
ar
X

iv
:1

60
6.

01
39

6v
8

 [m
at

h.
N

A
]

6
Ju

l 2
01

9

Root-finding with Implicit Deflation

Rémi Imbach[1],[a], Victor Y. Pan [2,3],[b], Chee Yap[1],[c],
Ilias S. Kotsireas[4],[d] and Vitaly Zaderman[3],[e]

[1] Courant Institute of Mathematical Sciences
New York University,USA

[2] Department of Computer Science
Lehman College of the City University of New York

Bronx, NY 10468 USA and
[3] Ph.D. Programs in Mathematics and Computer Science
The Graduate Center of the City University of New York

New York, NY 10036 USA
[4] Wilfrid Laurier University

Department of Physics and Computer Science
75 University Avenue West

Waterloo, Ontario N2L 3C5 CANADA
[a] remi.imbach@nyu.edu

[b] victor.pan@lehman.cuny.edu
http://comet.lehman.cuny.edu/vpan/

[c] Email: yap@cs.nyu.edu www.cs.nyu.edu/yap/
[d] ikotsire@wlu.ca

http://web.wlu.ca/science/physcomp/ikotsireas/
[e] vza52@aol.com

Abstract

Functional iterations such as Newton’s are a popular tool for polyno-
mial root-finding. We consider a realistic situation where some roots have
already been approximated (we say tamed), and one would like to restrict
further root-finding to the approximation of the remaining (wild) roots.
A natural approach of applying explicit deflation has been much studied
and recently advanced by one of the authors of this paper, but presently
we consider the alternative of implicit deflation combined with mapping
of the variable and reversion of an input polynomial. The hope is that
the union of the sets of tame roots approximated in a number of such
transformations can cover all roots of a polynomial.

We also show another direction to substantial further progress in this

1

http://arxiv.org/abs/1606.01396v8
http://comet.lehman.cuny.edu/vpan/
http://web.wlu.ca/science/physcomp/ikotsireas/

long and extensively studied area. Namely we dramatically increase the
local efficiency of root-finding by means of the incorporation of fast al-
gorithms for multipoint polynomial evaluation and the Fast Multipole
Method.

Key Words: Polynomial roots; Functional iterations; Newton’s iterations;
Weierstrass’s iterations; Ehrlich’s iterations; Deflation; Taming wild roots; Maps
of the variable; Efficiency; Multipoint evaluation; Fast Multipole Method

2000 Math. Subject Classification: 26C10, 30C15, 65H05

1 Introduction

Univariate polynomial root-finding, that is, approximation of the roots x1, . . . ,
xd of a polynomial equation

p(x) = 0 for p(x) =

d
∑

j=0

pjx
j = pd

d
∏

i=1

(x− xi), pd 6= 0, (1)

has been the central problem of Mathematics for four millennia, since the Sume-
rian times. It is still involved in various areas of modern computation and is
the subject of intensive research worldwide. The user’s choice since 2000 has
been the package MPSolve (cf. [7], [12]), which implements Ehrlich’s functional
iterations, but other functional iterations such as Newton’s and Weierstrass’s
are also highly popular. Ehrlich’s and Weierstrass’s iterations converge simul-
taneously to all complex roots of a polynomial. Newton’s iterations converge to
a single root but can be extended to approximation of all roots or the roots in
a fixed domain.

Usually root-finding iterations approximate (we say tame) most of the roots,
and then one can deflate an input polynomial and keep updating only the ap-
proximations to the remaining, wild roots.

Efficient methods for explicit deflation can be found in [53] and references
therein, but here we study alternative techniques of implicit deflation, which
enable us to exploit the sparseness of an input and to avoid numerical stability
problems caused by the coefficient growth in factorization of a polynomial.

The partition of the root set into tame and wild roots for a fixed root-finder
depends on the roots disposition relatively to the initial root approximations.
So the partition should change if we change the initial approximations or if we
map the variable, apply the same root-finder to the new resulting polynomial,
and then recover the roots of the original polynomial by applying the converse
map. By using implicit deflation we avoid computing the new coefficients in
these mappings (see Sections 5 and 6). We conjecture that already the union of
a small number of the resulting variations of the set of tame roots would include
all roots of p, and we can strengthen our chances for success of this heuristic
approach by applying it concurrently using various functional iterations.

2

In Section 8 we point out another promising direction to enhancing the power
of root-finding iterations, namely by means of incorporation of superfast multi-
point polynomial evaluation and the Fast Multipole Method. We demonstrate
the high promise of this approach by showing that it yields a dramatic increase
of local efficiency of root-finding iterations.

Otherwise we organize our paper as follows. In the next section we recall
some popular functional iterations for polynomial root-finding. In Section 3
we comment on partitioning polynomial roots into tame ones (already approxi-
mated) and wild ones. In Section 4 we compare explicit and implicit deflation
and specify implicit deflation for Newton’s iterations. We combine implicit de-
flation with linear maps of the variable and reversion of a polynomial in Section
5 and with squaring the variable in Section 6, followed by our comments on
potential benefits of concurrent root-finding in Section 7.

2 Functional Iterations for Root-Finding

Among hundreds if not thousands known polynomial root-finders (see up to
date coverage in [38], [41], [53], and the bibliography therein) consider the class
of functional iterations. For a fixed set of functions

f1(z), . . . , fm(x), 1 ≤ m ≤ d,

these iterations recursively refine current approximations z
(k)
1 , . . . , z

(k)
m to m

roots x1, . . . xm of p(x) according to the expressions

zi ← fi(zi), i = 1, . . . ,m. (2)

In the case where m = 1 write f(z) = f1(z) and

z ← f(z). (3)

These iterations include various interpolation methods, which use no derivatives
of p(x) and are recalled in [41, Section 7], for example, Muller’s method (see
[41, Section 7.4]); methods involving derivative such as Newton’s iterations [38,
Section 5]; and methods involving higher order derivatives [41, Section 7]. We
exemplify our study with Newton’s iterations (where m = 1):

z ← z −Np(z), (4)

Np(x) = p(x)/p′(x), (5)

which have efficient extensions to the solution of polynomial systems of equations
[6] and to root-finding for various smooth functional equations and systems of
equations [23]; Weierstrass’s iterations of [67] (rediscovered by Durand in [17]
and Kerner in [33]), in which case m = d :

zi ← zi −Wp,l(zi), i = 1, . . . , d, (6)

3

Wp,l(x) =
p(x)

pnl′(x)
, (7)

l(x) =

d
∏

i=1

(x− zi), (8)

and Ehrlich’s iterations of [22] (rediscovered by Aberth in [1]), where again
m = d:

zi ← zi − Ep,i(zi), (9)

Ep,i(x) = 0 if p(x) = 0;
1

Ep,i(x)
=

1

Np(x)
−

d
∑

j=1,j 6=i

1

x− zj
otherwise; (10)

i = 1, . . . , d, and Np(x) is defined by (5).

Remark 1. The above root-finders are readily extended to any function s(x)
sharing its root set with the polynomial p(x). For example, deduce from the
Lagrange interpolation formula that

p(x) = l(x)s(x),

s(x) = pn +

d
∑

i=1

Wp,l(zi)

x− zi

for any set of d distinct nodes z1, . . . , zd. Apply selected iterations to the above
secular rational function s(x) or the polynomial l(x)s(x). Bini and Robol in [12]
show substantial benefits of that application of Ehrlich’s iterations to l(x)s(x)
rather than p(x), both for convergence acceleration and error estimation.

3 Tame and Wild Roots

Now suppose that we have applied a fixed functional iteration (2) and have
approximated m roots of a polynomial p(x) for m < d (we call them tame);
next we discuss efficient approximation of the remaining roots; we call them
wild and call their approximation taming.

For example, we face a taming problem where functional iterations (3) have
approximated a single root of a polynomial p(x) and we seek the other roots.

Newton’s and other iterations (3), devised for approximation of a single
root, can be also applied at a number of initial points in order to approximate
all roots. This can succeed for most of the roots, while some roots can escape
and stay wild. In particular in the paper [64] Newton’s iterations initialized at
a universal set of O(d) points1 approximate t = d − w roots of p(x) but leave

1This set is universal for all polynomials p(x) that have all roots lying in the unit disc
D(0, 1) = {z : |z| = 1}. Given any polynomial p(x) one can move all its roots into this disc
by means of first readily computing a reasonably close upper bound on the absolute values of
all roots and then properly shifting and scaling the variable x.

4

out a narrow set of w wild roots where w < 0.001 d for d < 217 and w < 0.01 d
for d < 220. The paper [64] continued a long study traced back to [35] and [30].

Likewise some roots remain wild while most of the roots are tamed in Weier-
strass’s, Ehrlich’s, and various other iterations that recursively update approx-
imations of all roots.

Finally the subdivision root-finding iterations of [14] extend the earlier study
in [68], [29], [28], [59], and [47], where such iterations are called the Quad-tree
construction. This root-finder has recently been implemented in [31]. It first
approximates some sets of tame roots of p(x) in certain domains on the complex
plane well-isolated from the other roots and then approximates the remaining
wild roots, in particular by combining the subdivision process with complex
extension of Abbott’s real QIR iterations.

4 Taming Wild Roots by Means of Deflation

Seeking wild roots one can deflate an input polynomial, that is, apply a selected
root-finder to the polynomial

q(x) =

w
∑

i=0

qix
i = pd

w
∏

j=1

(x− xj), pd 6= 0. (11)

In explicit deflation we first compute the coefficients of q(x). If the roots of
the quotient q(x) are well isolated from the other roots of p(x), we can apply
the efficient method of Delves and Lyness [19]. The root-finders of [60] and [34]
incorporate its advanced versions; [53] presents them in a concise form.

Bini and Fiorentino argue in [7] that explicit deflation of a polynomial p(x)
does not preserve its sparseness and in some cases can be numerically unstable,
for instance, in the case of a polynomial p(x) = xd ± 1 of a large degree d.
These potential problems somewhat limit the value of explicit deflation where
a polynomial q(x) has large degree w. Moreover we can completely avoid these
problems by applying implicit deflation, that is, applying functional iterations

that evaluate q(x) at a point x as the ratio p(x)
t(x) for t(x) = pd

∏d
j=1+w(x− xj).

We can readily implement this recipe in the case of functional interpolation
iterations of [41, Section 7].

Let us specify implicit deflation when we apply Newton’s iterations and the
following well-known identity (cf. [37]),

1

Np(x)
=

n
∑

j=1

1

x− xj
. (12)

Algorithm 2. Implicit Deflation with Newton’s iterations.

Input: A polynomial p(x) of (1), a set of sufficiently close approximations2 to
its tame roots xw+1, . . . , xd, an initial approximation z to a wild root of

2We assume that we can very quickly refine approximations to tame roots.

5

p(x), a Stopping Criterion (see, e.g., [7], [12]), and a black-box program

EVALp that evaluates the ratio 1
Np(z)

= p′(z)
p(z) for a polynomial p(x) of (1)

and a complex point z.

Output: The updated approximation z ← z−Np(z) to a root of p(x) (see (4)).

Computations: Apply Newton’s iteration (4) to the polynomial q(x) defined
implicitly, that is, successively compute the values:

1. r = p′(z)/p(z)← 1/Np(z),

2. s←
∑d

j=w+1
1

z−xj
,

3. Nq(z) =
q(z)
q′(z) ← 1

r−s .

4. z ← z −Np(z).

5. If the fixed Stopping Criterion is met, output z and stop. Otherwise
go to stage 1.

Dario A. Bini (private communication) proposed to improve numerical sta-
bility of this algorithm by means of scaling as follows:

Nq(z) =
1/r

1− s/r
.

Complexity of a single iteration of Algorithm 2.
Stage 1 amounts to a single invocation of the program EVALp.
Stage 2 involves d−w divisions, d−w, subtractions and d−w−1 additions.
Stages 3 and 4 together involve 2 subtractions and a single division.
We can readily extend implicit deflation to various other root-finders in-

volving Newton’s ratio Np(x), in particular, to Ehrlich’s iterations (9) because
we can assume that zj = xj for j > w, and then equation (12) implies that
Ep,j(x) = Eq,j(x) for q(x) of (11), Ep,j(x) of (10), and j ≤ w.

5 Combining Newton’s Iterations, Linear Maps

of the Variable and Reversion

The set of tame roots output by fixed functional iterations varies when an input
polynomial p(x) varies. This suggests that we can approximate many or all wild
roots if we reapply the same iterations to the polynomials

v(z) = va,b,c(z) = (z + c)dp
(

a+
b

z + c

)

(13)

for various triples of complex scalars a, b 6= 0, and c. We must limit the overall
number of the triples in order to control the overall computational cost.

6

The following equations map the roots xj of p(x) to the roots zj of v(x) and
vice versa,

xj = a+
b

zj + c
, zj =

b

xj − a
− c. (14)

Let us specify this recipe for the algorithm of [64], cited in Section 3.

Algorithm 3.

Initialization: Define a polynomial v(z) = va,b,c(z) by choosing the parameters
a, b, and c such that all roots of the polynomial v(z) lie in the unit disc D(0, 1) =
{z : |z| = 1}; do not actually compute the coefficients of that polynomial.

Computations: 1. Apply Newton’s iteration (4) to the polynomial v(z) by
using initialization at the universal set of [64] and by expressing the New-
ton’s ratios Nv(z) = v(z)/v′(z) (cf. (4)) via the following equations:

1

Nv(z)
=

d

z + c
− b

(z + c)2N(x)
for v(z) of (13) and x of (14). (15)

2. Having approximated a root zj of v(z) for any j, readily recover the root
xj of p(x) from equation (14).

In the particular case where a = c = 0 and b = 1, the above expressions are
simplified: z = 1/x; v(z) turns into the reverse polynomial of p(x),

v(z) = prev(z) =
d

∑

i=0

pd−iz
i = zdp(1/z),

1

Nv(z)
=

v′(z)

v(z)
=

d

z
− 1

z2Np(1/z)
,

and prev(x) = p0
∏d

j=1(x − 1/xj) if p0 6= 0.

6 Combining Newton’s Iterations and Squaring

of the Variable

One can hope to obtain all roots of p(x) by applying Newton’s iterations to
the polynomials v(z) = va,b,c(z) for a reasonable number of triples of a, b, and
c, but one can also extend this approach by using more general rational maps
y = r(x) (cf., e.g., [40]).

For a simple example, consider the Dandelin’s root-squaring map of 1826,
rediscovered by Lobachevsky in 1834 and then by Gräffe in 1837 (see [27]):

u(y) = (−1)dp(√y)p(−√y) =
d
∏

j=1

(y − x2
j). (16)

7

In this case one should make a polynomial p(x) of (1) monic by scaling the
variable x and then express the Newton’s ratio Nu(y) = u(y)/u′(y) as follows:

1

Nu(y)
= 0.5

(1

Np(
√
y)
− 1

Np(
√−y)

)

y−1/2.

Notice that under map (16) the roots lying in the unit disc D(0, 1) stay in it.
Having approximated the n roots y1, . . . , yn of the polynomial u(y), we read-

ily recover the n roots x1, . . . , xn of the polynomial p(x) by selecting them from
the 2n values ±√yj, j = 1, . . . , n.

We can apply the above maps recursively (a limited number of times, in
order to control the overall computational cost); then we can recover the roots
from their images in these rational maps by extending the lifting/descending
techniques of [44], [49].

7 Concurrent Root-finding

Remark 4. We recalled that Newton’s iterations can compute most of the roots
of a fixed polynomial but not all of them. Seeking the remaining, wild roots,
we applied the iterations to a number of related polynomial. This recipe can
be immediately extended to application of Ehrlich’s, Weierstrass’s or another
fixed iterative root-finder to a variety of polynomials linked to an input poly-
nomial. Furthermore we can extend this idea to concurrent application of a
number of iterative root-finders to such a variety of polynomials, and one can
perform computations on a number of processors with minimal need for their
communication and synchronization.

Remark 5. Weierstrass’s and Ehrlich’s functional iterations, as well as their
Gauss-Seidel’s and Werner’s accelerated variations (cf. [12] and [70]) converge
very fast empirically, but formal support of this empirical observation is a well-
known challenge. Can we facilitate obtaining such a support if we allow random
maps of the variable x, e.g., if we apply these iterations to the polynomials
va,b,c(z) of (13) for random choice of the parameters a, b, and c? For example,
initialization of Newton’s iterations at a set of points {c+r exp(φji), j = 1, . . . , s,
of a circle {x : |x − c| = r} on the complex plane can be equivalently inter-
preted as the application of these iterations at a single point y = c to a set of
polynomials pj(y) obtained from p(x) via the linear maps y ← x − r exp(φj i),
j = 1, . . . , s.

8 Efficiency of Root-finding Iterations

Since Ostrowski’s paper [43], it is customary to measure local efficiency of func-
tional root-finding iterations by the quantity eff= q1/α or sometimes log10(eff) =
(1/α) log10 q where q denotes the convergence order (rate) and α is the number
of function evaluations per iteration and per root. In particular q = 2, α = 2,
and eff=

√
2 ≈ 1.414 for Newton’s and Weierstrass’s iterations while q = 3,

8

α = 3, and eff=31/3 ≈ 1.442 for Ehrlich’s iterations where we assign the same
cost to the evaluation of the functions

∑d
j=1,j 6=i

1
x−zj

, p(x), p′(x), and l′(x) at

x = zi, noting that l′(zi) =
∏d

j=1,j 6=i(zi − zj).
Actually the cost of function evaluation requires further elaboration. Exact

evaluation of the values
∑d

i=1,i6=j
1

z
(k)
j

−z
(k)
i

for j = 1, . . . , d is Trummer’s cele-

brated problem, whose solution, like exact evaluation of a polynomial p(x) of (1)
at d points, involves O(d log2(d)) arithmetic operations [48, Section 3.1], [25],
[39].

Both of these superfast algorithms – for polynomial evaluation and the Trum-
mer’s problem – are numerically unstable for d > 50, but one can use numerically
stable superfast alternatives based on the Fast Multipole Method [16]. Its ap-
plication to Trummer’s problem is well-known [26], but in the case of multipoint
polynomial evaluation is more recent and more involved [50] and [52].

Using superfast algorithms for both problems decreases α to the order of
O(log2(d)/d). Hence local efficiency of Weierstrass’s and Ehrlich’s iterations
grows to infinity as d→∞, and similarly for Newton’s iterations initialized and
applied simultaneously at the order of d points.

The above formal analysis applies locally, where the convergence to the roots
becomes superlinear, while the overall computational cost is usually dominant
at the previous initial stage, for which only limited formal results are available
(see also Remark 5). These limited results favor Ehrlich’s iterations, which
empirically have milder sufficient conditions for superlinear convergence than
both Newton’s and Weierstrass’s iterations [65].

Acknowledgements: The research of R. Imbach, V. Y. Pan, V. Zaderman
and C. Yap was supported by NSF Grant CCF-1563942. The research of R. Im-
bach was also supported by NSF Grants CCF-1564132 and CCF-1708884. The
research of V. Y. Pan and V. Zaderman was also supported by NSF Grant CCF
1116736 and PSC CUNY Award 69813 00 48. The research of Ilias Kotsireas
was supported by an NSERC grant.

References

[1] Aberth, O.: Iteration Methods for Finding All Zeros of a Polynomial
Simultaneously, Mathematics of Computation 27, 122, 339–344 (1973)
doi: 10.1090/S0025-5718-1973-0329236-7

[2] Bell, E.T.: The Development of Mathematics. McGraw-Hill, New York
(1940) doi: 10.2307/2268176

[3] Boyer, C.A.: A History of Mathematics. Wiley, New York (1991) doi:
10.1177/027046769201200316

[4] Barnett, S.: Polynomial and Linear Control Systems. Marcel Dekker,
New York (1983) doi: 10.1112/blms/16.3.331

9

[5] Bini, D.A.: Parallel Solution of Certain Toeplitz Linear Systems. SIAM
J. Comput. 13, 2, 268–279 (1984) doi: 10.1137/0213019

[6] Blum, L., Cucker, F., Shub, M., Smale, S.: Complexity and Real Com-
putation. Springer (1998). doi: 10.1007/978-1-4612-0701-6

[7] Bini, D.A., Fiorentino, G.: Design, Analysis, and Implementation of a
Multiprecision Polynomial Rootfinder. Numer. Algorithms 23, 127–173
(2000) doi: 10.1023/A:1019199917103

[8] Bini, D.A., Gemignani, L., Pan, V.Y.: Inverse Power and Du-
rand/Kerner Iteration for Univariate Polynomial Root-finding. Com-
put. Math. Appl. 47, 2/3, 447–459 (2004) doi: 10.1016/S0898-
1221(04)90037-5

[9] Box, G.E.P., Jenkins, G.M.: Time Series Analysis: Forecasting and
Control. Holden-Day, San Francisco, California (2015, fifth edition)
doi: 10.1111/jtsa.12194

[10] Bini, D., Pan, V.Y.: Computing Matrix Eigenvalues and Polynomial
Zeros Where the Output Is Real. SIAM J. Comput. 27, 4, 1099–
1115 (1998). Proc. version in SODA’91, 384–393. ACM Press, NY, and
SIAM Publ., Philadelphia (1991) doi: 10.1137/S0097539790182482

[11] Bini, D., Pan, V.Y.: Graeffe’s, Chebyshev, and Cardinal’s Processes
for Splitting a Polynomial into Factors. J. Complex. 12, 492–511 (1996)
doi: 10.1006/jcom.1996.0030

[12] Bini, D.A., Robol, L.: Solving Secular and Polynomial Equations: a
Multiprecision Algorithm. J. Comput Appl Math 272, 276–292 (2014)
doi: 10.1016/j.cam.2013.04.037

[13] Becker, R., Sagraloff, M., Sharma, V., Xu, J., Yap, C.: Complexity
Analysis of Root Clustering for a Complex Polynomial. In: Interna-
tional Symposium on Symbolic and Algebraic Computation (ISSAC
2016), 71–78 (2016) doi: 10.1145/2930889.2930939

[14] Becker, R., Sagraloff, M., Sharma, V., Yap, C.: A Near-Optimal Sub-
division Algorithm for Complex Root Isolation based on the Pellet
Test and Newton Iteration. J. Symb Comput 86, 51–96 (2018) doi:
10.1016/j.jsc.2017.03.009

[15] Ben-Or, M., Tiwari, P.: Simple algorithms for approximating all roots
of a polynomial with real roots. J. Complexity 6(4), 417–442 (1990)
doi: 10.1016/0885-064X(90)90032-9

[16] Barba, L. A., Yokota, R.: How Will the Fast Multipole Method Fare
in Exascale Era? SIAM News, 46, 6, 1–3, July/August (2013)

10

[17] Durand, E.: Solutions numériques des équations algébriques, Tome
1: Equations du type F(X)=0; Racines d’un polynôme. Masson, Paris
(1960)

[18] Du, Q., Jin, M., Li, T.Y., Zeng, Z.: The quasi-Laguerre iteration.
Math. Comput. 66(217), 345–361 (1997) doi: 10.1090/S0025-5718-97-
00786-2

[19] Delves, L.M., Lyness, J.N.: A Numerical Method for Locating the
Zeros of an Analytic Function. Math. Comput. 21, 543–560 (1967).
doi: 10.1090/S0025-5718-1967-0228165-4

[20] Demeure, C.J., Mullis, C.T.: The Euclid Algorithm and the Fast Com-
putation of Cross–covariance and Autocovariance Sequences. IEEE
Trans. Acoust, Speech, Signal Process. 37, 545–552 (1989) doi:
10.1109/29.17535

[21] Demeure, C.J., Mullis, C.T.: A Newton–Raphson Method for Moving-
average Spectral Factorization Using the Euclid Algorithm. IEEE
Trans. Acoust, Speech, Signal Processing 38, 1697–1709 (1990) doi:
10.1109/29.60101

[22] Ehrlich, L.W.: A Modified Newton Method for Polynomials. Commun
ACM 10, 107–108 (1967) doi: 10.1145/363067.363115

[23] Encyclopedia of Mathematics. Newton method (Hazewinkel, Michiel,
ed.). Springer Science+Business Media B.V. Kluwer Academic Publish-
ers (1994, first edition) doi: 10.1007/978-94-009-5991-0 , (2000, second
edition) doi: 10.1007/978-94-015-1279-4

[24] Emiris, I.Z., Pan, V.Y., Tsigaridas, E.: Algebraic Algorithms. In:
Tucker, A.B., Gonzales, T., Diaz-Herrera, J.L. (eds) Computing Hand-
book (3rd edition), Vol. I: Computer Science and Software Engineering,
Ch. 10, pp. 10-1 - 10-40. Taylor and Francis Group (2014)

[25] Gerasoulis, A., Grigoriadis, M. D., Sun, L.: A Fast Algorithm for
Trummer’s Problem. SIAM Journal on Scientific and Statistical Com-
puting 8, 1, 135–138 (1987) doi: 10.1137/0908017

[26] Greengard, L., Rokhlin, V.: A Fast Algorithm for Particle Simu-
lation. Journal of Computational Physics 73, 325–348 (1987) doi:
10.1016/0021-9991(87)90140-9

[27] Householder, A.S.: Dandelin, Lobachevskii, or Graeffe? Amer. Math.
Monthly 66, 464–466. (1959) doi: 10.2307/2310626

[28] Henrici, P.: Applied and Computational Complex Analysis. Vol. 1:
Power Series, Integration, Conformal Mapping, Location of Zeros. Wi-
ley (1974)

11

[29] Henrici, P., Gargantini, I.: Uniformly Convergent Algorithms for the
Simultaneous Approximation of All Zeros of a Polynomial. In: Dejon,
B., Henrici, P. (eds) Constructive Aspects of the Fundamental Theorem
of Algebra. Wiley (1969)

[30] Habbard, J., Schleicher, D., Sutherland, S.: How to Find All Roots of
Complex Polynomials by Newton’s Method. Invent. Math. 146, 1–33
(2001) doi: 10.1007/s002220100149

[31] Imbach, R., Pan, V.Y., Yap, C.: Implementation of a Near-
Optimal Complex Root Clustering Algorithm. In: Proc. of Interna-
tional Congress on Math Software (ICMS 2018), 235–244 (2018) doi:
10.1007/978-3-319-96418-8 28

[32] Imbach, R., Pan, V.Y., Yap, C., Kotsireas, I.S., Zaderman, V.: Root-
finding with Implicit Deflation. In: Proc. of CASC 2019 (to appear).
arXiv:1606.01396, submitted on 21 May (2019)

[33] Kerner, I. O.: Ein Gesamtschrittverfahren zur Berechung der Null-
stellen von Polynomen. Numerische Math. 8, 290–294 (1966) doi:
10.1007/BF0216256

[34] Kirrinnis, P.: Polynomial Factorization and Partial Fraction Decom-
position by Simultaneous Newton’s Iteration. In: J. Complex. 14, 378–
444 (1998) doi: 10.1006/jcom.1998.0481

[35] Kim, M.-H., Sutherland, S.: Polynomial Root-Finding Algorithms and
Branched Covers. SIAM Journal on Computing 23, 2, 415–436 (1994)
doi: 10.1137/S0097539791201587

[36] Kobel, A., Rouillier, F., Sagraloff, M.: Computing Real Roots of Real
Polynomials ... and Now for Real! In: Intern. Symp. Symb. Algebraic
Computation (ISSAC 2016), 301 - 310. ACM Press, New York (2016)
doi: 10.1145/2930889.2930937

[37] Mahley, H.: Zur Auflösung Algebraisher Gleichngen, Z. Andew. Math.
Physik. 5, 260 – 263 (1954)

[38] McNamee, J.M.: Numerical Methods for Roots of Polynomials, Part I,
XIX+354 pages. Elsevier (2007)

[39] Moenck, R., Borodin, A.: Fast Modular Transforms via Division.,
In: Proc. 13th Annual Symposium on Switching and Automata The-
ory (SWAT 1972), 90–96, IEEE Computer Society Press (1972) doi:
10.1109/SWAT.1972.5.

[40] Mourrain, B., Pan, V.Y.: Lifting/Descending Processes for Polynomial
Zeros and Applications. J. of Complexity 16, 1, 265 – 273 (2000) doi:
10.1006/jcom.1999.0533

12

http://arxiv.org/abs/1606.01396

[41] McNamee, J.M., Pan, V.Y.: Numerical Methods for Roots of Polyno-
mials, Part II, XXI+728 pages. Elsevier (2013)

[42] Neff, C.A., Reif, J.H.: An o(n1+ǫ) Algorithm for the Complex Root
Problem. In: Proc. of 35th Ann. IEEE Symp. on Foundations of Com-
puter Science (FOCS ’94), 540–547. IEEE Computer Society Press
(1994) doi: 10.1109/SFCS.1994.365737

[43] Ostrowski, A. M.: Solution of Equations and Systems of Equations.
Academic Press, New York (1966) doi: 10.1017/S0008439500029805

[44] Pan, V.Y.: Optimal (up to Polylog Factors) Sequential and Parallel
Algorithms for Approximating Complex Polynomial Zeros. In: Proc.
27th Ann. ACM Symp. on Theory of Computing (STOC’95), 741–750.
ACM Press, New York (1995) doi: 10.1145/225058.225292

[45] Pan, V.Y.: Solving a Polynomial Equation: Some History
and Recent Progress. SIAM Rev 39, 2, 187–220 (1997) doi:
10.1137/S0036144595288554

[46] Pan, V.Y.: Solving Polynomials with Computers. Am Sci 86, 62–69.
January–February (1998) doi: 10.1511/1998.1.62

[47] Pan, V.Y.: Approximation of Complex Polynomial Zeros: Modified
Quadtree (Weyl’s) Construction and Improved Newton’s Iteration.
J.Complex. 16, 1, 213–264 (2000) doi: 10.1006/jcom.1999.0532

[48] Pan, V.Y.: Structured Matrices and Polynomials: Unified Super-
fast Algorithms. Birkhäuser/Springer, Boston/New York, (2001) doi:
10.1007/978-1-4612-0129-8

[49] Pan, V.Y.: Univariate Polynomials: Nearly Optimal Algorithms for
Factorization and Rootfinding. J. Symb Comput 33, 5, 701–733 (2002)
doi: 10.1006/jsco.2002.0531

[50] Pan, V.Y.: Transformations of Matrix Structures Work Again.
Linear Algebra and Its Applications 465, 1 – 32 (2015) doi:
10.1016/j.laa.2014.09.004

[51] Pan, V.Y.: Root-finding with Implicit Deflation. arXiv:1606.01396,
submitted on 4 June (2016)

[52] Pan, V.Y.: Simple and Nearly Optimal Polynomial Root-Finding by
Means of Root Radii Approximation. In: Kotsireas I.S., Martinez-
Moro, E. (eds) Springer Proceedings in Mathematics and Statistics,
Ch. 23: Applications of Computer Algebra 198 AG. Springer Interna-
tional Publishing (2017).
Chapter DOI.10.1007/978-3-319-56932-1 23

13

http://arxiv.org/abs/1606.01396

[53] Pan, V.Y.: Old and New Nearly Optimal Polynomial Root-finders. In:
CASC (2019) (to appear) Also arxiv: 1805.12042 [cs.NA] May (2019)

[54] Pan, V.Y., Sadikou, A., Landowne, E.: Univariate Polynomial Division
with a Remainder by Means of Evaluation and Interpolation. In: Proc.
of 3rd IEEE Symposium on Parallel and Distributed Processing, 212–
217. IEEE Computer Society Press, Los Alamitos, California (1991)
doi: 10.1109/SPDP.1991.218277

[55] Pan, V.Y., Sadikou, A., Landowne, E.: Polynomial Division with a
Remainder by Means of Evaluation and Interpolation. Inform Process
Lett 44, 149–153 (1992) doi: 10.1016/0020-0190(92)90055-Z

[56] Pan, V.Y., Tsigaridas, E.P.: Nearly Optimal Refinement of Real Roots
of a Univariate Polynomial. J. Symb Comput 74, 181–204 (2016) doi:
10.1016/j.jsc.2015.06.009. Also in: Kauers, M. (ed) Proc. of ISSAC
2013, pp. 299–306. ACM Press, New York (2013)

[57] Pan, V.Y., Tsigaridas, E.P.: Nearly Optimal Computations with Struc-
tured Matrices. In: Theor. Comput. Sci., Watt, S., Verschelde, J., Zhi,
L. (eds) Special Issue on Symbolic–Numerical Algorithms 681, 117–
137 (2017).
doi: 10.1016/j.tcs.2017.03.030.

[58] Pan, V.Y., Zhao, L.: Real Polynomial Root-finding by Means of Ma-
trix and Polynomial Iterations. In: Theor. Comput. Sci., Watt, S.,
Verschelde, J., Zhi, L. (eds) Special Issue on Symbolic–Numerical Al-
gorithms 681, 101–116 (2017).
doi: 10.1016/j.tcs.2017.03.032.

[59] Renegar, J.: On the Worst-case Arithmetic Complexity of Approxi-
mating Zeros of Polynomials. J. Complex. 3, 2, 90–113 (1987) doi:
10.1016/0885-064X(87)90022-7

[60] A. Schönhage. The Fundamental Theorem of Algebra in Terms of
Computational Complexity. Tech. Report, Math. Dept., University of
Tübingen, Tübingen, Germany, (1982)

[61] Schönhage, A.: Asymptotically Fast Algorithms for the Numerical
Muitiplication and Division of Polynomials with Complex Coefficients.
In: Proc. of European Computer Algebra Conference (EUROCAM
1982), 3–15. Computer Algebra, (1982) doi: 10.1007/3-540-11607-9 1

[62] Schönhage, A.: Quasi GCD Computations. J. Complex. 1, 118–137
(1985) doi: 10.1016/0885-064X(85)90024-X

[63] Schleicher, D.: private communication.

14

[64] Schleicher, D., Stoll, R.: Newton’s Method in Practice: Finding All
Roots of Polynomials of Degree One Million Efficiently. Theor. Com-
put. Sci. 681, 146–166 (2017) doi: 10.1016/j.tcs.2017.03.025

[65] Tilli, P.: Convergence Conditions of Some Methods for the Simulta-
neous Computation of Polynomial Zeros. Calcolo 35, 3–15 (1998) doi:
10.1007/s100920050005

[66] Van Dooren, P..M.: Some Numerical Challenges in Control Theory.
Linear Algebra for Control Theory, IMA Vol. Math. Appl. 62, 177 -
189 (1994) doi: 10.1007/978-1-4613-8419-9 12

[67] Weierstrass, K.: Neuer Beweis des Fundamentalsatzes der Algebra.
Mathematische Werker, Tome III, 251–269. Mayer und Mueller, Berlin
(1903)

[68] Weyl, H.: Randbemerkungen zu Hauptproblemen der Mathematik. II.
Fundamentalsatz der Algebra and Grundlagen der Mathematik. Math-
ematische Zeitschrift, 20, 131–151 (1924)

[69] Wilson, G.T.: Factorization of the Covariance Generating Function
of a Pure Moving-average. SIAM J. Numer Anal 6, 1–7 (1969) doi:
10.1137/0706001

[70] Werner, W.: Some Improvements of Classical Iterative Methods for
the Solution of Nonlinear Equations. In: Allgower, E.L. et al (eds) Nu-
merical Solution of Nonlinear Equations, Proc. Bremen 1980 (L.N.M.
878), 427 - 440. Springer, Berlin (1982) doi: 10.1007/BFb0090691

15

	1 Introduction
	2 Functional Iterations for Root-Finding
	3 Tame and Wild Roots
	4 Taming Wild Roots by Means of Deflation
	5 Combining Newton's Iterations, Linear Maps of the Variable and Reversion
	6 Combining Newton's Iterations and Squaring of the Variable
	7 Concurrent Root-finding
	8 Efficiency of Root-finding Iterations

