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Abstract

Low rank approximation (LRA) of a matrix is a hot subject of modern computations. In
application to Big Data mining and analysis the input matrices are so immense that one must
apply sub-linear cost algorithms, which only access and process a tiny fraction of the input entries
and which use much fewer flops! and memory cells than an input matrix has entries. Under
this restriction the algorithms cannot compute accurate LRA of the worst case input matrix
and even of the matrices of some specific small families in our Appendix, but we recently prove
that such algorithms do this with a high probability (whp) for a random input, and this result
is in good accordance with our tests and with more than a decade of worldwide computation
of LRA at sub-linear cost by means of Cross—Approximation algorithms. A natural challenge is
to complement such computation of LRA by its refinement at sub-linear cost, and we take that
challenge and propose two algorithms for this task together with some recipes for a posteriori
estimation of the errors of LRA at sub-linear cost.

Key Words: Low-rank approximation, Sub-linear cost, A posteriori error estimation, Iterative
refinement
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1 Introduction

(a) Accurate LRA at sub-linear cost: the problem and our recent progress. Numerical
Linear and Multilinear Algebra and Data Mining and Analysis, with applications ranging from
machine learning theory and neural networks to term document data and DNA SNP data (see
surveys [HMT11], [M11], and [KS16]). Matrices representing Big Data are usually so immense that

'Flop is a floating point arithmetic operation.
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realistically one can only access and process a tiny fraction of their entries, but quite typically these
matrices admit LRA, that is, are close to low rank matrices,? with which one can operate by using
sub-linear arithmetic time and memory space, that is, much fewer flops and memory cells than the
matrix has entries.

Such an LRA algorithm (running at sub-linear cost) fails on a worst case input and even on
the small families of matrices of our Appendix A. In worldwide computational practice and in our
extensive tests, however, some sub-linear cost algorithms consistently compute reasonably accurate
LRA of matrices admitting LRA, and the papers [PLSZ16], [PLSZ17], [PLSZal], [PLSZb], and
[LPSa] provide some formal support for this empirical observation.

In various applications of LRA it is highly important or sometimes imperative to obtain as close
LRA as possible, and then again we are challenged to achieve this at sub-linear cost. In this paper
we take the challenge and propose two techniques for iterative refinement at sub-linear cost given
a crude but reasonably close initial LRA.

Our first approach naturally extends the known methods for iterative refinement as a popular
tool for the solution and least squares solution of a linear system of equations (see [S98, Sections 3.3.4
and 4.2.5], [HO2, Chapter 12 and Section 20.5], [DHKO06], [GL13, Sections 3.5.3 and 5.3.8], [B15,
Sections 1.4.6, 2.1.4, and 2.3.7]), also known for other matrix computations, including nonlinear
ones (see [S98, page 223 and the references on page 225]), but to the best of our knowledge, it has
not been applied to LRA so far, possibly because computation of LRA at sub-linear cost has not
been studied as much as it deserves.

Our second approach is dramatically different. It relies on recursive application of randomized
LRA algorithms of [DMMO08] by means of random sampling directed by the sampling probabilities,
called leverage scores. They are computed from the top right singular space of an input matrix,
but the computation allows some leverage, and so one can expect that these scores computed for a
given LRA could define an even closer LRA for an input matrix.

All known algorithms for the computation of LRA by means of subspace sampling directed by
leverage scores sample a large number of rows and columns of an input matrix, and so does our
second algorithm for iterative refinement. This may restrict practical value of these algorithms (see
[TYUC17, Section 1.7.3]), although our Algorithm 3.1 provides partial remedy at sub-linear cost.

In order to develop our refinement algorithms we supply some recipes for a posteriori error
estimation of LRA at sub-linear cost; this can be of some independent value.

Our numerical tests are in good accordance with our formal study.

Our work seems to be the first step into highly important but long-ignored research area, and
we hope to motivate further efforts into this direction.

Organization of our paper. In the next section we recall some background material. In
Section 3 we transform any LRA into its SVD at sub-linear cost. We propose some algorithms for
iterative refinement of an LRA at sub-linear cost in Sections 4 and 6 and study the problem of
error estimation for LRA at sub-linear cost in Section 5. We devote Section 7, the contribution of
the second author, to numerical tests. In Appendix A we specify some small families of matrices
on which every LRA algorithm fails if it runs at sub-linear cost, even though every matrix of these
families admits LRA. In Appendix B we recall the known estimates for the output errors of LRA
at sub-linear cost in a very special but important case where an input matrix is filled with i.i.d.
values of a single random variable.

2Here and throughout we use such concepts as “low”, “small”, “nearby”, etc. defined in context.



2 Some background for LRA
Definition 2.1. (i) An m x n matriz M has rank at most p, rank(M) < p, if
M = AB, A e C™", and B e CP*". (2.1)

(ii) Such a matriz M has {-rank at ‘most p for a fized tolerance § if M admits its approzimation
within an error norm & by a matriz M of rank at most p or equivalently if there exist three matrices
A, B and E such that

M = M + E where |E| <& M = AB, Ae C™*, and B € C*", (2.2)
Here and hereafter | - | unifies definitions of the spectral norm || - || and the Frobenius norm || -||F.

The O-rank is the rank; the &-rank of a matrix M for a small tolerance ¢ is said to be its
numerical rank, hereafter denoted nrank(M). A matrix admits its close approximation by a matrix
of rank at most p if and only if it has numerical rank at most p.

A 2-factor LRA AB of M of (2.2) can be generalized to a 3-factor LRA

M=M+E, |E|<¢ M=XTY, X eC™k TecH™ vech, (2.3)

p<k<m, p<Ii<n (2.4)

for p = rank(M).

Remark 2.1. The pairs of the maps XT — A andY — B as well as X — A and TY — B turn
a 3-factor LRA XTY of (2.3) into a 2-factor LRA AB of (2.2).

An important 3-factor LRA is the p-top SVD M, = U,%,V; where ¥, is the diagonal matrix
of the p top (largest) singular values of M and U, and V, are the unitary (orthogonal) matrices of
the associated top singular vectors of M. M, is said to be the p-truncation of M, obtained from
M by setting to zero all its singular values but the p largest ones.

The p-top SVD defines an optimal 3-factor LRA under both spectral and Frobenius norms.

Theorem 2.1. [GL13, Theorem 2.4.8]. Write 7,4.1(M) := [M, — M| = miny, rank(n)=p |M — NJ|.
Then Tp41(M) = o,401(M) under the spectral norm | - | = || - || and 7,01(M) = opp1(M) =
2> a?(M) under the Frobenius norm |-| =] ||F.

Lemma 2.1. [GL13, Corollary 8.6.2]. For m > n and a pair of m X n matrices M and M + E it
holds that
03(M + E) = 0;(M)| < ||El| for j =1,...,n.

Lemma 2.2. [The norm of the pseudo inverse of a matrix product.] Suppose that A € RF*",
B € R™! and the matrices A and B have full rank r < min{k,1}. Then |(AB)*| < |A*| |B*|.

3 Transform of LRA into its SVD at sub-linear cost
Algorithm 3.1. [Transform of any LRA into its SVD.]

INPUT: Three matrices A € R™** B € RF*" qnd M’ = AB € R™*",

OuUTPUT: p = rank(M') and three matrices U' € R™*P (orthogonal), ' € RP*P (diagonal), and
V™ € RP*™ (orthogonal) such that M, = U'Y'V"™.

3



COMPUTATIONS: 1. Compute the matrices Q4 € C™** Qp € C*k, Ry € C*** and Rp €
CF*k being Q and R factors in thin QR factorization A = QR4 and B = QgRp or (in
order to strengthen numerical stability) being @ and RIL factors in rank-revealing QRII
factorization A = QaRAll4 and B = QpRpllp.

2. Compute the k x k matrizr W = Ry R%.
3. Compute its full SVD W = Uw Xw Vy}, where ¥ = Sy = diag(X, 0) and X is a nonsin-

gular p X p diagonal matrix..

4. Compute the matrices U' and V' by keeping just first p columns of the matrices Q 4Uyy,
QpVw, respectively, and deleting the other columns. Output p = rank(X) and the ma-
trices U', ¥ =X, and V'*.

The algorithm runs at sub-linear cost if k2 < min{m,n}, and its correctness is readily verified.
The transition AB — (AB), decreases the rank of LRA to at most p at the price of only a mild
increase of the error norm bound. Indeed triangle inequality implies that

|M — M;| <|M - M|+ |M - M/’)| and | M’ —M;,| =7,(M") < |M — M'| + 7,(M) (3.1)

for any matrix M (cf. [TYUC17, Proposition 6.1]).

By using Remark 2.1 we can readily transform any 3-factor LRA M’ = XTY into a 2-factor
LRA; then by applying Algorithm 3.1 we can transform it further to its SVD.

We can a little simplify the transformation of a 3-factor LRA into a 2-factor LRA as follows:

(i) compute compact SVD T' = UrX7 V' where X7 is a nonsingular p’ x p’ diagonal matrix for
p' = rank(T),

(ii) obtain two matrices X’ and Y’ by keeping the first p’ columns of the matrices XU/, and
Y*V7], respectively, and deleting the other columns, and

(iii) finally apply the recipes of Remark 2.1 to the 3-factor LRA M’ = X'SpY"*.

4 Deterministic iterative refinement of an LRA at sub-linear cost

Next we propose an algorithm for iterative refinement of a sufficiently close LRA of M (see Appendix
6 for an alternative algorithm.) At the ith step we try to improve the current LRA M @) by
applying a fixed LRA algorithm to the current error matrix EW = M® — M or to the matrix of
its modification E®) — EC~1 (see Remark 4.3). At every iteration the rank of the new tentative
LRA is at least doubled, but we periodically cut it back to the value nrank(M) (see Remark 4.2).

Algorithm 4.1. (Iterative refinement of a CUR LRA at sub-linear cost. See Remarks 4.2 and
4.3.)

INPUT: Three integers m, n, and p, p < min{m,n}, an mxn matriz M of numerical rank p, a Sub-
algorithm APPROX(r), which for a fized positive integer r computes a rank-r approximation
of its input matrixz at sub-linear cost, and a Stopping Criterion, which signals when current
candidate LRA is expected to be satisfactory (see the next section).

INITIALIZATION: M () = Om*n,
COMPUTATIONS: Recursively for i =1,2,... do:

1. Apply Sub-algorithms APPROX(ri_1) to the matriz EC—Y = M — MUY for r;_y =
2i—1p'



2. Let AUV denote its output matrix of rank at most r;_1. Compute a new approrimation
M® = M1 4 ACD of M and the matrizc E®D = M — MW, of numerical rank at
most 2'p.

3. Replace i by i+ 1 and repeat stages 1 and 2 until either ¢ exceeds the allowed limitation,
and then stop and output FAILURE, or Stopping Criterion is satisfied for some integer
i=t—1, and then stop and output the matriz M = M®.

Remark 4.1. Progress in refinement. Write e; = |EW| for all i and observe that E®) = BG—1 —
A and so e; < e;_q if ACTY approzimates ECY closer than the matriz O filled with 0s.

Remark 4.2. Management of the rank growth. The bound on the rank of the matrices E@ is
doubled at every iteration of Algorithm 4.1; by allowing its further increase we can obtain more
accurate LRA. Fast growth of the rank, however, implies fast growth of the complezity of an itera-
tion, and so we should periodically (possibly for every i) compress the computed LRA MO into its

p-truncation M,gi) by applying Algorithm 3.1. The error of LRA would grow in compression within
bound (3.1), that is, less significantly if an LRA M s close to an input matriz M.

Remark 4.3. Management of the precision of computing. As usual in iterative refinement we
should apply the mized precision technique, that is, perform the subtraction stage 2 with a higher
precision than stage 1. Furthermore we can replace the summation M® = M1 4 AG=1) py the
summation of more than two terms, by representing the matriz M~ == M=2) 4 AG=2) py g
pair of matrices M2 and A2 and possibly similarly representing the matriz M“=2) . The basic
observation is that we need lower precision in order to represent each term than their sums.

5 Heuristic a posteriori error estimation for LRA at sub-linear
cost

Accurate a posteriori error estimation is impossible at sub-linear cost even for the small input
families of Appendix A, but next we discuss some heuristic recipes for this task.

(i) Clearly the value |e; | for every entry e; ; of the LRA error matrix F = (e;;);; = M — M is
a lower bound on the norm |E| of this matrix. One can compute s entries of E by using at most
2ps arithmetic operations; this cost is sub-linear if 2ps < mn. This deterministic lower bound on
the LRA error norm |E| also implies its a posteriori randomized upper bounds if, say, the error
matrix F is filled with i.i.d. values of a single random variable and has sufficiently many entries,
e.g., 100 entries or more (see Appendix B).

(ii) By generalizing this technique we obtain deterministic lower bounds on the error norm |E|
from the norms |FE|, |EH| or |[FEH| for any pair of matrices F' € R¥*™ and H € R"*!. The
computation also defines randomized upper bounds on the error norm |F EH| for random matrices
F and/or H and sufficiently large integers k and/or [ (see [F79]) and runs at sub-linear cost if
k < m, |l < n and if the matrices F' and H are sufficiently sparse, e.g., are sub-permutation
matrices.

(iii) Suppose that we have computed a set of LRA Mj, ..., M, for a matrix M, by applying to it
various LRA algorithms running at sub-linear cost or the same algorithm with distinct parameters,
e.g., the algorithm of [TYUC17] with sparse multipliers F' and H. Furthermore suppose that we
have computed a median M = Mj for some j in the range 1 < j < s. Then we can consider this
median a heuristic LRA and the norms |M; — M| for i = 1,..., s heuristic error bounds.

For heuristic computation of a median at sub-linear cost one may select the median index
j = j(f,h) for the product f*Mjh over all subscripts j in the range 1 < j < s for a pair of fixed



common vectors f and h. For more dependable selection one may first compute such medians for
a number of pairs of vectors f and h and then select a median of these medians.

(iv) In Appendix B we recall the well-known techniques for a posteriori error estimation at
sub-linear cost for LRA of a matrix filled with i.i.d. values of a single variable.

All these recipes for a posteriori error estimation at sub-linear cost apply to any LRA. In
[PLSZa] and [PLSZb] we deduce such estimates for LRA output by some specific sub-linear cost
algorithms. We refer the reader to [B00], [BR03], and [BGO6] for such recipe in the case of Adaptive
Cross-Approximation iterations for LRA.

6 Randomized iterative refinement of LRA at sub-linear cost by
means of refinement of leverage scores

Given a crude but reasonably close LRA M = ATB such that ||M — M|| < o,(M) we can try to
refine it at sub-linear cost by extending the random subspace sampling algorithms of [DMMO8] by
Drineas et al. and of various subsequent papers (see [KS16], [BW17], and the references therein).
These algorithms compute CUR LRA of a matrix M at sub-linear cost if its top SVD is available.
Namely, given the top SVD the algorithm computes at sub-linear cost the so called leverage scores,
which serve a sampling probabilities that define random subspace sampling at sub-linear cost.

Given p-top SVD M, = U,%,V;, with V, = (vg-p))?zl one can fix any real 5, 0 < 8 < 1, and
then define the SVD-based leverage scores p1, ..., p, satisfying

p; > (B/r)IV)Fand Y pj=1forj=1,...,n. (6.1)
j=1

(6.1) turns into p; = va-r)Hz/r for j =1,...,n for 8 =1, but for § < 1 we obtain leverage
scores pi, - . ., pn, that we can reuse in a small neighborhood of an input matrix.

Remark 6.1. The leverage scores are defined by the top right singular space but do not depend
on the choice of its orthogonal basis; they stay invariant if the matriz V| is pre-multiplied by an
orthogonal matriz. By virtue of Theorem 6.1 below, they change little in a small perturbation of
that space.

We next recall a bound on the perturbation of singular spaces of the p-truncation M, of a
matrix M into those of a matrix M 4+ E. The bound is stated in terms of the minimal perturbation
of unitary or orthogonal bases for the transition from the singular spaces of M to those of M + E.
Compare similar results by Davis—Kahan 1970 and Wedin 1972 and 1973 involving angles between
singular spaces.

Theorem 6.1. (The impact of a perturbation of a matrix on its top singular spaces. [GL13,
Theorem 8.6.5].)% Suppose that

g=:0,(M)—0,11(M) >0 and ||E||[r < 0.2g.

3[GL13, Theorem 8.6.5] cites [S73, Theorem 6.4], which claims a slightly more optimistic bound

FE .
max{|| Bpets (M + E) — Byt (M)|[1 | Byigne (M + E) — Byign(M)] |} < 2% if ||E]|r < 6/2.



Then there exist unitary or orthogonal matriz bases® Bpiett(M), Bpright (M), Bpiett(M + E), and
By right (M + E) for the left and right top singular spaces (associated with the r largest singular
values) of the matrices M and M + E such that

FEl|lr
masc{] [ Bpsete(M + E) — Byiete (M) || Bpigt (M + E) — Byigna (M)} < 4”9'.

For example, if o,(M) > 20,.1(M), which implies that ¢ > 0.5 0,(M), and if ||E|[r <
0.1 0,(M), then the upper bound on the right-hand side is approximately 8||E||r/o,(M).

The above observations and estimates combined lead us to a heuristic recipe for iterative re-
finement of LRA by means of updating the leverage scores of an input matrix.

Namely suppose that an LRA M is sufficiently close to the matrix M. Then by virtue of
Theorem 6.1 the top right singular spaces of the matrix M and of its LRA M are close to one
another, and so the sets of their leverage scores are close to one another whp [DMMO08]. At this
point we propose to fix f < 1, to compute the leverage scores of the LRA at sub-linear cost, and
then to apply the algorithm of [DMMOS8] to the matrix M by using these leverage scores. For a
proper choice 8 < 1 the new LRA should improve M whp if the norm |E| = |M — M| is small
enough. Recursively we arrive at a heuristic recipe for randomized iterative refinement of a crude
but sufficiently close LRA.

We leave as research challenges (i) the relevant estimates for an upper bound on the norm |E|
that would imply its decrease, say, by twice with a probability at least 1/2 and (ii) numerical tests
that would support these estimates.

It is not clear how large should be samples of columns and rows of M in the tests. Large
overhead constants are involved in the known upper estimates for the numbers of row and column
samples in the subspace sampling algorithms of [DMMO08] and all subsequent papers using leverage
scores, but the tests in [DMMO08] have succeeded with much fewer samples.

Remark 6.2. The randomized algorithms of [DMMO08] compute nearly optimal LRA at nearly
optimal cost whp provided that they sample fairly many rows and columns of an input matriz
according to leverage scores of (6.1). [TYUC17, Section 1.73] discusses deficiency of LRA based
on sampling many rows and columns; our Algorithm 3.1 provides some partial remedy.

Remark 6.3. One can refine a crude basis for p-top right singular subspace of an m x n matriz M’
by applying orthogonal iterations (cf. [GL13, Sections 8.2.3 and 8.3.7]), but each such an iteration
involves (m + p)n memory cells and O(mnp) flops, so it does not run at sub-linear cost.

7 Numerical Experiments for Algorithm 4.1

In this subsection we present the test results for Algorithm 4.1 on inputs of four types made up of
synthetic and real-world data with various spectra. Our figures display the relative error ratio
|M — M||r

_ 1
TV VAT (7-1)

where M denotes the input matrix, M denotes its approximation output by Algorithm 4.1, M,
denotes the p-top SVD of M, and p is a rank value pre-determined for each input matrix. Unless
the output of the algorithm was corrupted by rounding errors, the ratio » was not supposed to be
noticeably exceeded by 1, and it was not in our experiments.

4Recall that such bases are not unique even where all singular values are distinct.
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Figure 1: Spectrums of real world input matrices

The algorithm was implemented in Python, and we run all experiments on a 64bit MacOS
Sierra 10.12.6 machine with 1.6GHz CPU and 4GB Memory. We called scipy.linalg version 0.4.9
for numerical linear algebra routines such as QR . factorization with pivoting, Moore-Penrose matrix
inversion, and linear least squares regression.

Synthetic Input: We used random synthetic 1024 x 1024 input matrices of two kinds — with rapidly
and slowly decaying spectra. In both types we generated these matrices as products USVT | where
U and V were the matrices of the left and right singular vectors of a random Gaussian matrix.
In the case of rapidly decaying spectrum we let > = diag(v), where v; = 1 for 7 = 1,2,3,...40,
v = %t for i = 41,...,100, and v; = 0 for 7« > 100. In the case of slowly decaying spectrum we let
¥ = diag(u), where u; =1 for 1 =1,2,3,...40, and u; = IL-H for i > 40.

Real-wold Input: The input matrices of this category were 1000 x 1000 dense matrices with real
values having low numerical rank. They represent discretization of Integral Equations, provided in
the built-in problems of the Regularization Tools®>. We used the two test matrices. One of them,
called gravity, came from a one-dimensional gravity surveying model problem and another one,
called shaw, came from a one-dimensional image restoration model problem. Their distribution of
singular values is displayed in figure 1; we padded these matrices with Os in order to increase their
size to 1024 x 1024.

Sub-algorithm: Our sub-algorithm modifies the sketching approach of [TYUC17]. Namely, in the
ith iteration step we drew two multipliers F' and H, then approximated the residual B; = M — M;_;
by R; = R;H(FR;H)*FR;, and finally computed the ith approximation M; = M;_; + R;. In our
tests, we used the abridged Hadamard multipliers defined in [PLSZ16] and [PLSZ17] and having size
5 x 1024 and recursion depth 3. We also included results of similar tests with Gaussian multipliers
for comparison (cf. [TYUC17)).

For each input matrix, we performed 100 times the iterative refinement algorithm 4.1 and
recorded the mean relative error ratio for every iteration step in figure 2.

We notice that the abridged SRHT multipliers performed similarly to Gaussian multipliers in
our tests, and are only slightly worse in few places. This minor deterioration of the output accuracy
was a reasonable price for using abridged (very sparse) Hadamard multipliers, with which we only
access a small fraction of the input matrix at each iteration step.

It is worth noticing that even in the test with some random input matrices that have slowly
decaying spectrum the relative error ratio did not decrease below 1, which could be caused by the

5See http://www.math.sjsu.edu/singular/matrices and http://www2.imm.dtu.dk/~pch/Regutools
For more details see Ch4 of http://www.imm.dtu.dk/~pcha/Regutools/RTv4manual. pdf
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Figure 2: Test result for Algorithm 4.1

“heavy” tail in the spectrum. In our tests with some other inputs which were not “well-mixed” in
some sense, it was necessary to increase the recursion depth of the abridged Hadamard multipliers
in order to bring the relative error ratio close to 1.

Appendix

A Small families of hard inputs for LRA at sub-linear cost

Any sub-linear cost LRA algorithm fails on the following small families of LRA inputs.

Example A.1. Define the following family of m x n matrices of rank 1 (we call them d-matrices):
{Aij, i=1,...,m; j=1,...,n}. Also include the m x n null matriz Oy, , into this family. Now
fiz any LRA algorithm running sub-linear cost; it does not access the (i,7)th entry of its input
matrices for some pair of i and j. Therefore it outputs the same approximation of the matrices
Aij and Omn, with an undetected error at least 1/2. Apply the same argument to the set of
mn + 1 small-norm perturbations of the matrices of the above family and to the mn + 1 sums of
the latter matrices with any fired m x n matriz of low rank. Finally, the same argument shows
that a posteriori output errors of an LRA algorithm applied to the same input families cannot be
estimated at sub-linear cost.



B A posteriori error estimation sub-linear cost for LRA of a ma-
trix filled with i.i.d. values of a single variable

In our randomized a posteriori error estimation sub-linear cost below we assume that the error
matrix F of an LRA has enough entries, say, 100 or more, and that they are the observed i.i.d.
values of a single random variable. This is realistic, for example, where the deviation of the matrix
W from its rank-p approximation is due to the errors of measurement or rounding.

In this case the Central Limit Theorem implies that the distribution of the variable is close to
Gaussian (see [EW07]). Fix a pair of integers ¢ and s such that ¢s is large enough (say, exceeds
100), but gs = O((m + n)kl) and gs < mn; then apply our tests just to a random ¢ x s submatrix
of the m X n error matrix.

Under this policy we compute the error matrix at a dominated arithmetic cost in O((m + n)kl)
but still verify correctness with high confidence, by applying the customary rules of hypothesis
testing for the variance of a Gaussian variable.

Namely suppose that we have observed the values g1,..., gx of a Gaussian random variable g
with a mean value p and a variance o2 and that we have computed the observed average value and
variance

1 & 1 &
UK = EZ:\gl| and 0% = EZ‘%_NKF’
i=1 i=1
respectively. Then, for a fixed reasonably large K, both
Probability {|ux — p| > t|u|} and Probability{|o% — 02| > to?}

converge to 0 exponentially fast as ¢ grows to the infinity (see [C46]).
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