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Abstract

Low rank approximation (LRA) of a matrix is a hot subject of modern computations. In
application to Big Data mining and analysis the input matrices are so immense that one must
apply sub-linear cost algorithms, which only access and process a tiny fraction of the input entries
and which use much fewer flops1 and memory cells than an input matrix has entries. Under
this restriction the algorithms cannot compute accurate LRA of the worst case input matrix
and even of the matrices of some specific small families in our Appendix, but we recently prove
that such algorithms do this with a high probability (whp) for a random input, and this result
is in good accordance with our tests and with more than a decade of worldwide computation
of LRA at sub-linear cost by means of Cross–Approximation algorithms. A natural challenge is
to complement such computation of LRA by its refinement at sub-linear cost, and we take that
challenge and propose two algorithms for this task together with some recipes for a posteriori
estimation of the errors of LRA at sub-linear cost.

Key Words: Low-rank approximation, Sub-linear cost, A posteriori error estimation, Iterative
refinement

2000 Math. Subject Classification: 65Y20, 65F30, 68Q25, 68W20

1 Introduction

(a) Accurate LRA at sub-linear cost: the problem and our recent progress. Numerical
Linear and Multilinear Algebra and Data Mining and Analysis, with applications ranging from
machine learning theory and neural networks to term document data and DNA SNP data (see
surveys [HMT11], [M11], and [KS16]). Matrices representing Big Data are usually so immense that

1Flop is a floating point arithmetic operation.
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realistically one can only access and process a tiny fraction of their entries, but quite typically these
matrices admit LRA, that is, are close to low rank matrices,2 with which one can operate by using
sub-linear arithmetic time and memory space, that is, much fewer flops and memory cells than the
matrix has entries.

Such an LRA algorithm (running at sub-linear cost) fails on a worst case input and even on
the small families of matrices of our Appendix A. In worldwide computational practice and in our
extensive tests, however, some sub-linear cost algorithms consistently compute reasonably accurate
LRA of matrices admitting LRA, and the papers [PLSZ16], [PLSZ17], [PLSZa], [PLSZb], and
[LPSa] provide some formal support for this empirical observation.

In various applications of LRA it is highly important or sometimes imperative to obtain as close
LRA as possible, and then again we are challenged to achieve this at sub-linear cost. In this paper
we take the challenge and propose two techniques for iterative refinement at sub-linear cost given
a crude but reasonably close initial LRA.

Our first approach naturally extends the known methods for iterative refinement as a popular
tool for the solution and least squares solution of a linear system of equations (see [S98, Sections 3.3.4
and 4.2.5], [H02, Chapter 12 and Section 20.5], [DHK06], [GL13, Sections 3.5.3 and 5.3.8], [B15,
Sections 1.4.6, 2.1.4, and 2.3.7]), also known for other matrix computations, including nonlinear
ones (see [S98, page 223 and the references on page 225]), but to the best of our knowledge, it has
not been applied to LRA so far, possibly because computation of LRA at sub-linear cost has not
been studied as much as it deserves.

Our second approach is dramatically different. It relies on recursive application of randomized
LRA algorithms of [DMM08] by means of random sampling directed by the sampling probabilities,
called leverage scores. They are computed from the top right singular space of an input matrix,
but the computation allows some leverage, and so one can expect that these scores computed for a
given LRA could define an even closer LRA for an input matrix.

All known algorithms for the computation of LRA by means of subspace sampling directed by
leverage scores sample a large number of rows and columns of an input matrix, and so does our
second algorithm for iterative refinement. This may restrict practical value of these algorithms (see
[TYUC17, Section 1.7.3]), although our Algorithm 3.1 provides partial remedy at sub-linear cost.

In order to develop our refinement algorithms we supply some recipes for a posteriori error
estimation of LRA at sub-linear cost; this can be of some independent value.

Our numerical tests are in good accordance with our formal study.
Our work seems to be the first step into highly important but long-ignored research area, and

we hope to motivate further efforts into this direction.
Organization of our paper. In the next section we recall some background material. In

Section 3 we transform any LRA into its SVD at sub-linear cost. We propose some algorithms for
iterative refinement of an LRA at sub-linear cost in Sections 4 and 6 and study the problem of
error estimation for LRA at sub-linear cost in Section 5. We devote Section 7, the contribution of
the second author, to numerical tests. In Appendix A we specify some small families of matrices
on which every LRA algorithm fails if it runs at sub-linear cost, even though every matrix of these
families admits LRA. In Appendix B we recall the known estimates for the output errors of LRA
at sub-linear cost in a very special but important case where an input matrix is filled with i.i.d.
values of a single random variable.

2Here and throughout we use such concepts as “low”, “small”, “nearby”, etc. defined in context.
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2 Some background for LRA

Definition 2.1. (i) An m× n matrix M̃ has rank at most ρ, rank(M̃) ≤ ρ, if

M̃ = AB, A ∈ Cm×ρ, and B ∈ Cρ×n. (2.1)

(ii) Such a matrix M has ξ-rank at most ρ for a fixed tolerance ξ if M admits its approximation
within an error norm ξ by a matrix M̃ of rank at most ρ or equivalently if there exist three matrices
A, B and E such that

M = M̃ + E where |E| ≤ ξ, M̃ = AB, A ∈ Cm×ρ, and B ∈ Cρ×n. (2.2)

Here and hereafter | · | unifies definitions of the spectral norm || · || and the Frobenius norm || · ||F .

The 0-rank is the rank; the ξ-rank of a matrix M for a small tolerance ξ is said to be its
numerical rank, hereafter denoted nrank(M). A matrix admits its close approximation by a matrix
of rank at most ρ if and only if it has numerical rank at most ρ.

A 2-factor LRA AB of M of (2.2) can be generalized to a 3-factor LRA

M = M̃ + E, |E| ≤ ξ, M̃ = XTY, X ∈ Cm×k, T ∈ Ck×l, Y ∈ Cl×n, (2.3)

ρ ≤ k ≤ m, ρ ≤ l ≤ n (2.4)

for ρ = rank(M̃).

Remark 2.1. The pairs of the maps XT → A and Y → B as well as X → A and TY → B turn
a 3-factor LRA XTY of (2.3) into a 2-factor LRA AB of (2.2).

An important 3-factor LRA is the ρ-top SVD Mρ = UρΣρV
∗
ρ where Σρ is the diagonal matrix

of the ρ top (largest) singular values of M and Uρ and Vρ are the unitary (orthogonal) matrices of
the associated top singular vectors of M . Mρ is said to be the ρ-truncation of M , obtained from
M by setting to zero all its singular values but the ρ largest ones.

The ρ-top SVD defines an optimal 3-factor LRA under both spectral and Frobenius norms.

Theorem 2.1. [GL13, Theorem 2.4.8]. Write τρ+1(M) := |Mρ −M | = minN : rank(N)=ρ |M −N |.
Then τρ+1(M) = σρ+1(M) under the spectral norm | · | = || · || and τρ+1(M) = σF,ρ+1(M) :=∑

j≥ρ σ
2
j (M) under the Frobenius norm | · | = || · ||F .

Lemma 2.1. [GL13, Corollary 8.6.2]. For m ≥ n and a pair of m× n matrices M and M + E it
holds that

|σj(M + E)− σj(M)| ≤ ||E|| for j = 1, . . . , n.

Lemma 2.2. [The norm of the pseudo inverse of a matrix product.] Suppose that A ∈ Rk×r,
B ∈ Rr×l and the matrices A and B have full rank r ≤ min{k, l}. Then |(AB)+| ≤ |A+| |B+|.

3 Transform of LRA into its SVD at sub-linear cost

Algorithm 3.1. [Transform of any LRA into its SVD.]

Input: Three matrices A ∈ Rm×k, B ∈ Rk×n, and M ′ = AB ∈ Rm×n.

Output: ρ = rank(M ′) and three matrices U ′ ∈ Rm×ρ (orthogonal), Σ′ ∈ Rρ×ρ (diagonal), and
V ′∗ ∈ Rρ×n (orthogonal) such that M ′ρ = U ′Σ′V ′∗.

3



Computations: 1. Compute the matrices QA ∈ Cm×k, QB ∈ Cn×k, RA ∈ Ck×k, and RB ∈
Ck×k being Q and R factors in thin QR factorization A = QARA and B = QBRB or (in
order to strengthen numerical stability) being Q and RΠ factors in rank-revealing QRΠ
factorization A = QARAΠA and B = QBRBΠB.

2. Compute the k × k matrix W = RAR
∗
B.

3. Compute its full SVD W = UWΣWV
∗
W where Σ = ΣW = diag(Σ, O) and Σ is a nonsin-

gular ρ× ρ diagonal matrix..

4. Compute the matrices U ′ and V ′ by keeping just first ρ columns of the matrices QAUW ,
QBVW , respectively, and deleting the other columns. Output ρ = rank(Σ) and the ma-
trices U ′, Σ′ = Σρ, and V ′∗.

The algorithm runs at sub-linear cost if k2 � min{m,n}, and its correctness is readily verified.
The transition AB → (AB)ρ decreases the rank of LRA to at most ρ at the price of only a mild

increase of the error norm bound. Indeed triangle inequality implies that

|M −M ′ρ| ≤ |M −M ′|+ |M ′ −M ′ρ| and |M ′ −M ′ρ| = τρ(M
′) ≤ |M −M ′|+ τρ(M) (3.1)

for any matrix M (cf. [TYUC17, Proposition 6.1]).
By using Remark 2.1 we can readily transform any 3-factor LRA M ′ = XTY into a 2-factor

LRA; then by applying Algorithm 3.1 we can transform it further to its SVD.
We can a little simplify the transformation of a 3-factor LRA into a 2-factor LRA as follows:
(i) compute compact SVD T = UTΣTV

∗
T where ΣT is a nonsingular ρ′ × ρ′ diagonal matrix for

ρ′ = rank(T ),
(ii) obtain two matrices X ′ and Y ′ by keeping the first ρ′ columns of the matrices XU ′T and

Y ∗V ′T , respectively, and deleting the other columns, and
(iii) finally apply the recipes of Remark 2.1 to the 3-factor LRA M ′ = X ′ΣTY

′∗.

4 Deterministic iterative refinement of an LRA at sub-linear cost

Next we propose an algorithm for iterative refinement of a sufficiently close LRA ofM (see Appendix
6 for an alternative algorithm.) At the ith step we try to improve the current LRA M (i) by
applying a fixed LRA algorithm to the current error matrix E(i) = M (i) −M or to the matrix of
its modification E(i) − E(i−1) (see Remark 4.3). At every iteration the rank of the new tentative
LRA is at least doubled, but we periodically cut it back to the value nrank(M) (see Remark 4.2).

Algorithm 4.1. (Iterative refinement of a CUR LRA at sub-linear cost. See Remarks 4.2 and
4.3.)

Input: Three integers m, n, and ρ, ρ ≤ min{m,n}, an m×n matrix M of numerical rank ρ, a Sub-
algorithm APPROX(r), which for a fixed positive integer r computes a rank-r approximation
of its input matrix at sub-linear cost, and a Stopping Criterion, which signals when current
candidate LRA is expected to be satisfactory (see the next section).

Initialization: M (0) = Om×n.

Computations: Recursively for i = 1, 2, . . . do:

1. Apply Sub-algorithms APPROX(ri−1) to the matrix E(i−1) = M −M (i−1) for ri−1 =
2i−1ρ.
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2. Let ∆(i−1) denote its output matrix of rank at most ri−1. Compute a new approximation
M (i) = M (i−1) + ∆(i−1) of M and the matrix E(i) = M −M (i), of numerical rank at
most 2iρ.

3. Replace i by i+ 1 and repeat stages 1 and 2 until either i exceeds the allowed limitation,
and then stop and output FAILURE, or Stopping Criterion is satisfied for some integer
i = t− 1, and then stop and output the matrix M̃ = M (t).

Remark 4.1. Progress in refinement. Write ei = |E(i)| for all i and observe that E(i) = E(i−1) −
∆(i−1), and so ei < ei−1 if ∆(i−1) approximates E(i−1) closer than the matrix O filled with 0s.

Remark 4.2. Management of the rank growth. The bound on the rank of the matrices E(i) is
doubled at every iteration of Algorithm 4.1; by allowing its further increase we can obtain more
accurate LRA. Fast growth of the rank, however, implies fast growth of the complexity of an itera-
tion, and so we should periodically (possibly for every i) compress the computed LRA M (i) into its

ρ-truncation M
(i)
ρ by applying Algorithm 3.1. The error of LRA would grow in compression within

bound (3.1), that is, less significantly if an LRA M (i) is close to an input matrix M .

Remark 4.3. Management of the precision of computing. As usual in iterative refinement we
should apply the mixed precision technique, that is, perform the subtraction stage 2 with a higher
precision than stage 1. Furthermore we can replace the summation M (i) = M (i−1) + ∆(i−1) by the
summation of more than two terms, by representing the matrix M (i−1) == M (i−2) + ∆(i−2) by a
pair of matrices M (i−2) and ∆(i−2) and possibly similarly representing the matrix M (i−2). The basic
observation is that we need lower precision in order to represent each term than their sums.

5 Heuristic a posteriori error estimation for LRA at sub-linear
cost

Accurate a posteriori error estimation is impossible at sub-linear cost even for the small input
families of Appendix A, but next we discuss some heuristic recipes for this task.

(i) Clearly the value |ei,j | for every entry ei,j of the LRA error matrix E = (ei,j)i,j = M̃ −M is
a lower bound on the norm |E| of this matrix. One can compute s entries of E by using at most
2ρs arithmetic operations; this cost is sub-linear if 2ρs � mn. This deterministic lower bound on
the LRA error norm |E| also implies its a posteriori randomized upper bounds if, say, the error
matrix E is filled with i.i.d. values of a single random variable and has sufficiently many entries,
e.g., 100 entries or more (see Appendix B).

(ii) By generalizing this technique we obtain deterministic lower bounds on the error norm |E|
from the norms |FE|, |EH| or |FEH| for any pair of matrices F ∈ Rk×m and H ∈ Rn×l. The
computation also defines randomized upper bounds on the error norm |FEH| for random matrices
F and/or H and sufficiently large integers k and/or l (see [F79]) and runs at sub-linear cost if
k � m, l � n and if the matrices F and H are sufficiently sparse, e.g., are sub-permutation
matrices.

(iii) Suppose that we have computed a set of LRA M̃1, . . . , M̃s for a matrix M , by applying to it
various LRA algorithms running at sub-linear cost or the same algorithm with distinct parameters,
e.g., the algorithm of [TYUC17] with sparse multipliers F and H. Furthermore suppose that we
have computed a median M̃ = M̃j for some j in the range 1 ≤ j ≤ s. Then we can consider this
median a heuristic LRA and the norms |M̃i − M̃ | for i = 1, . . . , s heuristic error bounds.

For heuristic computation of a median at sub-linear cost one may select the median index
j = j(f ,h) for the product f∗M̃jh over all subscripts j in the range 1 ≤ j ≤ s for a pair of fixed
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common vectors f and h. For more dependable selection one may first compute such medians for
a number of pairs of vectors f and h and then select a median of these medians.

(iv) In Appendix B we recall the well-known techniques for a posteriori error estimation at
sub-linear cost for LRA of a matrix filled with i.i.d. values of a single variable.

All these recipes for a posteriori error estimation at sub-linear cost apply to any LRA. In
[PLSZa] and [PLSZb] we deduce such estimates for LRA output by some specific sub-linear cost
algorithms. We refer the reader to [B00], [BR03], and [BG06] for such recipe in the case of Adaptive
Cross-Approximation iterations for LRA.

6 Randomized iterative refinement of LRA at sub-linear cost by
means of refinement of leverage scores

Given a crude but reasonably close LRA M̃ = ATB such that ||M̃ −M || � σρ(M) we can try to
refine it at sub-linear cost by extending the random subspace sampling algorithms of [DMM08] by
Drineas et al. and of various subsequent papers (see [KS16], [BW17], and the references therein).
These algorithms compute CUR LRA of a matrix M at sub-linear cost if its top SVD is available.
Namely, given the top SVD the algorithm computes at sub-linear cost the so called leverage scores,
which serve a sampling probabilities that define random subspace sampling at sub-linear cost.

Given ρ-top SVD Mρ = UρΣρV
∗
ρ , with Vρ = (v

(ρ)
j )nj=1 one can fix any real β, 0 < β ≤ 1, and

then define the SVD-based leverage scores p1, . . . , pn satisfying

pj ≥ (β/r)||v(r)
j ||

2 and

n∑
j=1

pj = 1 for j = 1, . . . , n. (6.1)

(6.1) turns into pj = ||v(r)
j ||2/r for j = 1, . . . , n for β = 1, but for β < 1 we obtain leverage

scores p1, . . . , pn that we can reuse in a small neighborhood of an input matrix.

Remark 6.1. The leverage scores are defined by the top right singular space but do not depend
on the choice of its orthogonal basis; they stay invariant if the matrix V ∗ρ is pre-multiplied by an
orthogonal matrix. By virtue of Theorem 6.1 below, they change little in a small perturbation of
that space.

We next recall a bound on the perturbation of singular spaces of the ρ-truncation Mρ of a
matrix M into those of a matrix M +E. The bound is stated in terms of the minimal perturbation
of unitary or orthogonal bases for the transition from the singular spaces of M to those of M +E.
Compare similar results by Davis–Kahan 1970 and Wedin 1972 and 1973 involving angles between
singular spaces.

Theorem 6.1. (The impact of a perturbation of a matrix on its top singular spaces. [GL13,
Theorem 8.6.5].)3 Suppose that

g =: σρ(M)− σρ+1(M) > 0 and ||E||F ≤ 0.2g.

3[GL13, Theorem 8.6.5] cites [S73, Theorem 6.4], which claims a slightly more optimistic bound

max{||Bρ,left(M + E)−Bρ,left(M)||F , ||Bρ,right(M + E)−Bρ,right(M)||F } ≤ 2
||E||F
g

if ||E||F ≤ δ/2.
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Then there exist unitary or orthogonal matrix bases4 Bρ,left(M), Bρ,right(M), Bρ,left(M + E), and
Bρ,right(M + E) for the left and right top singular spaces (associated with the r largest singular
values) of the matrices M and M + E such that

max{||Bρ,left(M + E)−Bρ,left(M)||F , ||Bρ,right(M + E)−Bρ,right(M)||F } ≤ 4
||E||F
g

.

For example, if σρ(M) ≥ 2σρ+1(M), which implies that g ≥ 0.5 σρ(M), and if ||E||F ≤
0.1 σρ(M), then the upper bound on the right-hand side is approximately 8||E||F /σρ(M).

The above observations and estimates combined lead us to a heuristic recipe for iterative re-
finement of LRA by means of updating the leverage scores of an input matrix.

Namely suppose that an LRA M̃ is sufficiently close to the matrix M . Then by virtue of
Theorem 6.1 the top right singular spaces of the matrix M and of its LRA M̃ are close to one
another, and so the sets of their leverage scores are close to one another whp [DMM08]. At this
point we propose to fix β < 1, to compute the leverage scores of the LRA at sub-linear cost, and
then to apply the algorithm of [DMM08] to the matrix M by using these leverage scores. For a
proper choice β < 1 the new LRA should improve M̃ whp if the norm |E| = |M − M̃ | is small
enough. Recursively we arrive at a heuristic recipe for randomized iterative refinement of a crude
but sufficiently close LRA.

We leave as research challenges (i) the relevant estimates for an upper bound on the norm |E|
that would imply its decrease, say, by twice with a probability at least 1/2 and (ii) numerical tests
that would support these estimates.

It is not clear how large should be samples of columns and rows of M in the tests. Large
overhead constants are involved in the known upper estimates for the numbers of row and column
samples in the subspace sampling algorithms of [DMM08] and all subsequent papers using leverage
scores, but the tests in [DMM08] have succeeded with much fewer samples.

Remark 6.2. The randomized algorithms of [DMM08] compute nearly optimal LRA at nearly
optimal cost whp provided that they sample fairly many rows and columns of an input matrix
according to leverage scores of (6.1). [TYUC17, Section 1.73] discusses deficiency of LRA based
on sampling many rows and columns; our Algorithm 3.1 provides some partial remedy.

Remark 6.3. One can refine a crude basis for ρ-top right singular subspace of an m×n matrix M ′

by applying orthogonal iterations (cf. [GL13, Sections 8.2.3 and 8.3.7]), but each such an iteration
involves (m+ ρ)n memory cells and O(mnρ) flops, so it does not run at sub-linear cost.

7 Numerical Experiments for Algorithm 4.1

In this subsection we present the test results for Algorithm 4.1 on inputs of four types made up of
synthetic and real-world data with various spectra. Our figures display the relative error ratio

r =
||M − M̃ ||F
||M −Mρ||F

(7.1)

where M denotes the input matrix, M̃ denotes its approximation output by Algorithm 4.1, Mρ

denotes the ρ-top SVD of M , and ρ is a rank value pre-determined for each input matrix. Unless
the output of the algorithm was corrupted by rounding errors, the ratio r was not supposed to be
noticeably exceeded by 1, and it was not in our experiments.

4Recall that such bases are not unique even where all singular values are distinct.
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Figure1:Spectrumsofrealworldinputmatrices

ThealgorithmwasimplementedinPython,andwerunallexperimentsona64bit MacOS
Sierra10.12.6machinewith1.6GHzCPUand4GBMemory. Wecalledscipy.linalgversion0.4.9
fornumericallinearalgebraroutinessuchasQRfactorizationwithpivoting,Moore-Penrosematrix
inversion,andlinearleastsquaresregression.
SyntheticInput:Weusedrandomsynthetic1024×1024inputmatricesoftwokinds–withrapidly
andslowlydecayingspectra.InbothtypeswegeneratedthesematricesasproductsUΣVT,where
UandVwerethematricesoftheleftandrightsingularvectorsofarandomGaussianmatrix.
InthecaseofrapidlydecayingspectrumweletΣ=diag(v),wherevi=1fori=1,2,3,...40,

vi=
1
2

i
fori=41,...,100,andvi=0fori>100.Inthecaseofslowlydecayingspectrumwelet

Σ=diag(u),whereui=1fori=1,2,3,...40,andui=
1
1+ifori>40.

Real-woldInput:Theinputmatricesofthiscategorywere1000×1000densematriceswithreal
valueshavinglownumericalrank.TheyrepresentdiscretizationofIntegralEquations,providedin
thebuilt-inproblemsoftheRegularizationTools5. Weusedthetwotestmatrices. Oneofthem,
calledgravity,camefromaone-dimensionalgravitysurveyingmodelproblemandanotherone,
calledshaw,camefromaone-dimensionalimagerestorationmodelproblem.Theirdistributionof
singularvaluesisdisplayedinfigure1;wepaddedthesematriceswith0sinordertoincreasetheir
sizeto1024×1024.

Sub-algorithm:Oursub-algorithmmodifiesthesketchingapproachof[TYUC17].Namely,inthe
ithiterationstepwedrewtwomultipliersFandH,thenapproximatedtheresidualRi=M−M̃i−1
byR̃i=RiH(FRiH)

+FRi,andfinallycomputedtheithapproximationM̃i=M̃i−1+R̃i.Inour
tests,weusedtheabridgedHadamardmultipliersdefinedin[PLSZ16]and[PLSZ17]andhavingsize
5×1024andrecursiondepth3. WealsoincludedresultsofsimilartestswithGaussianmultipliers
forcomparison(cf.[TYUC17]).
Foreachinput matrix,weperformed100timestheiterativerefinementalgorithm4.1and

recordedthemeanrelativeerrorratioforeveryiterationstepinfigure2.
WenoticethattheabridgedSRHTmultipliersperformedsimilarlytoGaussianmultipliersin

ourtests,andareonlyslightlyworseinfewplaces.Thisminordeteriorationoftheoutputaccuracy
wasareasonablepriceforusingabridged(verysparse)Hadamardmultipliers,withwhichweonly
accessasmallfractionoftheinputmatrixateachiterationstep.
Itisworthnoticingthateveninthetestwithsomerandominputmatricesthathaveslowly

decayingspectrumtherelativeerrorratiodidnotdecreasebelow1,whichcouldbecausedbythe

5Seehttp://www.math.sjsu.edu/singular/matricesandhttp://www2.imm.dtu.dk/∼pch/Regutools
FormoredetailsseeCh4ofhttp://www.imm.dtu.dk/∼pcha/Regutools/RTv4manual.pdf
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“heavy”tailinthespectrum.Inourtestswithsomeotherinputswhichwerenot“well-mixed”in
somesense,itwasnecessarytoincreasetherecursiondepthoftheabridgedHadamardmultipliers
inordertobringtherelativeerrorratiocloseto1.

Appendix

A SmallfamiliesofhardinputsforLRAatsub-linearcost

Anysub-linearcostLRAalgorithmfailsonthefollowingsmallfamiliesofLRAinputs.

ExampleA.1.Definethefollowingfamilyofm×nmatricesofrank1(wecallthemδ-matrices):
{∆i,j,i=1,...,m;j=1,...,n}.Alsoincludethem×nnullmatrixOm,n intothisfamily.Now
fixanyLRAalgorithmrunningsub-linearcost;itdoesnotaccessthe(i,j)thentryofitsinput
matricesforsomepairofiandj. Thereforeitoutputsthesameapproximationofthematrices
∆i,jandOm,n,withanundetectederroratleast1/2. Applythesameargumenttothesetof
mn+1small-normperturbationsofthematricesoftheabovefamilyandtothemn+1sumsof
thelattermatriceswithanyfixedm×nmatrixoflowrank. Finally,thesameargumentshows
thataposteriorioutputerrorsofanLRAalgorithmappliedtothesameinputfamiliescannotbe
estimatedatsub-linearcost.
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B A posteriori error estimation sub-linear cost for LRA of a ma-
trix filled with i.i.d. values of a single variable

In our randomized a posteriori error estimation sub-linear cost below we assume that the error
matrix E of an LRA has enough entries, say, 100 or more, and that they are the observed i.i.d.
values of a single random variable. This is realistic, for example, where the deviation of the matrix
W from its rank-ρ approximation is due to the errors of measurement or rounding.

In this case the Central Limit Theorem implies that the distribution of the variable is close to
Gaussian (see [EW07]). Fix a pair of integers q and s such that qs is large enough (say, exceeds
100), but qs = O((m+ n)kl) and qs� mn; then apply our tests just to a random q× s submatrix
of the m× n error matrix.

Under this policy we compute the error matrix at a dominated arithmetic cost in O((m+n)kl)
but still verify correctness with high confidence, by applying the customary rules of hypothesis
testing for the variance of a Gaussian variable.

Namely suppose that we have observed the values g1, . . . , gK of a Gaussian random variable g
with a mean value µ and a variance σ2 and that we have computed the observed average value and
variance

µK =
1

K

K∑
i=1

|gi| and σ2K =
1

K

K∑
i=1

|gi − µK |2,

respectively. Then, for a fixed reasonably large K, both

Probability {|µK − µ| ≥ t|µ|} and Probability{|σ2K − σ2| ≥ tσ2}

converge to 0 exponentially fast as t grows to the infinity (see [C46]).
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