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Abstract

Low rank approximation of a matrix (hereafter LRA) is a highly important area of Numer-
ical Linear and Multilinear Algebra and Data Mining and Analysis with numerous important
applications to modern computations. One can operate with LRA of a matrix at sub-linear
cost, that is, by using much fewer memory cells and flops than the matrix has entries,1 but no
sub-linear cost algorithm can compute accurate LRA of the worst case input matrices or even
of the matrices of small families of low rank matrices in our Appendix B. Nevertheless we prove
that some old and new sub-linear cost algorithms can solve the dual LRA problem, that is, with
a high probability (hereafter whp) compute close LRA of a random matrix admitting LRA. Our
tests are in good accordance with our formal study, and we have extended our progress into
various directions, in particular to dual Linear Least Squares Regression at sub-linear cost.
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1 Introduction

(1) LRA at sub-linear cost: the problem and background. LRA of a matrix is one of the
most fundamental problems of Numerical Linear and Multilinear Algebra and Data Mining and
Analysis, with applications ranging from machine learning theory and neural networks to term
document data and DNA SNP data (see surveys [HMT11], [M11], and [KS16]).

Matrices representing Big Data (e.g., unfolding matrices of multidimensional tensors) are usually
so immense that realistically one can only access and process a tiny fraction of their entries, but
quite typically these matrices admit LRA, that is, are close to low rank matrices,2 with which one

1“Flop” stands for “floating point arithmetic operation”.
2Here and throughout we use such concepts as “low”, “small”, “nearby”, etc. defined in context.
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can operate by using sublinear arithmetic time and memory space, that is, much fewer flops and
memory cells than the matrix has entries.

Every such an LRA algorithm fails on the worst case inputs and even on a small families of
matrices of our Appendix B, but fortunately some authors ignored this information and about
two decades ago proposed Cross-Approximation (C-A) algorithms, which are now routinely applied
worldwide in computational practice and consistently compute accurate LRA at sub-linear cost
(see [T96], [GZT95], [GZT97], [GTZ97], [T00], [B00], [GT01], [BR03], [BG06], [GOSTZ10], [GT11],
[OZ18], [O18]).

(2) Recent and new progress. The papers [PLSZ16], [PLSZ17], [OZ18], and [O18] provide
limited formal support for these empirical observations. By extending these efforts we prove that C-
A and some other old and new algorithms, running at sub-linear cost, solve the dual LRA problem,
that is, whp compute LRA of a random matrix admitting LRA.

This continues our earlier study of dual problems of matrix computations with random input, in
particular Gaussian elimination where randomization replaces pivoting (see [PQY15], [PZ17a], and
[PZ17b]). We further advance this approach in [PLSZa], [PLa], [PLb], and [LPSa]. In particular
the paper [PLb] computes whp and at sub-linear cost a nearly optimal solution of the Linear Least
Squares Regression (LLSR) problem (see [PLb]).

Presently we study sub-linear cost algorithms that compute LRA in its special form of CUR
LRA, traced back to [T96], [GZT95], [GZT97], and [GTZ97] and particularly memory efficient. We
show a close link of the computation of CUR LRA to subspace sampling approach to LRA, and we
transform at sub-linear cost any LRA into CUR LRA.

(3) Three limitations of our progress.
(a) Any model of random inputs for LRA (including ours) is odd to some important input

classes encountered in computational practice,
(b) Our theorems only hold where an input matrix is sufficiently close to matrices of low rank

according to our specified estimates (3.2), (3.5) – (3.10).
(c) The expected error norms of our LRA are within some specified factors from optimal (see

our estimates in Section 3.5 and 3.6) but are not arbitrarily close to optimal.
(4) Can we counter, alleviate and compensate for these limitations?
Some of our result fix these problems, at least partly.
(a) Our tests with synthetic inputs and real world inputs are in good accordance with our formal

study and even suggest that our formal error estimates are overly pessimistic.
(b) We proved favorable bounds on the output errors of LRA computed at sub-linear cost in

the cases where either an input matrix lies in a bounded neighborhood of a random matrix of
low rank (see specific bounds in Section 3.5) or an unbounded deviation of an input matrix from
LRA is represented with white Gaussian noise3 (see Section 3.6). Furthermore our dual solution
of LRA can be extended to the solution, also at sub-linear cost, of primal LRA, which is accurate
whp for any matrix that admits its LRA and is pre-processed by means of its multiplication by
standard random Gaussian (normal), SRFT, SRHT or Rademacher’s matrices.4 Pre-processing
with all these multipliers has super-linear cost, but in our tests pre-processing at sub-linear cost
with various sparse multipliers has consistently worked as efficiently.

3White Gaussian noise is a classical representation of natural noise in information theory, is widely adopted in
signal and image processing, and in many cases properly represents errors of measurement and rounding (cf. [SST06]).

4Here and hereafter we call a matrix is Gaussian if its entries are independent identically distributed (hereafter
iid) standard Gaussian (normal) random variables; “SRHT and SRFT” are the acronyms for “Subsample Random
Hadamard and Fourier transforms”; Rademacher’s are the matrices filled with iid variables, each equal to 1 or −1
with probability 1/2.
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(c) Our algorithms in [PLa] perform iterative refinement of a crude initial LRA at sub-linear
cost; this should alleviate deficiency (c).

(5) Dual matrix computations at sub-linear cost. In this and our other cited papers
we analyzed old and new dual algorithms for LRA and LLSR performing at sub-linear cost. Our
progress should motivate similar efforts for other matrix computations.

(6) Organization of our paper. We recall some background material in the next section and
in Appendix A. In Section 3 we define CUR LRA and estimate its output errors. In Sections 4 and
5 we study computations at sub-linear cost; we cover various CUR LRA algorithms and generation
of multiplicative pre-processing for the computation of LRA, respectively. We devote Section 6
to numerical experiments and specify some small families of hard inputs for performing LRA at
sub-linear cost in Appendix B.

2 Some background for LRA

Rp×q denotes the class of p× q real matrices. For simplicity we assume dealing with real matrices
throughout,5 except for the matrices of discrete Fourier transform of Section 5.5, but our study can
be quite readily extended to complex matrices; in particular see [D88], [E88], [CD05], [ES05], and
[TYUC17] for some relevant results about complex Gaussian matrices.

Hereafter our notation | · | unifies the spectral norm || · || and the Frobenius norm || · ||F .
An m×n matrix M has ε-rank at most ρ if it admits approximation within an error norm ε by

a matrix M ′ of rank at most ρ or equivalently if there exist three matrices A, B and E such that

M = M ′ + E where |E| ≤ ε, M ′ = AB, A ∈ Rm×ρ, and B ∈ Rρ×n. (2.1)

Figure 1: Rank-ρ approximation of a matrix M

The 0-rank is the rank; the ε-rank of a matrix M for a small tolerance ε is said to be its
numerical rank, hereafter denoted nrank(M). A matrix admits its close approximation by a matrix
of rank at most ρ if and only if it has numerical rank at most ρ.

A 2-factor LRA AB of M of (2.1) can be generalized to a 3-factor LRA:

M = M ′ + E, |E| ≤ ε, M ′ = ATB, A ∈ Rm×k, T ∈ Rk×l, B ∈ Rl×n, (2.2)

ρ ≤ k ≤ m, ρ ≤ l ≤ n (2.3)

for ρ = rank(M ′), and typically k � m and/or l � n. The pairs of maps AT → A and B → B as
well as A→ A and TB → B turn a 3-factor LRA ATB of (2.2) into a 2-factor LRA AB of (2.1).

An important 3-factor LRA of M is its ρ-top SVD Mρ = UρΣρV
∗
ρ for a diagonal matrix Σρ =

diag(σj)
ρ
j=1 of the ρ largest singular values of M and two orthogonal matrices Uρ and Vρ of the ρ

associated top left and right singular vectors, respectively.6 Mρ is said to be the ρ-truncation of M .

5Hence the Hermitian transpose M∗ is just the transpose MT .
6An m× n matrix M is orthogonal if M∗M = In or MM∗ = Im for Is denoting the s× s identity matrix.
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Figure 2: The figure represents both top SVD of a matrix and a two-sided factor-Gaussian matrix
of Definition A.1.

Theorem 2.1. [GL13, Theorem 2.4.8].) Write τρ+1(M) := minN : rank(N)=ρ |M − N |. Then
τρ+1(M) = |M −Mρ| under both spectral and Frobenius norms: τρ+1(M) = σρ+1(M) under the
spectral norm and τρ+1(M) = σF,ρ+1(M) :=

∑
j≥ρ σ

2
j (M) under the Frobenius norm.

Theorem 2.2. [GL13, Corollary 8.6.2]. For m ≥ n and a pair of m× n matrices M and M + E
it holds that

|σj(M + E)− σj(M)| ≤ ||E|| for j = 1, . . . , n.

Lemma 2.1. [The norm of the pseudo inverse of a matrix product.] Suppose that A ∈ Rk×r,
B ∈ Rr×l and the matrices A and B have full rank r ≤ min{k, l}. Then |(AB)+| ≤ |A+| |B+|.

3 Canonical CUR LRA and its error estimates

In Sections 3.1 – 3.4 we seek LRA of a fixed input matrix in a special form of CUR LRA. We call
this problem primal. In Sections 3.5 and 3.6 we study dual CUR LRA with a random input matrix.

3.1 Canonical CUR LRA

For two sets I ⊆ {1, . . . ,m} and J ⊆ {1, . . . , n} define the submatrices

MI,: := (mi,j)i∈I;j=1,...,n,M:,J := (mi,j)i=1,...,m;j∈J , and MI,J := (mi,j)i∈I;j∈J .

Given an m × n matrix M of rank ρ and its nonsingular ρ × ρ submatrix G = MI,J one can
readily verify that M = M ′ for

M ′ = CUR, C = M:,J , U = G−1, G = MI,J , and R = MI,:. (3.1)

We call G the generator and call U the nucleus of CUR decomposition of M (see Figure 3).

Figure 3: CUR decomposition with a nonsingular CUR generator

CUR decomposition is extended to CUR approximation of a matrix M close to a rank-ρ matrix
(see Figure 1), although the approximation M ′ ≈ M for M ′ of (3.1) can be poor if the generator
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G is ill-conditioned.7

Osinsky and Zamarashkin proved in [ZO18] that for any matrix M there exists its CUR ap-
proximation (3.1) within a factor of ρ+ 1 from optimum under the Frobenius matrix norm. Having
an efficient algorithm for estimating the errors of CUR LRA, one can compute the generator of
this CUR LRA by means of exhaustive search, which is performed at sub-linear cost if ρ is a small
positive integer.

Now, given matrix M that admits its close LRA, that is, has low numerical rank ρ = nrank(M),
we face the challenge of devising the algorithms that at sub-linear cost would

(i) compute an accurate CUR LRA of a matrix of a moderately large numerical rank,
(ii) a posteriori estimate the errors of CUR LRA, and
(iii) refine CUR LRA.
We refer the reader to [PLa] for goal (iii); we pursue goal (ii) later in this section and goal

(i) in Section 4, but in all these cases we generalize LRA of (3.1) by allowing to use k × l CUR
generators for k and l satisfying (2.3) and to choose any k× l nucleus U for which the error matrix
E = CUR−M has smaller norm.

Hereafter M+ denotes the Moore–Penrose pseudo inverse of M .
Given two matrices C and R, the minimal error norm of CUR LRA

||E||F = ||M − CUR||F ≤ ||M − CC+M ||F + ||M −MR+R||F

is reached for the nucleus U = C+MR+ (see [MD09, equation (6)]), but it cannot be computed at
sub-linear cost.

Hereafter we study canonical CUR LRA (cf. [DMM08], [CLO16], [OZ18]) with a nucleus of
CUR LRA given by the ρ-truncation of a given CUR generator:

U := G+
ρ = 1/σρ(M).

In that case the computation of a nucleus involves kl memory cells and O(klmin{k, l}) flops.
Our study of CUR LRA in this section can be extended to any LRA by means of its transfor-

mation into a CUR LRA at sub-linear cost (see Section 3.7 and [PLa]).

3.2 CUR decomposition of a matrix

Theorem 3.1. [A necessary and sufficient criterion for CUR decomposition.] Let M ′ = CUR be a
canonical CUR of M for U = CG+

ρ R, G = MI,J . Then M ′ = M if and only if rank(G) = rank(M).

Proof. σj(G) ≤ σj(M) for all j because G is a submatrix of M . Hence ε-rank(G) ≤ ε-rank(M) for
all nonnegative ε, and in particular rank(G) ≤ rank(M).

Now let M = M ′ = CUR. Then clearly

rank(M) ≤ rank(U) = rank(G+
ρ ) = rank(Gρ) ≤ rank(G),

and so rank(G) ≥ rank(M), which proves the “only if” claim of the theorem.
It remains to deduce that M = CG+

ρ R if rank(G) = rank(M) := ρ, but in this case Gρ = G,
and so rank(CG+

ρ R) = rank(C) = rank(R) = ρ. Hence the rank-ρ matrices M and CG+
ρ R share

their rank-ρ submatrices C ∈ Rm×ρ and R ∈ Rρ×n.

7The papers [GZT95], [GTZ97], [GZT97], [GT01], [GT11], [GOSTZ10], [ZO16], and [OZ18] define CGR approxi-
mations having nuclei G; “G” can stand, say, for “germ”. We use the acronym CUR, more customary in the West.
“U” can stand, say, for “unification factor”, but notice the alternatives of CNR, CCR, or CSR with N , C, and S
standing for “nucleus”, “core”, and “seed”.
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Remark 3.1. Can we extend the theorem by proving that M ′ ≈ M if and only if nrank(G) =
nrank(M)? We extend the ”if” claim by proving that ||E|| = ||M − CUR|| = O(σρ+1(M)) if
σρ+1(M)||U || ≤ θ for a constant θ < 1, e.g., if σρ+1(M)||U || ≤ 1/2 (see Remark 3.2), but the
”only if” claim cannot be extended. Indeed let G be a ρ × ρ nonsingular diagonal matrix, with all
its diagonal entries equal to 1, except for a single small positive entry, and so nrank(G) = ρ − 1.
Extend G to a matrix M such that

nrank(M) = rank(M) = rank(G) = ρ > nrank(G)

and then deduce from Theorem 3.1 that M ′ = M .

3.3 The errors of a canonical CUR LRA: outline and a lemma

Next we estimate the errors of CUR LRA in the case where the ratios ρ
m and ρ

n are small.

Outline 3.1. [Estimation of the Errors of a Canonical CUR LRA.] Given an m× n matrix M of
numerical rank ρ, two sets I and J of its k row and l column indices, for ρ ≤ min{k, l}, and its
canonical CUR LRA defined by these two sets, select the spectral or Frobenius matrix norm | · | and
estimate the errors of a canonical CUR LRA as follows:

1. Consider (but do not compute) an auxiliary m × n matrix M ′ of rank ρ that approximates
the matrix M within a fixed norm bound ε. [We can apply our study to any choice of M ′,
e.g., to M ′ = Mρ, in which case ε = σρ+1(M), or to M being a norm-ε perturbation of a
factor-Gaussian matrix M of Definition A.1.]

2. Fix a k× l CUR generator G′ = M ′I,J for the matrix M ′ and define a nucleus U ′ = G′+ρ and
canonical CUR decomposition M ′ = C ′U ′R′.

3. Observe that

|M − CUR| ≤ |M −M ′|+ |M ′ − CUR| ≤ ε+ |C ′U ′R′ − CUR|.

4. Bound the norm |C ′U ′R′ − CUR| in terms of the values ε, |C|, |U |, and |R|.

Our next goal is elaboration upon step 4, provided that we have already performed steps 1– 3.

Lemma 3.1. Fix the spectral or Frobenius matrix norm | · |, five integers k, l, m, n, and ρ
such that ρ ≤ k ≤ m and ρ ≤ l ≤ n, an m × n matrix M having numerical rank ρ, its rank-ρ
approximation M ′ within a norm bound ε, such that τρ+1(M) ≤ |M ′−M | ≤ ε, and canonical CUR
LRAs M ≈ CUR and M ′ = C ′U ′R′ defined by the same pair of index sets I and J of cardinality
k and l, respectively, such that

C := M:,J , R := MI,:, U = G+
ρ , C ′ := M ′:,J , R

′ := M ′I,:, U
′ = G′+ρ ,

G = MI,J , and G′ = M ′I,J .

Then
|M − CUR| ≤ (|R′|+ |C ′|+ ε) |U | ε+ |C ′| |R′| |U ′ − U |+ ε.

Proof. Notice that

CUR− C ′U ′R′ = (C − C ′)UR+ C ′U(R−R′) + C ′(U − U ′)R′.

Therefore

|CUR− C ′U ′R′| ≤ |C − C ′| |U | |R|+ |C ′| |U | |R−R′|+ |C ′| |U − U ′| |R′|.

Complete the proof of the lemma by substituting the bound max{|C ′|, |R′|} ≤ |M ′|+ ε.
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3.4 The errors of CUR LRA in terms of the minimal error norm

Next we express the norm |U − U ′| via the norm ||U ||.

Lemma 3.2. Under the assumptions of Lemma 3.1, let rank(G′) = rank(Mk,l,ρ) = ρ and write
εk,l,ρ := ||G′ −Gρ||, α = (1 +

√
5)/2 if ρ < min{k, l} and α =

√
2 if ρ = min{k, l}. Then

εk,l,ρ = εk,l ≤ ε if ρ = min{k, l}, εk,l,ρ ≤ ε+ σρ+1(M) ≤ 2ε if ρ < min{k, l},

||U − U ′|| ≤ α||U || ||U ′|| εk,l,ρ.

Proof. Recall that ||G′ − G|| ≤ ||M ′ −M || ≤ ε and ||Gρ − G|| ≤ σρ+1(M) ≤ ε. Combine these
bounds and obtain the claimed bound on εk,l,ρ. Recall that rank(G) = rank(M ′) = rank(G′ρ) = ρ,
apply [B15, Theorem 2.2.5], and obtain the claimed bound on the norm ||U − U ′||.

Lemma 3.3. [See [B15, Theorem 2.2.4] for A = Gρ and A+ E = G′.] Under the assumptions of
Lemma 3.2 let

θ := εk,l,ρ ||U || < 1. (3.2)

Then

||U ′||F /
√
ρ ≤ ||U ′|| ≤ ||U ||

1− θ
≤ ||U ||

1− ε||U ||
.

Proof. Recall that ||U || = 1/σρ(Gρ), ||U ′|| = 1/σρ(G
′), and by virtue of Theorem 2.2

σρ(G
′
ρ) = σρ(G

′) ≥ σρ(G)− ε.

Hence

||U ′|| = 1

σρ(G′ρ)
≤ 1

σρ(G′)− ε
=

1

σρ(G)

1

1− ε/σρ(G)
=

||U ||
1− ε||U ||

.

By combining Lemmas 3.1–3.3 estimate the output errors of a CUR LRA in terms of the values
θ, ε, ||C||, ||R||, and ||U ||.

Corollary 3.1. (Cf. Outline 3.1.) Under the assumptions of Lemma 3.1, it holds that

||M − CUR|| ≤ ((||R||+ ||C||+ ε+ α||C|| ||R|| ||U ′||)||U ||+ 1) ε

for α of Lemma 3.2, α ≤ (1 +
√

5)/2. If in addition (3.2) holds, then

||M − CUR|| ≤ ((||R||+ ||C||+ ε+
α

1− θ
||C|| ||R|| ||U ||)||U ||+ 1) ε,

and so

||M − CUR|| ≤ (2v +
α

1− θ
v2 + 1 + θ) ε for v =: max{||C||, ||R||}||U ||, v ≥ 1.

Remark 3.2. Suppose that CUR is a canonical CUR LRA of a matrix M built on its generator
G such that the ratio ||M ||/||G|| is not large, ε-rank(G) = ε-rank(M) for a sufficiently small ratio
ε/||M ||, and the values ||U || and v are not large. Then the latter bound of the corollary implies that
|CUR−M | = O(ε).

By interchanging the roles of CUR LRA of M and CUR decomposition of M ′ in the proof of
Corollary 3.1 we obtain the following symmetric variant of that corollary.
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Corollary 3.2. Under the assumptions of Lemma 3.1, it holds that

||M − CUR|| ≤ ((||R′||+ ||C ′||+ ε+ α||C ′|| ||R′|| ||U ||)||U ′||+ 1) ε

for α of Lemma 3.2, α ≤ (1 +
√

5)/2. If in addition θ′ := ε ||U ′|| < 1, then

||M − CUR|| ≤ (2v′ +
α

1− θ
v′2 + 1 + θ) ε for v′ =: max{||C ′||, ||R′||}||U ′||, v′ ≥ 1. (3.3)

The following lemma provides a sufficient condition for (3.2).

Lemma 3.4. Bound (3.2) holds if ε ≤ ||U ||/2 = 1/(2σρ(G)).

Proof. Combine relationships ||U || σρ(G) = 1, εk,l,ρ ≤ 2ε of Lemma 3.2, and (3.2).

3.5 The errors of CUR LRA of a perturbed factor-Gaussian matrix

Hereafter E(v) and E|| · || denote the expected values of a random variables v and || · ||, respectively,
and we write e := 2.71828182 . . . We begin with the following simple lemma.

Lemma 3.5. Let M ′ = FΣH be a two-sided rank-ρ factor-Gaussian matrix of Definition A.1 with

F ∈ Gm×ρ, Σ = diag(σj)
ρ
j=1, H ∈ Gρ×n, ||Σ|| = σ1, and ||Σ+|| = 1/σρ.

Let I and J denote two sets of row and column indices of cardinality k and l, respectively. Then

M ′I,J = FI,:ΣH:,J for FI,: ∈ Gk×ρ and H:,J ∈ Gρ×l.

Next we prove the following estimate.

Theorem 3.2. Let M ′ = C ′U ′R′ be a two-sided m×n factor-Gaussian matrix of rank ρ such that

C ′ = M ′:,J , R
′ = M ′I,:, U

′ = G′+, and G = M ′I,J ∈ Rk×l,

for row and column set indices I and J and for k, l,m, n, ρ satisfying (2.3). Let νp,q and ν+
p,q be

defined in Definition A.3. Then

||C ′|| ≤ νm,ρνρ,lσ1, ||R′|| ≤ νk,ρνρ,nσ1, (3.4)

||U ′|| ≤ ν+
k,ρν

+
ρ,l/σρ. (3.5)

Proof. By virtue of Theorem A.3, C ′, R′, and M ′I,J are also two-sided factor-Gaussian matrices of
rank ρ. Apply Lemma 3.5 and obtain that

C ′ = Fm,ρΣHρ,l and R′ = Fk,ρΣHρ,n, Σ = diag(σj)
ρ
j=1

where Fp,q ∈ Gp×q and Hp,q ∈ Gp×q for all p and q and where Gm,ρ, Hρ,l, Gk,ρ, and Hρ,n are four
independent Gaussian matrices. This implies bound (3.4).

Next deduce from Lemma 3.5 that

M ′I,J = Fk,ρΣHρ,l for Fk,ρ ∈ Gk×ρ, Σ ∈ Rρ×ρ, Hρ,l ∈ Gρ×l, ||Σ+|| = 1/σρ.

Now recall that the matrix Σ is nonsingular and the matrices G and H have full rank, apply Lemma
2.1 to the matrix M ′k,l, and obtain bound (3.5). This completes the proof of Theorem 3.2.
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The random variables νm,ρ, νρ,l, νk,ρ, and νρ,n are strongly concentrated about their expected
values by virtue of Theorem A.4 and if the ratio min{k, l}/ρ substantially exceeds 1, then so are
the random variables ν+

k,ρ and ν+
ρ,n as well, by virtue of Theorem A.5. Substitute these expected

values into the upper bounds on the norm of C ′, R′, and U ′ of Theorem 3.2 and obtain

E||C ′|| ≤ (
√
m+

√
ρ) (
√
ρ+
√
l) σ,1 E||R′|| ≤ (

√
k +
√
ρ) (
√
ρ+
√
n) σ1,

and if min{k, l} ≥ ρ+ 2 ≥ 4, then

E||U ′|| ≤ e2ρ

(k − ρ) (l − ρ) σρ
. (3.6)

These upper bounds are close to
√
lm σ2

1,
√
kn σ2

1, and e2ρ/(kl σ2
ρ), respectively, if min{k, l} � ρ.

Substitute these values into the right-hand side of bound (3.3), drop the smaller terms (2v′+1+θ)ε,
and under (3.2) obtain the following crude upper estimate for the values E||U ′|| and E||M−CUR||:

e2ρ

kl σ2
ρ

and
α εe4 max{kn, lm} σ2

1

(1− θ)k2l2σ2
ρ

. (3.7)

Remark 3.3. Recall from Theorem A.5 that unless the integer min{k, l} − ρ is small, the upper
bound (3.5) on U ′ is strongly concentrated about its expected value (3.6). Thus, in view of Corollary
3.2 and Lemma 3.4, the estimates of this subsection are expected to hold whp for min{k, l} � ρ
and θ ≤ 1/2 if the perturbation norm ε is noticeably smaller than kl

4e2ρ
σ2
ρ.

3.6 The errors of CUR LRA under Gaussian noise

Let us estimate errors of LRA of a matrix M that include considerable white Gaussian noise.

Theorem 3.3. Suppose that M = A + 1
µGm,n ∈ Rm×n for a positive scalar µ and Gm,n ∈ Gm×n

and that Mk,l is a k × l submatrix of M for five integers k, l,m, n, ρ satisfying (2.3). Then

|U | = |Mk,l)ρ)
+| ≤ µmin{ν+

ρ,ρ, ν
+
k−ρ,ρ, ν

+
ρ,l−ρ}. (3.8)

Furthermore if max{k, l} ≥ 2ρ+ 2 ≥ 6, then

E||U ||2F ≤
ρ µ2

max{k, l} − ρ− 1
and E||U || ≤

e µ
√

max{k, l}
max{k, l} − ρ

where e := 2.7182822 . . .

These estimates are only meaningful unless µ is large, that is, if Gaussian noise is significant.

Proof. Fix any k× ρ submatrix Mk,ρ of Mk,l and notice that both matrices (Mk,l)ρ and Mk,ρ have
rank ρ. Furthermore

σj((Mk,l)ρ) = σj(Mk,l) ≥ σj(Mk,ρ) for j = 1, . . . , ρ

because Mk,ρ is a submatrix of Mk,l. It follows that |((Mk,l)ρ)
+| ≤ |((Mk,ρ)ρ)

+|.
Next we prove that

|((Mk,ρ)ρ)
+| ≤ µmin{ν+

ρ,ρ, ν
+
k−ρ,ρ}. (3.9)

First notice that Mk,ρ = Ak,ρ + 1
µGk,ρ where Ak,ρ is a k × ρ submatrix of A and Gk,ρ ∈ Gk×ρ.
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Let Ak,ρ = UΣV ∗ be full SVD such that U ∈ Rk×k, V ∈ Rρ×ρ, U and V are orthogonal matrices,

Σ =

(
D

Oρ,k−ρ

)
, and D is a ρ× ρ diagonal matrix. Write

Tk,ρ := U∗Mk,ρV = U∗(Ak,ρ +
1

µ
Gk,ρ)V

and observe that U∗Ak,ρV = Σ and U∗Gk,ρV ∈ Gk×ρ by virtue of Lemma A.1. Hence

Tk,ρ =

(
D + 1

µGρ,ρ
1
µGρ,k−ρ

)
, and so |T+

k,ρ| ≤ min{|(D +
1

µ
Gρ,ρ)

+|, µν+
k−ρ,ρ}.

Bound (3.9) follows because

|(Mk,ρ)ρ)
+| = |M+

k,ρ| = |(Ak,ρ +
1

µ
Gk,ρ)

+| = |(Σ +
1

µ
Gk,ρ)

+|

and because by virtue of claim (iv) of Theorem A.5

|(D +
1

µ
Gρ,ρ)

+| ≤ 1

µ
ν+
ρ,ρ.

Similarly we prove that
|((Mρ,l)ρ)

+| ≤ µmin{ν+
ρ,ρ, ν

+
ρ,l−ρ}.

Combine this bound with (3.9) and obtain (3.8). Extend (3.8) to the bounds on E|M − CUR| by
applying Theorem A.5.

Next extend the argument of Remark 3.3. Write η := max{||C||, ||R||} and j := max{k, l},
assume that ρ� j, combine the bounds of Theorem 3.3 and Corollary 3.1, and obtain the following
upper estimate for the dominant term of the norm ||M − CUR||:

α ε v2

1− θ
for v = η ||U ||, ||U || ≤ αν+

j−ρ,ρ, E||U || =
αeρ

j − 2ρ
, θ = 2ε||U ||, ε < 1/(2||U ||), (3.10)

α of Lemma 3.2, α ≤ 1+
√

5
2 , and η = max{|R|, |C|}.

If j � ρ, then the expected value of the above upper estimate α ε v2

1−θ turns into

E
(α ε v2

1− θ

)
= 2αµ2εη2e2 j − ρ

(j − 2ρ)2
≈ 2

j
αµ2η2e2ε for j = max{k, l} � ρ. (3.11)

3.7 From SVD to CUR LRA

The following algorithm transforms SVD of a matrix into its CUR decomposition at sub-linear cost.
See [PLa] for computation of ρ-top SVD of any LRA at sub-linear cost.

Algorithm 3.1. [Transition from SVD to CUR LRA.]

Input: Five integers k, l, m, n, and ρ satisfying (2.3) and four matrices M ∈ Rm×n, Σ ∈ Rρ×ρ
(diagonal), U ∈ Rm×ρ, and V ∈ Rn×ρ (both orthogonal) such that M := UΣV ∗ is SVD.
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Output: Three matrices8 C ∈ Rm×ρ, N ∈ Rρ×ρ, and R ∈ Rρ×n such that C and R are submatrices
made up of l columns and k rows of M , respectively, and

M = CNR.

Computations: 1. By applying to the matrices U and V the algorithms of [GE96], [P00], or the
one supporting [O18, equation (1)] compute their submatrices UI,: ∈ Rk×ρ and V ∗:,J ∈
Rρ×l, respectively. Output the CUR factors C = UΣV ∗:,J and R = UI,:ΣV

∗.

2. Define a CUR generator G := UI,:ΣV
∗

:,J and output a nucleus N := G+ = V ∗+:,J Σ−1U+
I,:.

[Prove the latter equation by verifying the Moore – Penrose conditions.]

Correctness verification. Substitute the expressions for C, N and R and obtain CNR =
(UΣV ∗:,J )(V ∗+:,J Σ−1U+

I,:)(UI,:ΣV
∗). Substitute V ∗:,J V

∗+
:,J = U+

I,:UI,: = Iρ, which hold because V ∗:,J ∈
Rl×ρ, U+

I,: ∈ Rρ×k, and ρ ≤ min{k, l} by assumption, and obtain CNR = UΣV ∗ = M ′.

Cost bounds. The algorithm uses nk+ml+ kl memory cells and O(mk2 +nl2) flops; these cost
bounds are sub-linear if k2 � n and l2 � m. They are dominated at stage 2 and hold for any
choice among the algorithms of [GE96], [P00], and [O18].

Our upper bounds on the norm of the nucleus ||N ||, however, depend on that choice. Namely
||N || ≤ ||V ∗+:,J || ||Σ−1|| ||U+

I,:|| by virtue of Lemma 2.1 because rank(V:,J ) = rank(Σ) = rank(UI,:) =

ρ. Recall that ||Σ−1|| = ||M+|| = 1/σρ(M) and next estimate the norms ||V ∗+:,J || and ||U+
I,:||.

Write t2q,s,h := (q − s)sh2 + 1, allow any choice of h > 1, say, h = 1.1, and then recall that

||U−1
I,: || ≤ tm,k,h and ||(V ∗:,J )−1|| ≤ tn,l,h if we apply the algorithms of [GE96] and that ||U−1

I,: || ≤
t2m,k,h and ||(V ∗:,J )−1|| ≤ t2n,l,h if we apply the algorithms of [P00].

Combine these bounds and deduce that

||N || ≤ tam,ρ,htan,ρ,h/σρ(M)

where a = 1 with [GE96] and a = 2 with [P00].
The algorithm supporting [O18, equation (1)] implies the smaller upper bounds

max{||U−1
I,: ||, ||(V

∗
:,J )−1||} ≤ √ρ and ||N || ≤ ρ/σρ(M).

4 CUR LRA algrithms running at sub-linear cost

4.1 Primitive and Cynical algorithms

Given an m× n matrix M of numerical rank ρ, we can define its canonical CUR LRA by fixing or
choosing at random any pair of of sets I and J of k row and l column indices for k and l satisfying
(2.3). We call such a choice a Primitive algorithm for CUR LRA of M .

Corollary 3.1 shows that the output errors of this algorithm tend to decrease with the decrease
of the norm of the nucleus |U | = |G+| = 1/σρ(G). This norm decreases as we expand the sets
I and J of k rows and l columns defining a CUR generator G. In particular our estimates (3.7)
become roughly proportional to the ratios

r(prim, ||U ||) =
1

kl
and r(prim, ||M − CUR||) =

max{kn, lm}
k2l2

. (4.1)

8Here we use notation N rather than U for nucleus in order to avoid conflict with the factor U in SVD.
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For an m× n matrix M and target rank ρ, fix four integers k, l, q and s such that

0 < ρ ≤ k ≤ q ≤ m and ρ ≤ l ≤ s ≤ n, (4.2)

compute a k × l CUR generator G of a fixed or random q × s submatrix of M (at this stage we
can apply algorithms of [GE96], [P00], or [OZ18]), and build CUR LRA of M on this generator.
For q = k and s = l this is the Primitive algorithm again, but otherwise the algorithm is still quite
primitive; we call it Cynical9 (see Figure 4).

Figure 4: A cynical CUR algorithm (the strips mark a p× q submatrix; a k × l CUR generator is
black)

For qsmin{q, s} � mn both Primitive algorithm for a fixed k × l CUR generator and Cynical
algorithm using the transition from a fixed q × s submatrix to a k × l CUR generator run at
sub-linear cost but have different estimates for the output errors in the case of random input M .

(i) Let M be a two-sided factor-Gaussian matrix, simplify our estimates by assuming that
kn ≤ lm and qn ≤ sm, and then deduce that

r(prim, cyn, ||U ||) :=
r(prim, ||U ||)
r(cyn, ||U ||)

=
qs

klf
(4.3)

r(prim, cyn, ||M − CUR||) :=
r(prim, ||M − CUR||)
r(cyn, ||M − CUR||)

=
q2s

k2lf2
(4.4)

for f denoting the growth factor for the norm ||U || of the nucleus U = G+
ρ in the transition

from a q × s submatrix of M to a k × l CUR generator, r(prim) of (4.1), r(cyn, ||U||) = 1
qs and

r(cyn, ||M − CUR||) = max{qn,sm}
q2s2

.

The factor f depends on the transition algorithm. With the algorithm of [GE96],

f2 ≤ t2q,k,ht2s,l,h′ where t2v,u,h := (v − u)uh2 + 1, v > u and any h > 1,

and so
f2 ≤ f2

+ ≈ (q − k)(s− l)kl ≤ qskl for h ≈ 1, q � k, and s� l.

The bounds on f are squared if we apply the algorithm of [P00] and turn into to

f2 = O(kl) for q ≥ k2 and s ≥ l2

9We allude to the benefits of the austerity and simplicity of primitive life, advocated by Diogenes the Cynic, and
not to shamelessness and distrust associated with modern cynicism.
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if we apply the algorithm by Osinsky that supports [O18, equation (1)]. Substitute these bounds
on f into (4.3) and (4.4) and obtain the following upper bounds on the ratio r(cyn,prim, ||U ||):

(qs)1/2

(kl)3/2
,

1

(kl)2
, and

cqs

(kl)3/2
,

and on the ratio r(cyn,prim, ||M − CUR||):

q

k3l2
,

1

sk4l3
, and

c2q2s

k3l2
,

for a positive constant c.
Also consider exhaustive search for a ρ × ρ submatrix Gρ,ρ with the smallest norm ||G+

ρ,ρ|| in
the q × s submatrix Gq,s. This search has sub-linear cost if ρ is a small positive integer. [OZ18,
equation (11)] implies that

f = ρ+ 1

for such a generator Gρ,ρ; in this case we obtain that

r(cyn,prim, ||U ||) ≤ qs

(ρ+ 1)klz
and r(cyn,prim,||M − CUR||) ≤ q2s

k2l(ρ+ 1)2
.

(ii) Now assume that an input matrix covers Gaussian noise, assume that the upper bound
on the norm max{||C||, ||R||} stays the same for the Primitive and Cynical algorithms and that
ρ � min{k, l}, apply Theorem 3.3, recall bounds (3.10) and (3.11), and deduce that in this case
the upper bounds on the allowed range of the perturbation norm ε and the error norm ||M−CUR||
increase proportionally to the ratio

max{q, s}
max{k, l}

. (4.5)

4.2 Hierarchical algorithms

Having computed a CUR generator for a submatrix, our Cynical algorithm reuses it for the in-
put matrix. Our Hierarchical algorithms recursively update and reuse such a CUR generator for
submatrices of increasing size until we either fail or end at a CUR generator of an input matrix.

Given a k × k CUR generator G0 for an m0 × n0 submatrix M0 of an m × n input matrix M
(e.g., G0 can be chosen at random or computed by the algorithms of [O18]), we can try to reuse
this CUR generator G0 for a selected submatrix M1 of a larger size.

If the resulting CUR LRA M ′1 is reasonably close to M1 but is still not close enough, we can
apply iterative refinement of [PLa] running at sub-linear cost. If M ′1 is not close enough to M1 in
order to initialize refinement, then we can try another choice for M1 or stop and report failure.

When a new CUR generator G1 for M1 has been computed, we can recursively reuse this recipe.
Suppose that for every i the ith recursive step increases the input size mini by a fixed factor

α exceeding 1. Then we would need at most dlogα( mn
m0n0

)e recursive steps overall, thus keeping the
overall computational cost sub-linear as long as we perform every recursive step at sub-linear cost.

4.3 Horizontal and Vertical Cynical and Hierarchical algorithms

The estimated growth (4.4) of the accuracy of a Cynical algorithm is proportional to s, and so
we are motivated to choose an integer s (the number of columns) as large as possible, that is, to
let s = n. Then we call the algorithm Horizontal Cynical and still keeping its computational cost
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sub-linear by choosing smaller integer q, that is, choosing fewer rows. Clearly, for this algorithm
the estimates of Sections 3.5 and 3.6 hold for s = n.

Horizontal Cynical Algorithm is a special case of Cynical algorithm; we can extend it to the
Horizontal Hierarchical algorithm.

By applying Horizontal Cynical or Hierarchical algorithms and their analysis to the n×m trans-
pose of an m× n matrix M , we extend our study to Vertical Cynical and Hierarchical algorithms.

4.4 Cross-Approximation (C–A) iterations

By alternating Horizontal and Vertical Cynical algorithms, we devise the following recursive algo-
rithm, said to be Cross-Approximation (C–A) iterations (see Figure 5).

• For an m×n matrix M and target rank r, fix four integers k, l, q and s satisfying (4.2). [C-A
iterations are simplified in a special case where q := k and s := l.]

• Fix an m× s “vertical” submatrix of the matrix M , made up of its q fixed columns.10

• By applying a fixed CUR LRA sub-algorithm, e.g., one of the algorithms of [O18], [GE96],
[P00], or [DMM08],11 compute a k × l CUR generator G of this submatrix and reuse it for
the matrix M .

• Output the resulting CUR LRA of M if it is close enough.

• Otherwise swap q and s and reapply the algorithm to the matrix M∗.

[This is equivalent to computing a k×l CUR generator of a fixed q×n “horizontal” submatrix
M1 of M that covers the submatrix G.]

• Recursively alternate such “vertical” and “horizontal” steps until an accurate CUR LRA is
computed or until the number of recursive C–A steps exceeds a fixed tolerance bound.

Figure 5: The first three recursive C–A steps output three striped matrices.

Initialization recipes. One can initialize the algorithm with a random choice of k rows or l
columns of M , but more efficient recipes are known for special but very large classes of real world
inputs for LRA. In particular popular adaptive C-A iterations (cf. [B00], [B11], [BG06] [BR03])
combine efficient initialization with dynamic search for gaps in the singular values of M .

10One can alternatively begin C–A iterations with a “horizontal” submatrix.
11Such a sub-algorithm runs at sub-linear cost on the inputs of smaller size involved in C–A iterations, even where

the original algorithms of [O18], [GE96], [P00], or [DMM08] run at super-linear cost.
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Other criteria for C-A. We devised C-A iterations by extending cynical algorithms towards
bounding the norm of the nucleus, but other criteria can be as much or even more relevant.

For example, highly efficient C-A iterations in [GOSTZ10], [OZ18], and [O18] have been devised
based on maximization of the volume or projective volume of the output generator,12 and in [LPSa]
we extend the algoritms of [DMM08] making them run at sub-linear cost, and we prove that whp
the output errors are still small whp in the case of a perturbed factor Gaussian input.

In Section 6.7 we incorporate these algorithms as a sub-algorithm into C–A iterations and then
again compute LRA at sub-linear cost.

5 Multiplicative pre-processing and generation of multipliers

5.1 Recursive multiplicative pre-processing for LRA

We proved that Primitive, Cynical, Hierarchical and C-A algorithms, implemented at sub-linear
cost, tend to output accurate CUR LRA whp on random input. A real world matrix admitting
LRA is not random, but we can boost the likelihood of producing accurate LRA if we recursively
apply the same algorithms to various independently generated matrices Mi, i = 1, 2, . . . whose
LRA can be readily mapped into LRA of an original matrix M . In order to enforce mutual
independence of multipliers we generate them by using heuristic randomization of some kind (see
the next subsection).

We can define matrices Mi = XiMYi, i = 1, 2, . . . , for some square orthogonal matrices Xi and
Yi, some of which can be the identity matrices, but other multipliers should be chosen independently
of each other. We should stop this process as soon as we obtain a reasonable LRA AiBi ≈ Mi =
XiMYi (this stopping criterion may rely on the a posteriori error estimates of the previous sections
and [PLa]). Then we can immediately obtain LRA X∗i AiBiY

∗
i ≈M such that |X∗i AiBiY ∗i −M | =

|AB −Mi|.
We can perform computation of the matrices Mi and the shift from the LRA AiBi of Mi to

LRA X∗i AiBiY
∗
i of M at sub-linear cost if we choose sufficiently sparse multipliers Ai and Bi. We

can further decrease the computational cost when we seek CUR LRA XiMYi = CiUiRi because
Ci = (XiMYi):,Ji = XiM (Yi):,Ji and Ri = (XiMYi)Ii,: = (Xi)Ii,: MYi and a CUR generator
Gi = (XiMYi)Ii,Ji = (Xi)Ii,: M (Yi):,Ji , and so we can use orthogonal rectangular submatrices of
Xi and Yi as multipliers.

5.2 Randomized pre-processing

In the next subsection we prove that multiplication by random Gaussian multipliers turns any
matrix admitting its close LRA into a perturbed factor-Gaussian matrix, to which we can apply
our results of Section 3.5.

Likewise it is proved in [HMT11, Sections 10 and 11], [T11], and [CW09] that the subspace
sampling algorithms (which generalize Primitive algorithm of Section 4.1) compute whp accurate
LRA of any matrix admitting LRA and pre-processed with Gaussian or Rademacher’s matrices or
those of Hadamard and Fourier transforms.

Such pre-processing has super-linear cost, but we conjecture that already a small number of
the initial steps of generation of these matrices, performed at sub-linear cost, incurs randomization

12The volume and the projective volume of an m × n matrix M are said to be the products of its singular values∏t
j=1 for t = min{m,n} or t = rank(M), respectively. In the implementation in [GOSTZ10], it is sufficient to apply

O(nρ2) flops in order to initialize the C–A algorithm in the case of n× n input and q = s = ρ. Then the algorithm
uses O(ρn) flops per C–A step.
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sufficient in order to produce efficient multipliers for dual LRA. This conjecture was in good ac-
cordance with numerical tests in which we heuristically generated sparse orthogonal multipliers Fi
and Hi by trivializing the generation of random matrices of the above families (see Sections 5.4 and
5.5). More generally one can generate multipliers as the sums, products, and other small degree
polynomials of such matrices.

5.3 Gaussian pre-processing

Next we prove that pre-processing with Gaussian multipliers X and Y transforms any matrix that
admits LRA into a perturbation of a factor-Gaussian matrix.

Theorem 5.1. For k, l, m, n, and ρ satisfying (2.3), G ∈ Gk×m, H ∈ Gn×l, an m × n well-
conditioned matrix M of rank ρ and νp,q and ν+

p,q of Definition A.3 it holds that
(i) GM is a left factor-Gaussian matrix of rank ρ, ||GM || ≤ ||M || νk,ρ, and ||(GM)+|| ≤

||M+|| ν+
k,ρ,

(ii) MH is a right factor-Gaussian matrix of rank ρ, ||MH|| ≤ ||M || νρ,l, and ||(MH)+|| ≤
||M+|| ν+

ρ,l, and
(iii) GMH is a two-sided factor-Gaussian matrix of rank ρ, ||GMH|| ≤ ||M || νk,ρνρ,l, and

||(GMH)+|| ≤ ||M+|| ν+
k,ρν

+
ρ,l.

Proof. Let M = SMΣMT
∗
M be SVD where ΣM is the diagonal matrix of the singular values of M ;

it is well-conditioned since so is the matrix M . Then
(i) GM = ḠΣMT

∗
M = ḠρΣMT

∗
M ,

(ii) MH = SMΣMH̄ = SMΣMH̄ρ, and
(iii) GMH = ḠΣMH̄ = ḠρΣMH̄rρ

where ρ ≤ min{m,n}, Ḡ := GSM and H̄ := T ∗MH are Gaussian matrices by virtue of Lemma A.1
on the orthogonal invariance of Gaussian matrices because G ∈ Gl×m, H ∈ Gn×k, while SM ∈ Cm×ρ
and TM ∈ Cρ×n are orthogonal matrices, and

(iv) Ḡρ = Ḡ

(
Iρ
O

)
, and H̄ρ = (Iρ | O)H̄.

Combine these equations with Lemma 2.1.

5.4 Pre-processing based on Givens rotations

Suppose that the thin QR factorization of an n × l Gaussian matrix has been computed by using
Givens rotations and consider partial products

H =
s∏

k=1

Gs(ik, jk, φk)Pn,l

representing the Q factor. Here Pn,l denotes an n × l submatrix of an n × n permutation matrix
and G(i, j, φ) denotes the matrix of Givens rotation with the 2× 2 Givens block in the ith row and
jth column, and φ is the angle of rotation (cf. [GL13, Section 5.1.8]).

Multiplication of an m × n matrix M by such a matrix H uses 6sm flops, is performed at
sub-linear cost for s� n, and in a sense should inherit from a Gaussian matrix reasonable amount
of randomization unless s > 0 is a very small integer. This suggests using such matrices H as
multipliers for pre-processing LRA inputs M .

Furthermore we may ignore the initial tie to a Gaussian matrix and consider just multipliers
H defined as the products H =

∏h
t=1G(it, jt, φt)Pn,l, where G(i, j, φ), it, jt and φt are three iid
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parameters (e.g., it and jt are chosen uniformly from 1 to m and φt is chosen uniformly in the range
[0, π), all parameters being independent of t.

Similarly we can define k ×m multipliers F .
We can make these multipliers more random by means of diagonal scaling, random permutations,

and multiplication by an abridged Hadamard or Fourier matrix of the next subsection.
By following [HMT11, Remark 4.6] we can define the product of two or three such n × n

multipliers, by first dropping their factors Pn,l and then include it just for the whole product.
Computation of LRA with the resulting modification of the popular multipliers of [HMT11, Remark
4.6] can be performed at sub-linear cost and would still preserve their well-known efficiency.

5.5 Multipliers derived from Rademacher’s, Hadamard and Fourier matrices

One can generate quasi Rademacher’s multipliers by filling at first their diagonal and then recur-
sively other entries with values 1 and −1 (chosen every time with equal probability) until at some
point a fixed LRA algorithm succeeds. We would arrive at a Rademacher matrix if we continue
until the matrix becomes completely dense, but we must stop much earlier in order to keep the
computational cost sub-linear.

For generation of quasi SHRT and SRFT multipliers we propose to apply recursive processes
that abridge the classical recursive processes of the generation of n× n SRHT and SRFT matrices
in t = log2(n) recursive steps for n = 2t. Our abridged processes have recursive depth d ≤ t,
begin with the 2t−d × 2t−d identity matrix H0 = F0 = I2t−d , and recursively generate the following
matrices:

Hi+1 =

(
Hi Hi

Hi −Hi

)
and Fi+1 = P̂i+1

(
Fi Fi
FiD̂i −FiD̂i

)
,

where
D̂i = diag(ωj

2i
)2i−1−1
j=0 , ω2i = exp(2π

√
−1/2i),

P̂i is the matrix of odd/even permutations such that P̂i+1(u) = v, u = (uj)
2i+1−1
j=0 , v = (vj)

2i+1−1
j=0 ,

vj = u2j , vj+2i = u2j+1, j = 0, 1, . . . , 2i − 1, and i = 0, 1, . . . , d− 1.
For s := 2t−d = n/2d and d = 1, 2, 3 we obtain the following expressions:

H1 = F1 =

(
Is Is
Is −Is

)
, H2 =


Is Is Is Is
Is −Is Is −Is
Is Is −Is −Is
Is −Is −Is Is

 , F2 =


Is Is Is Is
Is iIs −Is −iIs
Is −Is Is −Is
Is −iIs −Is iIs

 ,

H3 =



Is Is Is Is Is Is Is Is
Is −Is Is −Is Is −Is Is −Is
Is Is −Is −Is Is Is −Is −Is
Is −Is −Is Is Is −Is −Is Is
Is Is Is Is −Is −Is −Is −Is
Is −Is Is −Is −Is Is −Is Is
Is Is −Is −Is −Is −Is Is Is
Is −Is −Is Is −Is Is Is −Is


,
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F3 =



Is Is Is Is Is Is Is Is
Is ω8Is iIs iω8Is −Is −ω8Is −iIs −iω8Is
Is iIs −Is −iIs Is iIs −Is −iIs
Is iω8Is −i ω8Is −Is −iω8Is iIs −ω8Is
Is −Is Is −Is Is −Is Is −Is
Is −ω8Is iIs −iω8Is −Is ω8Is −iIs iω8Is
Is −iIs −Is iIs Is −iIs −Is iIs
Is −ω8Is −iIs −ω8Is −Is ω8Is iIs ω8Is


.

For every d, the matrix Hd is orthogonal and the matrix Fd is unitary up to scaling by 2d/2.
For d = t the matrix H0 = F0 turns into scalar 1, and we recursively define the matrices of
Walsh-Hadamard and discrete Fourier transforms (cf. [M11] and [P01, Section 2.3]).

When we incorporate our pre-processing into Primitive algorithms, we restrict multiplication to
k×m or n× l submatrices Hk,t and Ht,l of Ht and Fk,t and Ft,l of Ft, and we perform computations
with Hd and Fd at sub-linear cost if we stop where the integer t− d is not small.

Namely, for every d, the matrices Hd and Fd have 2d nonzero entries in every row and column.
Consequently we can compute the matrices Hk,dM and MHd,l by using less than 2dkn and 2dml
additions and subtractions, respectively, and can compute the matrices Fk,dM and MFd,l by using
O(2dkn) and O(2dml) flops, respectively.

By choosing at random k rows or l columns of a matrix Hd or Fd for ρ ≤ k ≤ n and ρ ≤ l ≤ n
and then applying Rademacher’s or random unitary diagonal scaling, respectively, we obtain a d-
abridged scaled and permuted matrix of Hadamard or Fourier transform, respectively, which turn
into an SRHT or SRFT matrix for d = t.

For k and l of order r log(r) the algorithms of [HMT11, Section 11] with a SRHT or SRFT
multiplier outputs accurate LRA of any matrix M admitting LRA whp, but in our tests the output
was consistently accurate even with sparse 3-abridged scaled and permuted matrices of Hadamard
and Fourier transforms, computed at sub-linear cost in three recursive steps.

5.6 Subspace Sampling Variation of the Primitive Algorithm

The computation of a k × l CUR generator for a pre-processed m × n matrix XMY with square
matrices X and Y can be equivalently represented as a modification of the Primitive algorithm. It
can be instructive to specify this representation, which reveals interesting link to Subspace Sampling
approach to LRA.

Subspace Sampling Variation of the Primitive Algorithm: Successively compute
(i) the matrix XMY for two fixed or random multipliers (aka test matrices) F ∈ Rk×m and

H ∈ Rnk×l,
(ii) the Moore – Penrose pseudo inverse N = ((XMY )ρ)

+ of its ρ-truncation,
(iii) a rank-ρ approximation MXNYM of the matrix M .

Our analysis and in particular our error estimation are readily extended to this modification
of the Primitive algorithm. Observe its similarity to subspace sampling algorithm of [TYUC17]
(whose origin can be traced back to [CW09, Theorems 4.7 and 4.8] and further to [WLRT08]) and
those of [PLSZa], but notice that in the algorithms of [TYUC17], [CW09], and [PLSZa] the stage
of ρ-truncation is replaced by the orthogonalization of the matrix MH.
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6 Numerical experiments for Primitive, Cynical, and C–A algo-
rithms

6.1 Input matrices for LRA

We used the following classes of input matrices M for testing LRA algorithms.

Class I (Synthetic inputs): Perturbed n × n factor-Gaussian matrices with expected rank r,
that is, matrices W in the form

M = G1 ∗G2 + 10−10G3,

for three Gaussian matrices G1 of size n× r, G2 of size r × n, and G3 of size n× n.

Class II: The dense matrices with smaller ratios of “numerical rank/n” from the built-in test
problems in Regularization Tools, which came from discretization (based on Galerkin or quadrature
methods) of the Fredholm Integral Equations of the first kind,13 namely to the following six input
classes from the Database:

baart: Fredholm Integral Equation of the first kind,
shaw: one-dimensional image restoration model,
gravity: 1-D gravity surveying model problem,
wing: problem with a discontinuous solution,
foxgood: severely ill-posed problem,
inverse Laplace: inverse Laplace transformation.

Class III: The matrices of the Laplacian operator [Sσ](x) = c
∫

Γ1
log |x− y|σ(y)dy, x ∈ Γ2,

from [HMT11, Section 7.1], for two contours Γ1 = C(0, 1) and Γ2 = C(0, 2) on the complex plane.
Its dscretization defines an n × n matrix M = (mij)

n
i,j=1 where mi,j = c

∫
Γ1,j

log |2ωi − y|dy for a

constant c such that ||M || = 1 and for the arc Γ1,j of the contour Γ1 defined by the angles in the

range [2jπ
n , 2(j+1)π

n ].

6.2 Test overview

We cover our tests of Primitive, Cynical, and C–A algorithms for CUR LRA of input matrices of
classes I, II and III of Section 6.1.

We have performed the tests in the Graduate Center of the City University of New York by
using MATLAB. In particular we applied its standard normal distribution function ”randn()” in
order to generate Gaussian matrices and calculated numerical ranks of the input matrices by using
the MATLAB’s function ”rank(-,1e-6)”, which only counts singular values greater than 10−6.

Our tables display the mean value of the spectral norm of the relative output error over 1000
runs for every class of inputs as well as the standard deviation (std) except as otherwise indicated.
Some numerical experiments were executed by using software custom programmed in C++ and
compiled with LAPACK version 3.6.0 libraries.

6.3 Four algorithms used

In our tests we applied and compared the following four algorithms for computing CUR LRA to
input matrices M having numerical rank r:

13See http://www.math.sjsu.edu/singular/matrices and http://www2.imm.dtu.dk/∼pch/Regutools
For more details see Chapter 4 of the Regularization Tools Manual at

http://www.imm.dtu.dk/∼pcha/Regutools/RTv4manual.pdf
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• Tests 1 (The Primitive algorithm for k = l = r): Randomly choose two index sets I
and J , both of cardinality r, then compute a nucleus U = M−1

I,J and define CUR LRA

M̃ := CUR = M:,J ·M−1
I,J ·MI,·. (6.1)

• Tests 2 (Five loops of C–A): Randomly choose an initial row index set I0 of cardinality
r, then perform five loops of C–A by applying Algorithm 1 of [P00] as a subalgorithm that
produces r × r CUR generators. At the end compute a nucleus U and define CUR LRA as
in Tests 1.

• Tests 3 (A Cynical algorithm for p = q = 4r and k = l = r): Randomly choose a row
index set K and a column index set L, both of cardinality 4r, and then apply Algs. 1 and
2 from [P00] to compute a r × r submatrix MI,J of MK,L. Compute a nucleus and obtain
CUR LRA by applying equation (6.1).

• Tests 4 (Combination of a single C–A loop with Tests 3): Randomly choose a column
index set L of cardinality 4r; then perform a single C–A loop (made up of a single horizontal
step and a single vertical step): First by applying Alg. 1 from [P00] define an index set K′ of
cardinality 4r and the submatrix MK′,L in M:,L; then by applying this algorithm to matrix
MK′,: find an index set L′ of cardinality 4r and define submatrix MK′,L′ in MK′,:. Then
proceed as in Tests 3 – find an r × r submatrix MI,J in MK′,L′ by applying Algs. 1 and 2
from [P00], compute a nucleus and CUR LRA.

6.4 CUR LRA of random input matrices of class I

In the tests of this subsection we computed CUR LRA of perturbed factor-Gaussian matrices of
expected rank r, of class I, by using random row- and column-selection.

Table 6.1 shows the test results for all four test algorithms for n = 256, 512, 1024 and r =
8, 16, 32.

Tests 2 have output the mean values of the relative error norms in the range [10−6, 10−7]; other
tests mostly in the range [10−4, 10−5].

Tests 1 Tests 2 Tests 3 Tests 4

n r mean std mean std mean std mean std

256 8 1.51e-05 1.40e-04 5.39e-07 5.31e-06 8.15e-06 6.11e-05 8.58e-06 1.12e-04

256 16 5.22e-05 8.49e-04 5.06e-07 1.38e-06 1.52e-05 8.86e-05 1.38e-05 7.71e-05

256 32 2.86e-05 3.03e-04 1.29e-06 1.30e-05 4.39e-05 3.22e-04 1.22e-04 9.30e-04

512 8 1.47e-05 1.36e-04 3.64e-06 8.56e-05 2.04e-05 2.77e-04 1.54e-05 7.43e-05

512 16 3.44e-05 3.96e-04 8.51e-06 1.92e-04 2.46e-05 1.29e-04 1.92e-05 7.14e-05

512 32 8.83e-05 1.41e-03 2.27e-06 1.55e-05 9.06e-05 1.06e-03 2.14e-05 3.98e-05

1024 8 3.11e-05 2.00e-04 4.21e-06 5.79e-05 3.64e-05 2.06e-04 1.49e-04 1.34e-03

1024 16 1.60e-04 3.87e-03 4.57e-06 3.55e-05 1.72e-04 3.54e-03 4.34e-05 1.11e-04

1024 32 1.72e-04 1.89e-03 3.20e-06 1.09e-05 1.78e-04 1.68e-03 1.43e-04 6.51e-04

Table 6.1: CUR LRA of random matrices of class I
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6.5 CUR LRA of the matrices of class II

Table 6.2 displays the data for the relative error norms (mostly in the range [10−6, 10−7]) that we
observed in Tests 2 applied over 100 runs to 1, 000 × 1, 000 matrices of class II, from the the San
Jose University Database. (Tests 1 produced much less accurate CUR LRA for the same input
sets, and we do not display their results.)

Tests 2

Inputs m r mean std

wing
1000 2 9.25e-03 1.74e-17
1000 4 1.88e-06 1.92e-21
1000 6 6.05e-10 7.27e-25

baart
1000 4 1.63e-04 1.91e-19
1000 6 1.83e-07 1.60e-22
1000 8 1.66e-09 3.22e-10

inverse Laplace
1000 23 1.95e-06 4.47e-07
1000 25 4.33e-07 1.95e-07
1000 27 9.13e-08 4.31e-08

foxgood
1000 8 2.22e-05 1.09e-06
1000 10 3.97e-06 2.76e-07
1000 12 7.25e-07 5.56e-08

shaw
1000 10 8.23e-06 7.66e-08
1000 12 2.75e-07 3.37e-09
1000 14 3.80e-09 2.79e-11

gravity
1000 23 8.12e-07 2.54e-07
1000 25 1.92e-07 6.45e-08
1000 27 5.40e-08 2.47e-08

Table 6.2: CUR LRA of benchmark matrices of class II

6.6 Tests with abridged randomized Hadamard and Fourier pre-processing

Table 6.3 displays the results of our Tests 2 for CUR LRA with using abridged randomized
Hadamard and Fourier pre-processors (referred to as ARHT and ARFT pre-processors in Table
6.3). We used the same input matrices as in previous two subsections. For these input matrices
Tests 1 have no longer output stable accurate LRA. For the data from discretized integral equations
of Section 6.5 we observed relative error norm bounds in the range [10−6, 10−7]; for the data from
Class II they were near 10−3.

6.7 Testing C-A acceleration of the algorithms of [DMM08]

Tables 3 and 4 display the results of our tests where we performed eight C-A iterations for the input
matrices of Section 6.5 by applying Algorithm 1 of [DMM08] at all vertical and horizontal steps (see
the lines marked “C-A”) and, for comparison with the results of testing this algorithm, performing
at sub-linear cost, we computed LRA of the same matrices by applying to them Algorithm 2 of
[DMM08] (see the lines marked “CUR”). The columns of the tables marked with ”nrank” display
the numerical rank of an input matrix. The columns of the tables marked with ”k = l” show the
number of rows and columns in a square matrix of CUR generator. The cost of perfroming the
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Multipliers Hadamard Fourier

Input Matrix m n r mean std mean std

gravity 1000 1000 25 1.56e-07 2.12e-08 1.62e-07 2.41e-08

wing 1000 1000 4 1.20e-06 1.49e-21 1.20e-06 2.98e-21

foxgood 1000 1000 10 4.12e-06 3.28e-07 4.12e-06 3.63e-07

shaw 1000 1000 12 3.33e-07 3.24e-08 3.27e-07 2.94e-08

baart 1000 1000 6 1.30e-07 1.33e-22 1.30e-07 0.00e+00

inverse Laplace 1000 1000 25 3.00e-07 4.78e-08 2.96e-07 4.06e-08

Laplacian
256 256 15 1.10e-03 1.68e-04 1.11e-03 1.55e-04
512 512 15 1.15e-03 1.26e-04 1.13e-03 1.43e-04
1024 1024 15 1.14e-03 1.13e-04 1.16e-03 1.42e-04

Table 6.3: Tests 2 for CUR LRA with ARHT/ARFT pre-processors

algorithm of [DMM08] is not sub-linear; it has output closer approximations, but in most cases just
slightly closer.
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input algorithm m n nrank k=l mean std

finite diff C-A 608 1200 94 376 6.74e-05 2.16e-05

finite diff CUR 608 1200 94 376 6.68e-05 2.27e-05

finite diff C-A 608 1200 94 188 1.42e-02 6.03e-02

finite diff CUR 608 1200 94 188 1.95e-03 5.07e-03

finite diff C-A 608 1200 94 94 3.21e+01 9.86e+01

finite diff CUR 608 1200 94 94 3.42e+00 7.50e+00

baart C-A 1000 1000 6 24 2.17e-03 6.46e-04

baart CUR 1000 1000 6 24 1.98e-03 5.88e-04

baart C-A 1000 1000 6 12 2.05e-03 1.71e-03

baart CUR 1000 1000 6 12 1.26e-03 8.31e-04

baart C-A 1000 1000 6 6 6.69e-05 2.72e-04

baart CUR 1000 1000 6 6 9.33e-06 1.85e-05

shaw C-A 1000 1000 12 48 7.16e-05 5.42e-05

shaw CUR 1000 1000 12 48 5.73e-05 2.09e-05

shaw C-A 1000 1000 12 24 6.11e-04 7.29e-04

shaw CUR 1000 1000 12 24 2.62e-04 3.21e-04

shaw C-A 1000 1000 12 12 6.13e-03 3.72e-02

shaw CUR 1000 1000 12 12 2.22e-04 3.96e-04

Table 6.4: LRA errors of Cross-Approximation (C-A) tests incorporating [DMM08, Algorithm 1]
in comparison to stand-alone CUR tests of [DMM08, Algorithm 2], for inputs from Section 6.5.
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input algorithm m n nrank k = l mean std

foxgood C-A 1000 1000 10 40 3.05e-04 2.21e-04

foxgood CUR 1000 1000 10 40 2.39e-04 1.92e-04

foxgood C-A 1000 1000 10 20 1.11e-02 4.28e-02

foxgood CUR 1000 1000 10 20 1.87e-04 4.62e-04

foxgood C-A 1000 1000 10 10 1.13e+02 1.11e+03

foxgood CUR 1000 1000 10 10 6.07e-03 4.37e-02

wing C-A 1000 1000 4 16 3.51e-04 7.76e-04

wing CUR 1000 1000 4 16 2.47e-04 6.12e-04

wing C-A 1000 1000 4 8 8.17e-04 1.82e-03

wing CUR 1000 1000 4 8 2.43e-04 6.94e-04

wing C-A 1000 1000 4 4 5.81e-05 1.28e-04

wing CUR 1000 1000 4 4 1.48e-05 1.40e-05

gravity C-A 1000 1000 25 100 1.14e-04 3.68e-05

gravity CUR 1000 1000 25 100 1.41e-04 4.07e-05

gravity C-A 1000 1000 25 50 7.86e-04 4.97e-03

gravity CUR 1000 1000 25 50 2.22e-04 1.28e-04

gravity C-A 1000 1000 25 25 4.01e+01 2.80e+02

gravity CUR 1000 1000 25 25 4.14e-02 1.29e-01

inverse Laplace C-A 1000 1000 25 100 4.15e-04 1.91e-03

inverse Laplace CUR 1000 1000 25 100 5.54e-05 2.68e-05

inverse Laplace C-A 1000 1000 25 50 3.67e-01 2.67e+00

inverse Laplace CUR 1000 1000 25 50 2.35e-02 1.71e-01

inverse Laplace C-A 1000 1000 25 25 7.56e+02 5.58e+03

inverse Laplace CUR 1000 1000 25 25 1.26e+03 9.17e+03

Table 6.5: LRA errors of Cross-Approximation (C-A) tests incorporating [DMM08, Algorithm 1]
in comparison to stand-alone CUR tests of [DMM08, Algorithm 2], for inputs from Section 6.5.
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Appendix

A Background for random matrix computations

A.1 Gaussian and factor-Gaussian matrices of low rank and low numerical rank

Gp×q denotes the class of p× q Gaussian matrices.

Theorem A.1. [Nondegeneration of a Gaussian Matrix.] Let F ∈ Gr×m, H ∈ Gn×r, M ∈ Rm×n
and r ≤ rank(M). Then the matrices F , H, FM , and MH have full rank r with probability 1.

Proof. Fix any of the matrices F , H, FM , and MH and its r× r submatrix B. Then the equation
det(B) = 0 defines an algebraic variety of a lower dimension in the linear space of the entries of
the matrix because in this case det(B) is a polynomial of degree r in the entries of the matrix F
or H (cf. [BV88, Proposition 1]). Clearly, such a variety has Lebesgue and Gaussian measures 0,
both being absolutely continuous with respect to one another. This implies the theorem.

Assumption A.1. [Nondegeneration of a Gaussian matrix.] Hereafter we simplify the statements
of our results by assuming that a Gaussian matrix has full rank and ignoring the probability 0 of
its degeneration.

Lemma A.1. [Orthogonal invariance of a Gaussian matrix.] Suppose that k, m, and n are three
positive integers, k ≤ min{m,n}, Gm,n ∈ Gm×n, S ∈ Rk×m, T ∈ Rn×k, and S and T are orthogonal
matrices. Then SG and GT are Gaussian matrices.

Definition A.1. [Factor-Gaussian matrices.] Let ρ ≤ min{m,n} and let Gm×nρ,B , Gm×nA,ρ , and Gm×nρ,C

denote the classes of matrices Gm,ρB, AGρ,n, and Gm,ρΣGρ,n, respectively, which we call left,
right, and two-sided factor-Gaussian matrices of rank ρ, respectively (see Figure 2), provided that
Gp,q denotes a p × q Gaussian matrix, A ∈ Rm×ρ, B ∈ Rρ×n, Σ ∈ Rρ×ρ, and A, B, and Σ are
well-conditioned matrices of full rank ρ, and Σ = (σj)

ρ
j=1 such that σ1 ≥ σ2 ≥ · · · ≥ σρ > 0.

Theorem A.2. The class Gm×nr,C of two-sided m×n factor-Gaussian matrices Gm,ρΣGρ,n does not
change in the transition to Gm,rCGr,n for a well-conditioned nonsingular ρ× ρ matrix C.

Proof. Let C = UCΣCV
∗
C be SVD. Then A = Gm,rUC ∈ Gm×r and B = V ∗CGr,n ∈ Gr×n by virtue

of Lemma A.1, and so Gm,rCGr,n = AΣCB for A ∈ Gm×r and B ∈ Gr×n.

Definition A.2. The relative norm of a perturbation of a Gaussian matrix is the ratio of the
perturbation norm and the expected value of the norm of the matrix (estimated in Theorem A.4).

We refer to all three matrix classes above as factor-Gaussian matrices of rank r, to their per-
turbations within a relative norm bound ε as factor-Gaussian matrices of ε-rank r, and to their
perturbations within a small relative norm as factor-Gaussian matrices of numerical rank r to
which we also refer as perturbations of factor-Gaussian matrices.

Clearly ||(AΣ)+|| ≤ ||Σ−1|| ||A+|| and ||(ΣB)+|| ≤ ||Σ−1|| ||B+|| for a two-sided factor-Gaussian
matrix M = AΣB of rank r of Definition A.1, and so whp such a matrix is both left and right
factor-Gaussian of rank r.

We readily verify the following result.

Theorem A.3. (i) A submatrix of a two-sided (resp. scaled) factor-Gaussian matrix of rank ρ is
a two-sided (resp. scaled) factor-Gaussian matrix of rank ρ, (ii) a k×n (resp. m× l) submatrix of
an m× n left (resp. right) factor-Gaussian matrix of rank ρ is a left (resp. right) factor-Gaussian
matrix of rank ρ.
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A.2 Norms of a Gaussian matrix and its pseudo inverse

Hereafter Γ(x) =
∫∞

0 exp(−t)tx−1dt denotes the Gamma function, E(v) denotes the expected value
of a random variable v, and we write

E||M || := E(||M ||), E||M ||2F := E(||M ||2F ), and e := 2.71828 . . . . (A.1)

Definition A.3. [Norms of a Gaussian matrix and its pseudo inverse.] Write νm,n = |G|, νsp,m,n =
||G||, νF,m,n = ||G||F , ν+

m,n = |G+|, ν+
sp,m,n = ||G+||, and ν+

F,m,n = ||G+||F , for a Gaussian m × n
matrix G. (νm,n = νn,m and ν+

m,n = ν+
n,m, for all pairs of m and n.)

Theorem A.4. [Norms of a Gaussian matrix.]
(i) [DS01, Theorem II.7]. Probability{νsp,m,n > t +

√
m +

√
n} ≤ exp(−t2/2) for t ≥ 0,

E(νsp,m,n) ≤
√
m+

√
n.

(ii) νF,m,n is the χ-function, with the expected value E(νF,m,n) = mn and the probability density

2xn−i exp(−x2/2)

2n/2Γ(n/2)
,

Theorem A.5. [Norms of the pseudo inverse of a Gaussian matrix.]

(i) Probability {ν+
sp,m,n ≥ m/x2} < xm−n+1

Γ(m−n+2) for m ≥ n ≥ 2 and all positive x,

(ii) Probability {ν+
F,m,n ≥ t

√
3n

m−n+1} ≤ tn−m and Probability {ν+
sp,m,n ≥ t e

√
m

m−n+1} ≤ tn−m for

all t ≥ 1 provided that m ≥ 4,

(iii) E((ν+
F,m,n)2) = n

m−n−1 and E(ν+
sp,m,n) ≤ e

√
m

m−n provided that m ≥ n+ 2 ≥ 4,

(iv) Probability {ν+
sp,n,n ≥ x} ≤ 2.35

√
n

x for n ≥ 2 and all positive x, and furthermore ||Mn,n +
Gn,n||+ ≤ νn,n for any n× n matrix Mn,n and an n× n Gaussian matrix Gn,n.

Proof. See [CD05, Proof of Lemma 4.1] for claim (i), [HMT11, Proposition 10.4 and equations
(10.3) and (10.4)] for claims (ii) and (iii), and [SST06, Theorem 3.3] for claim (iv).

Theorem A.5 implies reasonable probabilistic upper bounds on the norm ν+
m,n even where the

integer |m − n| is close to 0; whp the upper bounds of Theorem A.5 on the norm ν+
m,n decrease

very fast as the difference |m− n| grows from 1.

B Small families of hard inputs for LRA at sub-linear cost

Any algorithm for computing LRA at sub-linear cost fails on the following small families of LRA
inputs.

Example B.1. Define the following family of m×n matrices of rank 1 (we call them δ-matrices):
{∆i,j , i = 1, . . . ,m; j = 1, . . . , n}. Also include the m× n null matrix Om,n into this family. Now
fix any algorithm that run at sub-linear cost; it does not access the (i, j)th entry of its input matrices
for some pair of i and j. Therefore it outputs the same approximation of the matrices ∆i,j and Om,n,
with an undetected error at least 1/2. Apply the same argument to the set of mn + 1 small-norm
perturbations of the matrices of the above family and to the mn+ 1 sums of the latter matrices with
any fixed m×n matrix of low rank. Finally, the same argument shows that a posteriori estimation
of the output errors of an LRA algorithm applied to the same input families cannot be performed
at sub-linear cost.

26



Acknowledgements: Our work has been supported by NSF Grants CCF–1116736, CCF–1563942
and CCF–1733834 and PSC CUNY Award 69813 00 48. We are also grateful to E. E. Tyrtyshnikov
for the challenge of formally supporting empirical power of C–A iterations, to N. L. Zamarashkin
for his comments on his work with A. Osinsky on LRA via volume maximization and on the first
draft of [PLSZ17], and to S. A. Goreinov, I. V. Oseledets, A. Osinsky, E. E. Tyrtyshnikov, and N.
L. Zamarashkin for reprints and pointers to relevant bibliography.

References

[B00] M. Bebendorf, Approximation of Boundary Element Matrices, Numer. Math., 86, 4,
565–589, 2000.

[B11] M. Bebendorf, Adaptive Cross Approximation of Multivariate Functions, Construc-
tive approximation, 34, 2, 149–179, 2011.

[B15] A. Björk, Numerical Methods in Matrix Computations, Springer, New York, 2015.

[BG06] M. Bebendorf, R. Grzhibovskis, Accelerating Galerkin BEM for linear elasticity using
adaptive cross approximation, Math. Methods Appl. Sci., 29, 1721-1747, 2006.

[BR03] M. Bebendorf, S. Rjasanow, Adaptive Low-Rank Approximation of Collocation Ma-
trices, Computing, 70, 1, 1–24, 2003.

[BV88] W. Bruns, U. Vetter, Determinantal Rings, Lecture Notes in Math., 1327, Springer,
Heidelberg, 1988.

[CD05] Z. Chen, J. J. Dongarra, Condition Numbers of Gaussian Random Matrices, SIAM.
J. on Matrix Analysis and Applications, 27, 603–620, 2005.

[CLO16] C. Cichocki, N. Lee, I. Oseledets, A.-H. Phan, Q. Zhao and D. P. Mandic, “Tensor
Networks for Dimensionality Reduction and Large-scale Optimization. Part 1: Low-
Rank Tensor Decompositions”, Foundations and Trends in Machine Learning: 9, 4-5,
249–429, 2016. http://dx.doi.org/10.1561/2200000059

[CW09] K. L. Clarkson, D. P. Woodruff, Numerical linear algebra in the streaming model, in
Proc. 41st ACM Symposium on Theory of Computing (STOC 2009), pages 205–214,
ACM Press, New York, 2009.

[D88] J. Demmel, The Probability That a Numerical Analysis Problem Is Difficult, Math.
of Computation, 50, 449–480, 1988.

[DMM08] P. Drineas, M.W. Mahoney, S. Muthukrishnan, Relative-error CUR Matrix Decom-
positions, SIAM Journal on Matrix Analysis and Applications, 30, 2, 844–881, 2008.

[DS01] K. R. Davidson, S. J. Szarek, Local Operator Theory, Random Matrices, and Banach
Spaces, in Handbook on the Geometry of Banach Spaces (W. B. Johnson and J.
Lindenstrauss editors), pages 317–368, North Holland, Amsterdam, 2001.

[E88] A. Edelman, Eigenvalues and Condition Numbers of Random Matrices, SIAM J. on
Matrix Analysis and Applications, 9, 4, 543–560, 1988.

27

http://dx.doi.org/10.1561/2200000059


[ES05] A. Edelman, B. D. Sutton, Tails of Condition Number Distributions, SIAM J. on
Matrix Analysis and Applications, 27, 2, 547–560, 2005.

[GE96] M. Gu, S.C. Eisenstat, An Efficient Algorithm for Computing a Strong Rank Reveal-
ing QR Factorization, SIAM J. Sci. Comput., 17, 848–869, 1996.

[GL13] G. H. Golub, C. F. Van Loan, Matrix Computations, The Johns Hopkins University
Press, Baltimore, Maryland, 2013 (fourth edition).

[GOSTZ10] S. Goreinov, I. Oseledets, D. Savostyanov, E. Tyrtyshnikov, N. Zamarashkin, How to
Find a Good Submatrix, in Matrix Methods: Theory, Algorithms, Applications (ded-
icated to the Memory of Gene Golub, edited by V. Olshevsky and E. Tyrtyshnikov),
pages 247–256, World Scientific Publishing, New Jersey, ISBN-13 978-981-283-601-4,
ISBN-10-981-283-601-2, 2010.

[GT01] S. A. Goreinov, E. E. Tyrtyshnikov, The Maximal-Volume Concept in Approximation
by Low Rank Matrices, Contemporary Mathematics, 208, 47–51, 2001.

[GT11] S. A. Goreinov, E. E. Tyrtyshnikov, Quasioptimality of Skeleton Approximation of a
Matrix on the Chebyshev Norm, Russian Academy of Sciences: Doklady, Mathemat-
ics (DOKLADY AKADEMII NAUK), 83, 3, 1–2, 2011.

[GTZ97] S. A. Goreinov, E. E. Tyrtyshnikov, N. L. Zamarashkin, A Theory of Pseudo-skeleton
Approximations, Linear Algebra and Its Applications, 261, 1–21, 1997.

[GZT95] S. A. Goreinov, N. L. Zamarashkin, E. E. Tyrtyshnikov, Pseudo-skeleton ap-
proximations, Russian Academy of Sciences: Doklady, Mathematics (DOKLADY
AKADEMII NAUK), 343, 2, 151–152, 1995.

[GZT97] S. A. Goreinov, N. L. Zamarashkin, E. E. Tyrtyshnikov, Pseudo-skeleton Approxi-
mations by Matrices of Maximal Volume, Mathematical Notes, 62, 4, 515–519, 1997.

[HMT11] N. Halko, P. G. Martinsson, J. A. Tropp, Finding Structure with Randomness: Prob-
abilistic Algorithms for Constructing Approximate Matrix Decompositions, SIAM
Review, 53, 2, 217–288, 2011.

[KS16] N. Kishore Kumar, J. Schneider, Literature Survey on Low Rank Approximation of
Matrices, arXiv:1606.06511v1 [math.NA] 21 June 2016.

[LPSa] Q. Luan, V. Y. Pan, J. Svadlenka, Low Rank Approximation Directed by Leverage
Scores and Computed at Sub-linear Cost, preprint, 2019.

[M11] M. W. Mahoney, Randomized Algorithms for Matrices and Data, Foundations and
Trends in Machine Learning, NOW Publishers, 3, 2, 2011. Preprint: arXiv:1104.5557
(2011) (Abridged version in: Advances in Machine Learning and Data Mining for
Astronomy, edited by M. J. Way et al., pp. 647–672, 2012.)

[MD09] M. W. Mahoney, and P. Drineas, CUR matrix decompositions for improved data
analysis, Proceedings of the National Academy of Sciences, 106 3, 697–702, 2009.

[O18] A.I. Osinsky, Rectangular Matrix Volume and Projective Volume Search Algorithms,
arXiv:1809.02334, September 17, 2018.

28

http://arxiv.org/abs/1606.06511
http://arxiv.org/abs/1104.5557
http://arxiv.org/abs/1809.02334


[OZ18] A.I. Osinsky, N. L. Zamarashkin, Pseudo-skeleton Approximations with Better Ac-
curacy Estimates, Linear Algebra and Its Applications, 537, 221–249, 2018.

[P00] C.-T. Pan, On the Existence and Computation of Rank-Revealing LU Factorizations,
Linear Algebra and its Applications, 316, 199–222, 2000.

[P01] V. Y. Pan, Structured Matrices and Polynomials: Unified Superfast Algorithms,
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