound.

11 Conclusions

1. Synergistic combination of efficient techniques proposed and developed for
distinct polynomial root-finders is a natural direction but requires effort and
maybe luck. Our advance in this direction is rather exceptional if not pioneering,
but we hope that it will encourage new research effort (see [31] for another
attempt of synergistic combination of distinct root-finding techniques).

2. As we said, Ehrlich’s and Weierstrass’s iterations globally converge to
all roots much faster than their formal study ensures, and one is challenged to
explain excellent empirical performance of these and other functional iterations
for root-finding that have much weaker formal support. This is a well- and
long-known challenge, but our study leads to three new challenges of this kind.

(a) We have already cited usefulness of lazy deflation for real root-finding
according to [34] and

(b) of Algorithm 24 in Newton’s iterations for very high degree polynomials
given by recurrences (5) and (6), according to [62].

(c) We can add that the initial tests of our new recipe for root-counting
suggest that its actual power is significantly stronger than its formal support
indicates.

3. For an example of a natural technical extension of our study consider
the task of polynomial root counting in a triangle, a square and a rectangle
with potential applications to subdivision iterations. One can try to extend our
counting algorithm by combining our techniques of Sections 4.4 and 8 and to
compare the efficiency of such extension with that of the algorithms of [72] and
of Section 5.3.

APPENDIX
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PART I: RECURSIVE FACTORIZATION OF A POLYNOMIAL

AND ITS EXTENSION TO ROOT-FINDING

A Recursive splitting into factors

A.1 Auxiliary norm bounds

We first state two simple lemmas.

Lemma 41. It holds that |u + v| ≤ |u| + |v| and |uv| ≤ |u| |v| for any pair of
polynomials u = u(x) and v = v(x).

Lemma 42. Let u =
∑d

i=0 uix
i and |u|2 = (

∑d
i=0 |ui|2)1/2. Then |u|2 ≤ |u|.

The following lemma relates the norms of a polynomial and its factors.

Lemma 43. If p = p(x) =
∏k

j=1 fj for polynomials f1, . . . , fk and deg p ≤ d,

then
∏k

j=1 |fj| ≤ 2d|p|2 ≤ 2d|p|.

Proof. The leftmost bound was proved by Mignotte in [35]. The rightmost
bound follows from Lemma 42.

Remark 44. [61, Lemma 2.6] states with no proof a stronger bound as follows:
∏k

j=1 |fj | ≤ 2d−1|p| under the assumptions of Lemma 43. From various factors

of the polynomial p(x) = xd − 1 such as
∏d/2

j=1(x − ωj
d) for even d, one can see

some limitations on strengthening this bound even further.

A.2 The errors and complexity of recursive factorization

Suppose that we split a polynomial p into a pair of factors over some θ-isolated
discs and recursively apply this algorithm to the factors until they become linear
of the form ux + v; some or all of them can be repeated. Finally we arrive at
complete approximate factorization

p ≈ p∗ = p∗(x) =

d
∏

j=1

(ujx+ vj). (33)

Next, by following [59, Section 5], we estimate the norm of the residual polyno-
mial

∆∗ = p∗ − p. (34)

We begin with an auxiliary result.

Theorem 45. Let
∆k = |p− f1 · · · fk| ≤ kǫ|p|/d, (35)

∆ = |f1 − fg| ≤ ǫk|f1|, (36)
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for some non-constant polynomials f1, . . . , fk, f and g and for

ǫk ≤ ǫ/(d2d
k
∏

j=1

|fj|). (37)

Then
|∆k+1| = |p− fgf2 · · · fk| ≤ (k + 1)ǫ|p|/d. (38)

Proof. ∆k+1 = |p− f1 · · · fk + (f1 − fg)f2 · · · fk|. Apply Lemma 41 and deduce
that ∆k+1 ≤ ∆k + |(f1 − fg)f2 · · · fk| and furthermore that

|(f1 − fg)f2 · · · fk| ≤ |f1 − fg| |f2 · · · fk| = ∆|f2 · · · fk|.

Combine the latter inequalities and obtain ∆k+1 ≤ ∆k +∆|f2 · · · fk|. Combine
this bound with (35)–(37) and Lemmas 41 and 43 and obtain (38).

Write f1 := f and fk+1 = g. Then (38) turns into (35) for k replaced by
k + 1. Now compute one of the factors fj as in (36), apply Theorem 45, then
recursively continue splitting the polynomial p into factors of smaller degrees,
and finally arrive at factorization (33) with

|∆∗| ≤ ǫ|p|

for ∆∗ of (34). Let us call this computation Recursive Splitting Process provided
that it begins with k = 1 and f1 = p and ends with k = d.

Theorem 46. To support (35) for all j = 1, 2, . . . , d in the Recursive Splitting
Process for a positive ǫ ≤ 1, it is sufficient to choose ǫk in (36) satisfying

ǫk ≤ ǫ/(d22d+1) for all k. (39)

Proof. Prove bound (35) by induction on j. Clearly, the bound holds for k = 1.
It remains to deduce (38) from (35) and (39) for any k. By first applying Lemma
43 and then bound (35), obtain

k
∏

i=1

|fi| ≤ 2d|
k
∏

i=1

fi| ≤ 2d(1 + kǫ/d)|p|.

The latter bound cannot exceed 2d+1|p| for k ≤ d, ǫ ≤ 1. Consequently (39)
ensures (37), and then (38) follows by virtue of Theorem 45.

Remark 47. The theorem shows that by using working precision of

b̄ ≥ b̄inf = 2d+ 1 + log2 d+ b′

bits throughout the Recursive Splitting Process we can ensure the output pre-
cision b′.
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A.3 Overall complexity of recursive factorization

The overall complexity of recursive is bounded by the sum of the bounds on
the complexity of all splittings into pairs of factors. In this recursive process
in [42] and [47] the degrees of the computed factors decreased by at least a
factor of 12/11, and so the overall cost of recursive splitting was proportional to
the cost of the first splitting. Including also complexity of the algorithms that
supported the isolation of the factors and those that controlled the decrease of
their degrees the overall Boolean cost of recursive factorization was bounded by
O(µ(b′)d log(d)(log2 d+ log(b))). No increase from the bound O(d log(d)µ(b′)),
however, is required in the application of splitting algorithms within Ehrlich’s
and subdivision iterations provided that an isolation ratio θ ≥ 1 + g/ logh d is
ensured in every splitting.

B From factors to roots

Theorem 48. [61, Theorem 2.7]. Suppose that

p = pd

d
∏

j=1

(x − xj), p̃ = p̃d

d
∏

j=1

(x− yj), |p̃− p| ≤ ǫ|p|, ǫ ≤ 1/27d

and
|xj | ≤ 1 for j = 1, . . . , d′ ≤ d, |xj | ≥ 1 for j = d′ + 1, . . . , d.

Then up to reordering the roots of p it holds that

|yj − xj | < 9ǫ1/d for j = 1, . . . , d′; |1/yj − 1/xj| < 9ǫ1/d for j = d′ + 1, . . . , d.

By virtue of Theorem 48 for b′ = O(bd) we can bound the Boolean complexity
of the solution of Problem 1 by increasing the estimate for the complexity of
factorization in Section A.3 by a factor of d.

Corollary B.1. Boolean complexity of the solution of Problem 1. Given a poly-
nomial p of degree d and a positive b, one can approximate all roots of that poly-
nomial within the error bound 1/2b at a Boolean cost inO(µ(b′)d2 log(d)(log2 d+
log(b))) = Õ(bd2).

By combining this study with [59, Section 20] we estimate Boolean complex-
ity of the following problem.

Problem 5. Polynomial root isolation. Given a polynomial p of (1) that
has integer coefficients and only simple roots, compute d disjoint discs on the
complex plane, each containing exactly one root of p.

Corollary B.2. Boolean complexity of polynomial root isolation. Suppose that
a polynomial p of (1) has integer coefficients and has only simple roots. Let
σp denotes its root separation, that is, the minimal distance between a pair of
its roots. Write ǫ := 0.4σp and b′ := log2(1/ǫ). Let ǫ < 1 and let m = mp,ǫ
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denote the maximal number of the roots of the polynomial p(x) in ǫ-clusters of
its roots. Then Problem 5 of Root Isolation for p can be solved in Boolean time
Õ(bdm) for b = b′/m.

PART II: NEWTON’S REFINEMENTOF SPLITTING A POLY-

NOMIAL INTO FACTORS

C Refinement of splitting into two factors

C.1 Refinement algorithm for two factors

The algorithms of Part I combined with those of Sections 5 and 6 compute
accurate approximate splitting of a polynomial p into the product of two factors
at a nearly optimal Boolean cost O(d log(d)µ(b)). It increases proportionally
to µ(b) as b grows, but for large b one can save a factor of log(d) by applying
Kronecker’s map for multiplication of polynomials with integer coefficients (see
[23], [40, Section 40]). This application motivated Schönhage in [59, Sections
10 – 12] to devise efficient algorithms for Newton’s refinement of splitting a
polynomial into factors, which enabled super-linear decrease of the error of
splitting and equivalently super-linear increase of b. Consequently he decreased
the overall Boolean cost of highly accurate splitting, for large b, to O(dµ(b)). It
is not clear whether this decrease has any practical promise, but the result is
interesting for the theory, and the algorithms seem to be of independent interest.
Next we outline Schönhage’s algorithms and estimates.

Given the coefficients of a polynomial p and its approximate splitting into
the product of two polynomials f1,0 and f2,0,

p ≈ f1,0f2,0, (40)

we update this initial splitting as follows:

p ≈ f1,1f2,1, f1,1 = f1,0 + h1,0 f2,1 = f2,0 + h2,0, (41)

where the polynomials h1,0 and h2,0 satisfy

p− f1,0f2,0 = f1,0h2,0 + h1,0f2,0, deg(hi,0) < deg(fi,0) for i = 1, 2. (42)

This is Newton’s iteration. Indeed substitute (41) into exact splitting p =
f1,1f2,1 and arrive at (42) up to a single term h1,0h2,0 of higher order. Given two
polynomials f1,0 and f2,0 one completes this iteration by computing polynomials
h1,0 and h2,0 and then can continue such iterations recursively.

From equation (42) we obtain that p = h1,0f2,0 mod f1,0, and so h1,0 =
ph̄1 mod f1,0 where the multiplicative inverse h̄1 satisfies h̄1f2,0 mod f1,0 = 1.
Having computed the polynomials h̄1 and h1,0 we can obtain the polynomial h2,0

from equation (42) within a dominated cost bound by means of approximate
polynomial division (cf. [60], [4], [52], [53], or [32]).
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C.2 Fast initialization of Newton’s refinement of splitting

Next we recall Schönhage’s numerically stable algorithm of [59, Sections 10 – 12]
for Newton’s refinement of a close initial approximate splitting (40) computed by
the algorithms of Sections 5 and 6. Given an initial approximation h̄1,0 to h̄1 the
algorithm recursively updates it by computing the polynomials ji,0 = 1−h̄i,0f2,0
mod f1,0 and h̄i+1,0 = h̄i,0(1 + ji,0) mod f1,0 for i = 1, 2, . . . .13

For any b > d the computations ensure the bound |h̄i,0| ≤ 2−b by using
O(dµ(b)) Boolean operations provided that

|h̄1,0| ≤ ν2/(w222d) (43)

where w = deg(f1) ≤ d, ν = minx: |x|=1 |p(x)| (see [59, Lemma 11.1]) and
1/ν ≤ 2cn) for a constant c [59, equation (16.7)]. If in addition

|p− f1,0f2,0| ≤ ν4/(w423d+w+1), (44)

then the new factors f1,1 and f2,1 can be computed by using O(dµ(b)) Boolean
operations such that |p− f1,1f2,1| ≤ |p| 2−b.

We can ensure bound (44) by performing the algorithms of Sections 5 and
6 within the same Boolean cost estimate. This completes the computation of
splitting in overall Boolean time in O(dµ(b)) provided that within this cost
bound one can also compute an initial polynomial h̄1,0 satisfying (43).

We can do this based on the following expression of [59, equation (12.19)]:

h̄1,0 =

w−1
∑

i=0

(

w
∑

j=i+1

uw−jvj−i

)

xi

where uk and vk are the coefficients of the polynomial f1,0(x) = xw +u1x
w−1+

· · ·+ uw and of the Laurent expansion 1
f1,0(x)f2,0()x

=
∑

k vkx
k, respectively.

C.3 Alternative computation of multiplicative inverse

Alternatively we can compute the coefficient vector h̄1 of the multiplicative
inverse h̄1 by solving the Sylvester linear system of equations

Sf2,0,f1,0v = ed (45)

where Sf,g denotes the Sylvester matrix of the polynomials f and g, e1 is the last
coordinate vector of dimension d, vT = (hT

1 | hT
2 )

T , wT denotes the transpose
of a vector w, and h̄1 and h̄2 are the coefficient vectors of the polynomials h̄1

and h̄2 such that h̄1f2,0 + h̄2f1,0 = 1.
A Sylvester matrix has structure of Toeplitz type with displacement rank

two, and so the symbolic solution of Sylvester linear system (45) is as fast as
the extended Euclidean algorithm (cf., e.g., [46, Chapter 5]).

13We can compute the multiplicative inverse h̄1 by applying the extended Euclidean algo-
rithm (cf., e.g., [46]), but it is not reliable in numerical implementation and keeps an extraneous
factor of log2(d) in the Boolean complexity bound.
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We propose an iterative numerical algorithm for the solution. It is slower
than one of [59, Sections 10 – 12] and has no convergence guarantee but requires
no initial approximate splitting of p and thus can be of independent interest.

Namely we can compute a low precision generator for the rank-2 displace-
ment of the inverse X = S−1

f2,0,f1,0
by means of the algorithm of [71].14

Then we can refine the solution output by that algorithm by applying clas-
sical iterative refinement [26], which decreases the initial approximation error
by a factor of γ = 1/||I − Sf2,0,f1,0X || at every iteration where I denotes the
identity matrix and || · || denotes any fixed (e.g., spectral) matrix norm.

In our case every refinement iteration amounts essentially to multiplication of
eight circulant and skew-circulant matrices by vectors and further to performing
24 Fourier transforms (see [46, Examples 4.4.1, 4.4.2 and Theorem 2.6.4]), where
one needs no increase of working precision. This implies the overall Boolean cost
in Õ(db) for a fixed target precision b ≥ d provided that γ > 1.

If γ ≤ 1 we can perform one or a few steps of Euclidean algorithm to the
pair of polynomials (f1,0, f2,0), then use the output pair of polynomials in order
to update Sylvester matrix of (45), and finally reapply the algorithm of [71] and
iterative refinement to the updated Sylvester linear system of equations.

A bounded number of iterative refinement steps can be performed at dom-
inated Boolean cost. These techniques increase our chances for success but,
unlike the algorithm of [59, Sections 10 and 11], do not ensure success of our
numerical computation of h̄1 satisfying h1,0 = ph̄1 mod f1,0.

D Newton’s refinement of splitting a polyno-

mial into any number of factors

D.1 Newton’s refinement algorithm

Next, by following Kirrinnis [32], we generalize Newton’s refinement to the case
of splitting p into any number s of factors. For a monic polynomial p of (1) he
seeks pairwise prime monic polynomials f1, . . . , fs and polynomials h1, . . . , hs,
deg hj < deg fj = dj , j = 1, . . . , s, defining the factorization p = f1 · · · fs and
the pfd

1

p
=

h1

f1
+ · · ·+ hs

fs
. (46)

Suppose that initially 2s polynomials fj,0 and hj,0, j = 1, . . . , s, are given
such that

f0 = f1,0 · · · fs,0 ≈ p, fj,0 ≈ fj for all j, (47)

1

f0
=

h1,0

f1,0
+ · · ·+ hs,0

fs,0
and deg(hj,0) < deg(fj,0) for all j. (48)

14The algorithm of [71] is fast and has very strong numerical stability. By following the
line of [41] (cf. [48]) it reduces the solution of a Toeplitz system of equations to computations
with Cauchy-like matrices and then to the application of the Fast Multipole Method. It can
be immediately adjusted to the solution of Sylvester and other linear systems of equations
with displacement structure of Toeplitz type.
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Then define Newton’s iteration for the refinement of initial approximation
(47) and pfd (48) by performing the following computations:

qj,k =
fk
fj,k

, hj,k+1 = (2− hj,kqj,k)hj,k mod fj,k, j = 1, . . . , s, (49)

fj,k+1 = fj,k + (hj,k+1p mod fj,k), j = 1, . . . , s, (50)

fk+1 = f1,k+1 · · · fs,k+1 (51)

for k = 0, 1, . . . We can compress equations (49) and (50) as follows,

qj,k =
fk
fj,k

, fj,k+1 = fj,k + ((2− hj,kqj,k)hj,kp mod fj,k), j = 1, . . . , s,

Clearly the refinement iterations are simplified where the factors lj,k have
small degrees. In particular

hj,k+1 = (2 − hj,kf
′
k(zj,k))hj,k

and both hj,k and hj,k+1 are constants for all k where fj,k = x− zj,k is a monic
linear factor and f ′

k(x) denotes the derivative of the polynomial fk(x).

D.2 The overall complexity of Newton’s refinement

Kirrinnis in [32] assumes that all roots of p have been moved into the unit disc
D(0, 1), the s root sets of the s factors f1, . . . , fs as well as the s root sets of the
initial approximations f1,0, . . . , fs,0 to these factors are pairwise well isolated
from each other, and a given initial factorization and pfd (48) is sufficiently
close to (46). His theorem below shows that, under these assumptions and for
fk = f1,k · · · fs,k, sufficiently large k, and µ(u) = O((u log(u)), in k iterations
his algorithm ensures the approximation error norm bounds

δk =
|p− fk|
|p| ≤ 1/2b, σk =

∣

∣

∣
1− h1,k

fk
f1,k
− . . .− hs,k

fk
fs,k

∣

∣

∣
≤ 1/2b,

at the Boolean cost in O(dµ(b′) log(d)). By applying the algorithms of [59] s−1
times we arrive at similar cost estimates, but the Kirrinnis algorithm streamlines
the supporting computations.

Theorem 49. Let s, d, d1, . . . , ds be fixed positive integers such that

s ≥ 2, d1 + . . .+ ds = d.

Let p, fi,0, hi,0, i = 1, . . . , s, be 2s+1 fixed polynomials such that p, f1,0, . . . , fs,0
are monic and

deg(fi,0) = di > deg(hi,0), i = 1, . . . , s; deg(p) = d.
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Let all roots of the polynomial p lie in the disc D(0, 1). Furthermore, let

|p|δ0 = |p− f1,0 · · · fs,0| ≤ min{2−9d/(sh)2, 2−4d/(2sh2)2},
σ0 = |1− f0h1,0/f1,0 − . . .− f0hs,0/fs,0| ≤ min{2−4.5d, 2−2d/h},

f (0) =

s
∏

j=1

fj,0 and h = max
i=1,...,s

|hi|

(see (46)). Let

l = l(d1, . . . , ds) =
s

∑

i=1

di
d
log(

di
d
)

(which implies that l ≤ log2(d) for all choices of s, d1, d2, . . . , ds and that l =
O(1) for s = 2 and all choices of d1 and d2).

Finally let b ≥ 1, b1 ≥ 1, and k in O(log(b+ b1)) be sufficiently large. Then
in k steps Algorithm (49) – (51) computes the polynomials f1,k, h1,k, . . . , fs,k,
hs,k such that f1,k, . . . , fs,k are monic,

deg(hi,k) < deg (fi,k) = di, i = 1, . . . , s, δk|p| < 2−b, and σk < 2−b1 .

These steps involve O((dl log(d)) log(b+ b1)) arithmetic operations in O(b+ b1)-
bit precision; they can be performed by using O(µ((b+b1)dl)) Boolean operations,
that is, O(µ((b′)dl)) for b′ = b+ b1. Moreover,

max
1≤i≤s

|fi,k − fi| < 23dMδ0|p|

where p = f1 · · · fs and f1,k, . . . , fs,k are the computed approximate factors of p.

D.3 Computation of an initial splitting

Given sufficiently close initial approximations f1,0,. . . ,fs,0 to the factors f1,
. . . ,fs of a polynomial p of (1), e.g., computed by means of the algorithms of
Sections 5 and 6, we can complete the initialization of Kirrinnis’s algorithm
by computing the initial polynomials h1,0, . . . , hs,0 by applying s− 1 times the
initialization algorithm of [59, Sections 10 and 11].

We can also extend the semi-heuristic alternative algorithm of Section C.3.
Namely multiply both sides of equation (48) by f0 and obtain the equation

h1,0u1,0 + · · ·+ hs,0us,0 = 1 (52)

where ui,0 = f0/fi,0 for all i.
Rewrite this polynomial equation as a linear system of d equations in the

coefficients of the polynomials h1,0, . . . , hs,0 and observe that its coefficient ma-
trix has structure of Toeplitz type and has displacement rank at most s (see
[46]).

Then again we can apply the algorithm of [71] and the iterative refinement
of [26]. Its every iteration is reduced essentially to multiplication of 4s circulant
and skew-circulant matrices by vectors and therefore to performing 12s Fourier
transforms (see [46, Examples 4.4.1, 4.4.2 and Theorem 2.6.4]).

PART III: AUXILIARY AND COMPLEMENTARY RESULTS
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E Simplified counting, isolation and exclusion

tests

E.1 Simplified counting tests

We can use the power sum algorithm as an empirical exclusion test, that is, for
testing whether a disc contains no roots of p, which is a basic test in subdivision
root-finders. Indeed if there is no roots of p in a disc, then clearly all their power
sums vanish, and we conjecture that conversely for all or almost all inputs the
disc contain no roots if the power sum s0 vanishes.

If the latter conjecture is true, we could substantially decrease working pre-
cision in the known counting tests because we would just need to compute the
integer s0 with an error smaller than 1/2. So far, however, we can only prove
the conjecture where we deal with a reasonably well-isolated disc.

E.2 Fast estimation of the distances to the roots

We can readily verify the following sufficient conditions that a polynomial p has
a root in a fixed disc on complex on the complex plane, although it is not clear
how large is the class of polynomials for which this condition helps.

Bini and Fiorentino in [5, Theorems 8–10, 13, and 14] and Bini and Robol in
[10, Sections 3.1 and 3.2] estimate the distances to the roots from a point ξ by
computing the values p(k)(ξ) for some fixed k, 1 ≤ k ≤ d− 1, and applying the
following well-known bound (cf. [45, Remark 6.4], [5, Theorem 9], [25], [14]).

Theorem 50. For a polynomial p of (1), a complex point ξ, write

rk :=
(

k!

(

d
k

)

∣

∣

∣

p(ξ)

p(k)(ξ)

∣

∣

∣

)1/k

, for k = 1, . . . , d.

Then each disc D(ξ, rk) = {z : |z − ξ| ≤ rk} contains a root of p. In particular

for k = 1 this is the disc D(ξ, d
∣

∣

∣

p(ξ)
p′(ξ)

∣

∣

∣
).

The above bounds are computed very fast but can be too crude to be useful.
The next simple but apparently novel application of a result by Coppersmith

and Neff in [15] leads to a lower bound on the distance to the roots.

Theorem 51. (See Coppersmith and Neff [15].) For any integer k satisfying
0 < k < n, for every disc D(X, r) containing at least k+1 zeros of a polynomial
p of degree d, and for any s ≥ 3 if k = d− 1 and any s ≥ 2 + 1/ sin(π/(d− k))
if k < d − 1, the disc D(X, (s − 2)r) contains a zero of p(k)(x), the kth order
derivative of p(x).

We can count the roots of p in D(X, r) by combining this result with a
proximity test for p(k)(x). This can be simpler than performing a proximity test
for p if some roots of p but not any roots of p(k)(x) lie close to the boundary
circle C(X, r). Now, if a test shows that no roots of p(k)(x) lie in the disc
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D(X, (s−2)r) (which is the desired outcome), then we would learn that the disc
D(X, r) contains at most k roots of p(x). Hence we learn that the polynomial
p(x) has no roots in the disc D(X, r) if our test detects that the polynomial
u(k)(x) for u(x) = (x−X)kp(x)) has no roots in the disc D(X, (s− 2)r).

F Fast multi-point polynomial evaluation

in polynomial root-finders

Every Weierstrass’s and every Ehrlich’s iteration perform multi-point polyno-
mial evaluation, but so do various other polynomial root-finders as well. E.g.,
multi-point polynomial evaluation is involved in a typical proximity test applied
in order to estimate the distance to a nearest root of p from the center of every
suspect square processed in each subdivision iteration. The same can be said
about counting the numbers of roots of p in each of the current suspect squares,
and in counting algorithms of Remark 15 it is sufficient to perform multipoint
evaluation with low precision. Likewise multi-point evaluation of a polynomial
p is performed in DLS deflation and in Newton’s iterations initialized at a large
number of points in order to approximate all roots of p (cf. [63]).

Moenck and Borodin in [37] evaluate p at s points where d = O(s) by
using O(s log2(d)) arithmetic operations. The Boolean cost of performing their
algorithm with high precision is nearly optimal [32], [55], but the algorithm fails
numerically, with double precision for d > 50.

The algorithms of [48] and [50] for multipoint evaluation are numerically
stable although are only efficient where the relative output error norms are in
O(1/dc) for a constant c. So they are of no value in the case of ill-conditioned
roots but could be of interest for the approximation of well-conditioned roots.
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