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Abstract

Low Rank Approximation (LRA) of a matrix is a hot research subject, fundamental for
Matrix and Tensor Computations and Big Data Mining and Analysis. Computations with LRA
can be performed at sub-linear cost, that is, by using much fewer arithmetic operations and
memory cells than an input matrix has entries. Although every sub-linear cost algorithm for
LRA fails to approximate the worst case inputs, we prove that our sub-linear cost variations of
a popular subspace sampling algorithm output accurate LRA of a large class of inputs. Namely,
they do so with a high probability (hereafter whp) for a random input matrix that admits its
LRA. In other papers we proposed and analyzed sub-linear cost algorithms for other important
matrix computations. Our numerical tests are in good accordance with our formal results.
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1 Introduction

LRA Background. Low rank approximation (LRA) of a matrix is a hot research area of Numerical
Linear Algebra (NLA) and Computer Science (CS) with applications to fundamental matrix and
tensor computations and data mining and analysis (see surveys [HMT11], [M11], [KS16], and
[CLO16]). Matrices defining Big Data (e.g., unfolding matrices of multidimensional tensors) are
frequently so immense that realistically one can access and process only a tiny fraction of their
entries, although quite typically these matrices admit their LRA, that is, are close to low rank
matrices or equivalently have low numerical rank. One can operate with low rank matrices at
sub-linear computational cost, that is, by using much fewer arithmetic operations and memory cells
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than an input matrix has entries, but can we compute LRA at sub-linear cost? Yes and no. No,
because every sub-linear cost LRA algorithm fails even on the small input families of Appendix
C. Yes, because our sub-linear cost variations of a popular subspace sampling algorithm output
accurate LRA for a large class of input. Let us provide some details.

Subspace sampling algorithms compute LRA of a matrix M by using auxiliary matrices FM ,
MH or FMH for random multipliers F and H, commonly called test matrices and having smaller
sizes. Their output LRA are nearly optimal whp provided that F and/or H are Gaussian,
Rademacher’s, SRHT or SRFT matrices;1 furthermore the algorithms consistently output accu-
rate LRA in their worldwide application with these and some other random multipliers F and H,
all of which are multiplied by M at super-linear cost (see [TYUC17, Section 3.9], [HMT11, Section
7.4], and the bibliography therein).

Our modifications of these algorithms use sparse orthogonal (e.g., sub-permutation) multipliers2

F and H, run at sub-linear cost, and as we prove, whp output reasonably accurate dual LRA, that
is, LRA of a random input admitting LRA; we deduce our error estimates under three distinct
models of random matrix computations in Sections 4.1 – 4.3.

How meaningful is our result? Our definitions of three classes of random matrices of low
numerical rank are quite natural for various real world applications of LRA, but are odd for some
other ones. This, however, applies to any definition of that kind.

Our approach enables new insight into the subject, and our formal study is in good accordance
with our numerical tests for both synthetic and real world inputs, some from [HMT11].

Our upper bounds on the output error of LRA of an m× n matrix of numerical rank r exceed
the optimal error bound by a factor of

√
min{m,n}r, but if this optimal bound is small enough we

can apply iterative refinement of LRA running at sub-linear cost (see [PLa]).
As we have pointed out, any sub-linear cost LRA algorithm (and ours are no exception) fails

on some families of hard inputs, but our analysis and tests show that the class of such inputs is
narrow. We conjecture that it shrinks fast if we recursively apply the same algorithm with new
multipliers; we propose some heuristic recipes for these recursive processes, and our numerical tests
confirm their efficiency.

Impact of our study, its extensions and by-products:

(i) Our duality approach enables new insight into some fundamental matrix computations be-
sides LRA: [PQY15], [PZ17a], and [PZ17b] provide formal support for empirical efficiency of dual
Gaussian elimination with no pivoting, while [PLb] proposes a sub-linear cost modification of Sarlós’
algorithm of 2006 and then proves that whp it outputs nearly optimal solution of the highly impor-
tant problem of Linear Least Squares Regression (LLSR) provided that its input is random. Then
again this formal proof is in good accordance with the test results.

(ii) In [PLSZa] we proved that popular Cross-Approximation LRA algorithms running at sub-
linear cost as well as our simplified sub-linear cost variations of these algorithms output accurate
solution of dual LRA whp, and we also devised a sub-linear cost algorithm for transformation of
any LRA into its special form of CUR LRA, which is particularly memory efficient.

(iii) The paper [PLa] has proposed and elaborated upon sub-linear cost refinement of a crude
but reasonably close LRA.

Related Works. Huge bibliography on LRA can be partly accessed via [M11], [HMT11],
[KS16], [PLSZ17], [TYUC17], [OZ18], and the references therein. [PLSZ16] and [PLSZ17] were
the first papers that provided formal support for dual accurate randomized LRA computations

1Here and hereafter “SRHT and SRFT” are the acronyms for “Subsample Random Hadamard and Fourier trans-
forms”; “Gaussian” stands for “standard Gaussian (normal) random”; Rademacher’s are the matrices filled with iid
variables, each equal to 1 or −1 with probability 1/2.

2We define sub-permutation matrices as full-rank submatrices of permutation matrices.
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performed at sub-linear cost (in these papers such computations are called superfast). The earlier
papers [PQY15], [PLSZ16], [PZ17a], and [PZ17b] studied duality for other fundamental matrix
computations besides LRA, while the paper [PLb] has extended our study to a sub-linear cost dual
algorithm for the popular problem of Linear Least Squares Regression and confirmed accuracy of
this solution by the results of numerical experiments.

Organization of the paper. In Section 2 we recall random sampling for LRA. In Sections
3 and 4 we prove deterministic and randomized error bounds, respectively, for our dual LRA
algorithms running at sub-linear cost. In Section 5 we discuss multiplicative pre-processing and
generation of multipliers for both pre-processing and sampling. In Section 6 we cover our numerical
tests. Appendix A is devoted to background on matrix computations. In Appendix B we prove
our error bounds for dual LRA. In Appendix C we specify some small families of hard inputs for
sub-linear cost LRA.

Some definitions. The concepts “large”, “small”, “ill-” and “well-conditioned”, “near”,
“close”, and “approximate” are usually quantified in the context. “≪” and “≫” mean “much
less than” and “much greater than”, respectively. “Flop” stands for “floating point arithmetic
operation”; “iid” for “independent identically distributed”. In context a “perturbation of a matrix”
can mean a perturbation having a small relative norm. Rp×q denotes the class of p×q real matrices,
We assume dealing with real matrices throughout, and so the Hermitian transpose of M turns into
transpose, M∗ = MT , but most of our study can be readily extended to complex matrices; see
some relevant results about complex Gaussian matrices in [E88], [CD05], [ES05], and [TYUC17].

2 LRA by means of subspace sampling

2.1 Four subspace sampling algorithms

Hereafter || · || and || · ||F denote the spectral and the Frobenius matrix norms, respectively; | · | can
denote either of them. M+ denotes the Moore – Penrose pseudo inverse of M .

Algorithm 2.1. Column Subspace Sampling or Range Finder (see Remark 2.1).

Input: An m× n matrix M and a target rank r.

Output: Two matrices X ∈ R
m×l and Y ∈ R

l×m defining an LRA M̃ = XY of M .

Initialization: Fix an integer l, r ≤ l ≤ n, and an n× l matrix H of full rank l.

Computations: 1. Compute the m× l matrix MH.

2. Fix a nonsingular l × l matrix T−1 and output the m× l matrix X := MHT−1.

3. Output an l × n matrix Y := argminV |XV −M |.

Remark 2.1. Let rank(MH) = l. Then Y = (MH)+M and XY = MH(MH)+M independently
of the choice of T−1, but its proper choice numerically stabilizes the computations of the algorithm.
For l > r ≥ nrank(MH) the matrix MH is ill-conditioned,3 but MHT−1 is orthogonal for T = R,
X := Q = MHR−1 and Y := Q∗M where Q and R are the factors of the thin QR factorization of
MH (cf. [HMT11, Algorithm 4.1]). It is also orthogonal for T = RΠ and the factors R and Π in
a rank-revealing QRΠ factorization MH = QRΠ.

3nrank(W ) denotes numerical rank of W (see Appendix A.1).
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Column Subspace Sampling turns into Column Subset Selection in the case of a sub-permutation
matrix H and turns into Row Subspace Sampling if it is applied to the transpose MT .

Algorithm 2.2. Row Subspace Sampling or Transposed Range Finder. See Remark 2.2.

Input: As in Algorithm 2.1.

Output: Two matrices X ∈ R
k×n and Y ∈ R

m×k defining an LRA M̃ = Y X of M .

Initialization: Fix an integer k, r ≤ k ≤ m, and a k ×m matrix F of full numerical rank k.

Computations: 1. Compute the k ×m matrix FM .

2. Fix a nonsingular k × k matrix S−1; then output k × n matrix X := S−1FM .

3. Output an m× k matrix Y := argminV |V X −M |.

Row Subspace Sampling turns into Row Subset Selection in case of a sub-permutation matrix F .

Remark 2.2. Let rank(FM) = l. Then Y = M(FM)+ and Y X = M(FM)+FM independently of
the choice of S−1, but a proper choice of S numerically stabilizes the computations of the algorithm.
For k > r ≥ nrank(FM) the matrix FM is ill-conditioned, but S−1FM is orthogonal if S = L,
X := Q = L−1FM , Y := Q∗M , and L and Q are the factors of the thin LQ factorization of FM
or if S = ΠL and Π and L are the factors in a rank-revealing ΠLQ factorization FM = ΠLQ.

The following algorithm combines row and column subspace sampling. In the case of the identity
matrix S it turns into the algorithm of [CW09, Theorems 4.7 and 4.8] and [TYUC17, Section 1.4],
whose origin can be traced back to [WLRT08].

Algorithm 2.3. Row and Column Subspace Sampling. See Remark 2.3.

Input: As in Algorithm 2.1.

Output: Two matrices X ∈ R
m×k and Y ∈ R

k×m defining an LRA M̃ = XY of M .

Initialization: Fix two integers k and l, r ≤ k ≤ m and r ≤ l ≤ n; fix two matrices F ∈ R
k×m

and H ∈ R
n×l of full numerical ranks and two nonsingular matrices S ∈ R

k×k and T ∈ R
l×l.

Computations: 1. Output the matrix X = MHT−1 ∈ R
m×l.

2. Compute the matrices V = S−1FM ∈ R
k×n and W = S−1FX ∈ R

m×l.

3. Output the l × n matrix Y := argminV |W+V − S−1FM |.

Remark 2.3. If the matrix FMH has full rank min{k, n}, then Y X = MH(FHM)+FM, indepen-
dently of the choice of the matrices S−1 and T−1, but a proper choice of S numerically stabilizes the
computations of the algorithm. For min{k, l} > r ≥ nrank(FX) the matrix FM is ill-conditioned,
but S−1FM is orthogonal if S = L, X := Q = L−1FM , Y := Q∗M , and L and Q are the factors
of the thin LQ factorization of FM or if S = ΠL and Π and L are the factors in a rank-revealing
ΠLQ factorization FM = ΠLQ.

Remark 2.4. By applying Algorithm 2.3 to the transpose matrix M∗ we obtain Algorithm 2.4. It
begins with column subspace sampling followed by row subspace sampling. We only study Algorithms
2.1 and 2.3 for input M , but they turn into Algorithms 2.2 and 2.4 for the input M∗.
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2.2 The known error bounds

Theorem 2.1. (i) Let 2 ≤ r ≤ l− 2 and apply Algorithm 2.1 with a Gaussian multiplier H. Then
(cf. [HMT11, Theorems 10.5 and 10.6]) 4

E||M −XY ||2F ≤
(
1 +

r

l − r − 1

)
σ2
F,r+1(M),

E||M −XY || ≤
(
1 +

√
r

l − r − 1

)
σr+1(M) +

e
√
l

l − r
σF,r+1(M).

(ii) Let 4[
√
r +

√
8 log(rn)]2 log(r) ≤ l ≤ n and apply Algorithm 2.1 with an SRHT or SRFT

multiplier H. Then (cf. [T11], [HMT11, Theorem 11.2])

|M −XY | ≤
√

1 + 7n/l σ̄r+1(M) with a probability in 1−O(1/r).

Clarkson and Woodruff prove in [CW09] that Algorithm 2.3 reaches the bound σ̄r+1(M) within
a factor of 1 + ǫ whp if the multipliers F ∈ Gk×m and H ∈ Gn×l are Rademacher’s matrices and if
k and l are sufficiently large, having order of r/ǫ and r/ǫ2 for small ǫ, respectively.

Tropp et al. argue in [TYUC17, Section 1.7.3] that LRA is not practical if the numbers k and
l of row and column samples are large; iterative refinement of LRA at sub-linear cost in [PLa] can
be a partial remedy. [TYUC17, Theorem 4.3] shows that the output LRA XY of Algorithm 2.3
applied with Gaussian multipliers F and H satisfies5

E||M −XY ||2F ≤ kl

(k − l)(l − r)
σ2
F,r+1(M) if k > l > r. (2.1)

3 Deterministic output error bounds for sampling algorithms

3.1 Deterministic error bounds of Range Finder

Theorem 3.1. [HMT11, Theorem 9.1]. Suppose that Algorithm 2.1 has been applied to a matrix
M with a multiplier H and let

C1 = V ∗
1 H, C2 = V ∗

2 H, (3.1)

M =

(
U1 Σ1 V ∗

1

U2 Σ2 V ∗
2

)
, Mr = U1Σ1V

∗
1 , and M −Mr = U2Σ2V

∗
2 (3.2)

be SVDs of the matrices M , its rank-r truncation Mr, and M − Mr, respectively. [Σ2 = O and
XY = M if rank(M) = r. The columns of V ∗

1 span the top right singular space of M .] Then

|M −XY |2 ≤ |Σ2|2 + |Σ2C2C
+
1 |2. (3.3)

Notice that |Σ2| = σ̄r+1(M), |C2| ≤ 1, and |Σ2C2C
+
1 | ≤ |Σ2| |C2| |C+

1 | and obtain

|M −XY | ≤ (1 + |C+
1 |2)1/2σ̄r+1(M) for C1 = V ∗

1 H. (3.4)

It follows that the output LRA is optimal up to a factor of (1 + |C+
1 |2)1/2.

Next we deduce an upper bound on the norm |C+
1 | in terms of ||((MH)r)

+||, ||M ||, and η :=
2σr+1(M) ||((MH)r)

+||. Given MH we can compute the norm ||((MH)r)
+|| at sub-linear cost if

l ≪ m, and in some applications reasonable upper estimates for ||M || and σr+1 are available.

4[HMT11, Theorems 10.7 and 10.8] estimate the norm |M −XY | in probability.

5In words, the expected output error norm E||M −XY ||F is within a factor of
(

kl
(k−l)(l−r)

)1/2

from its minimum

value σF,r+1(M); this factor is just 2 for k = 2l = 4r.
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Corollary 3.1. Under the assumptions of Theorem 3.1 let the matrix MrH have full rank r. Then

|(MrH)+|/|M+
r | ≤ |C+

1 | ≤ |(MrH)+| |Mr| ≤ |(MrH)+| |M |.

Proof. Deduce from (3.1) and (3.2) that MrH = U1Σ1C1. Hence C1 = Σ−1
1 U∗

1MrH.
Recall that the matrix MrH has full rank r, apply Lemma A.1, recall that U1 is an orthogonal

matrix, and obtain |(MrH)+|/|Σ−1
1 | ≤ |C+

1 | ≤ |(MrH)+| |Σ1|.
Substitute |Σ1| = |Mr| and |Σ−1

1 | = |M+
r | and obtain the corollary.

Corollary 3.2. Under the assumptions of Corollary 3.1 let η := 2σr+1(M) ||((MH)r)
+|| < 1

and η′ := 2σr+1(M)
1−η ||((MH)r)

+|| < 1. Then

1− η′

||M+
r || ||((MH)r)

+|| ≤ ||C+
1 || ≤ ||M ||

1− η
||((MH)r)

+||.

Proof. Lemma A.3 implies that max{|MrH −MH|, |MH − (MH)r|} ≤ σ̄r+1(M).
Consequently |MrH − (MH)r| ≤ 2σ̄r+1(M), and so ||(MrH)+|| ≤ 1

1−η ||((MH)r)
+|| by virtue

of Lemma A.2 if η = 2σr+1(M) ||((MH)r)
+|| < 1.

If in addition η′ = 2σr+1(M)
1−η ||((MH)r)

+|| < 1, then 2σr+1(M) ||(MrH)+|| < 1 and therefore

||((MH)r)
+|| ≤ 1

1−η′ ||(MrH)+|| by virtue of Lemma A.2.

Combine these bounds and obtain (1− η′) ||((MH)r)
+|| ≤ |(MrH)+| ≤ 1

1−η ||((MH)r)
+||.

Together with Corollary 3.1 this implies Corollary 3.2.

For a given matrix MH we can compute the norm ||((MH)r)
+|| at sub-linear cost if l ≪ m. If

also some reasonable upper bounds on ||M || and σr+1(M) are known, then Corollary 3.2 implies a
posteriori estimates for the output errors of Algorithm 2.1.

3.2 Impact of pre-multiplication on the errors of LRA (deterministic estimates)

Lemma 3.1. [The impact of pre-multiplication on LRA errors.] Suppose that Algorithm 2.3 outputs
a matrix XY for Y = (FX)+FM and that m ≥ k ≥ l = rank(X). Then

M −XY = W (M −XX+M) for W = Im −X(FX)+F, (3.5)

|M −XY | ≤ |W | |M −XX+M |, |W | ≤ |Im|+ |X| |F | |(XF )+|. (3.6)

Proof. Recall that Y = (FX)+FM and notice that (FX)+FX = Il if k ≥ l = rank(FX). There-
fore Y = X+M + (FX)+F (M −XX+M). Consequently (3.5) and (3.6) hold.

We bounded the norm |M−XX+M | in the previous subsection; next we bound the norms |(FX)+|
and |W | at sub-linear cost for kl ≪ n, a fixed orthogonal X, and proper choice of sparse F .

Theorem 3.2. [P00, Algorithm 1] for a real h > 1 applied to an m × l orthogonal matrix X
performs O(ml2) flops and outputs an l × m sub-permutation matrix F such that ||(FX)+|| ≤√

(m− l)lh2 + 1, and ||W || ≤ 1 +
√
(m− l)lh2 + 1, for W = Im + X(FX)+F of (3.5) and any

fixed h > 1; ||W || ≈
√
ml for m ≫ l and h ≈ 1.

[P00, Algorithm 1] outputs l ×m matrix F . One can strengthen deterministic bounds on the
norm |W | by computing k ×m sub-permutation matrices F for k of at least order l2.

Theorem 3.3. For k of at least order l2 and a fixed orthogonal multiplier X compute a k×m sub-
permutation multiplier F by means of deterministic algorithms by Osinsky, running at sub-linear
cost and supporting [O18, equation (1)]. Then ||W || ≤ 1 + ||(FX)+|| = O(l) for W of (3.5).
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4 Accuracy of sub-linear cost dual LRA algorithms

Next we estimate the output errors of Algorithm 2.1 for a fixed orthogonal matrix H and two
classes of random inputs of low numerical rank, in particular for perturbed factor-Gaussian inputs
of Definition A.1. These estimates formally support the observed accuracy of Range Finder with
various dense multipliers (see [HMT11, Section 7.4], and the bibliography therein), but also with
sparse multipliers, with which Algorithms 2.3 and 2.4 run at sub-linear cost. By applying the
results of the previous section we extend these upper estimates for output accuracy to variations
of Algorithm 2.3 that run at sub-linear cost; then we extend them to Algorithm 2.4 by means of
transposition of an input matrix.
Our estimates involve the norms of a Gaussian matrix and its pseudo inverse (cf. Appendix A.4).

Definition 4.1. A matrix is Gaussian if its entries are iid Gaussian variables. Gp×q is the class
of p × q Gaussian matrices. νp,q = |G|, νsp,p,q = ||G||, νF,p,q = ||G||F , ν+p,q = |G+|, ν+sp,p,q = ||G+||,
and ν+F,p,q = ||G+||F for a matrix G ∈ Gp×q. [νp,q = νq,p and ν+p,q = ν+q,p, for all pairs of p and q.]

Theorem 4.1. [Non-degeneration of a Gaussian Matrix.] Let F ∈ Gr×p, H ∈ Gq×r, M ∈ R
p×q

and r ≤ rank(M). Then the matrices F , H, FM , and MH have full rank r with probability 1.

Assumption 4.1. We simplify the statements of our results by assuming that a Gaussian matrix
has full rank and ignoring the probability 0 of its degeneration.

4.1 Output errors of Range Finder for a perturbed factor-Gaussian input

Theorem 4.2. [Errors of Range Finder for a perturbed factor-Gaussian matrix.] Apply Algorithm
2.1 to a perturbation M = M̃ + E of a right m× n factor-Gaussian matrix M̃ of rank r such that

α := ||E||F /(σr(M)− σr+1(M)) ≤ 0.2 and ξ := 4αφ < 1 for φ = νsp,r,nν
+
sp,r,l||H||F ||H+||. (4.1)

(i) Then

||M −XY ||2 ≤
(
1 +

( φ

1− ξ

)2)
σ2
r+1(M).

(ii) Let ξ ≤ 1/2 with a probability close to 1 and let the integer l − r be at least moderately large.
Then with a probability close to 1

E||M −XY || ≤ θσr+1(M) for θ2 ≈ 1 +
(
(2e||H||F ||H+||(

√
nl+

√
rl)/(l − r)

)2
,

which is close to 1 + (2e||H||F ||H+||)2n/l if r ≪ l. Here and hereafter e := 2.71828182 . . .

Proof. We prove claim (i) in Appendix B. Let us deduce claim (ii). Recall from Theorems A.4
and A.5 that the random variables νsp,r,n and ν+sp,r,l are strongly concentrated about their expected

values E(νsp,r,n) =
√
n +

√
r and E(ν+sp,r,l) =

e
√
l

l−r , respectively. Substitute these equations into the
bound of claim (i), apply Jensen’s inequality, and deduce claim (ii) of the theorem.

4.2 Output errors of Range Finder near a matrix with a random singular space

Next we prove similar estimates under an alternative randomization model for dual LRA.
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Theorem 4.3. [Errors of Range Finder for an input with a perturbed random singular space.] Let
the matrix V1 in Theorem 3.1 be the n × r Q factor in a QR factorization of a normalized n × r
Gaussian matrix Gn,r and let the multiplier H be any n× l matrix of full rank l ≥ r.

(i) Then for νr,n and ν+r,l of Definition 4.1 it holds that

|M −XY |/σ̄r+1(M) ≤ φr,l,n := (1 + (νn,rν
+
r,l|H+|)2)1/2.

(ii) For a large or reasonably large integer l−r, the random variable φr,l,n is strongly concentrated
about its expected values

E(φsp,r,l,n) =
(
1 +

(√nl +
√
rl)e||H+||

l − r

)2)1/2
and E(φF,r,l,n) =

(
1 +

(nr2||H+||F
l − r − 1

)2)1/2
,

which turn into

E(φsp,r,l,n) ≈
(
1 +

(e||H+||)2n
l

)1/2
and E(φF,r,l,n) ≈

(
1 +

(e||H+||)2n
l

)1/2

if r ≪ l. Here ||H+|| = 1 and ||H+||F = l if the matrix H is orthogonal.

Proof. Write
Gn,r = V1R, V1 = Gn,rR

−1, R = V ∗
1 Gn,r, (4.2)

and so V ∗
1 = (R∗)−1Gr,n and V ∗

1 H = (R∗)−1Gr,nH.
Let H = UHΣHV ∗

H be SVD. Then Gr,nUH = Gr,l (cf. Lemma A.4), and hence

V ∗
1 H = (R∗)−1Gr,lΣHV ∗

H .

Therefore |(V ∗
1 H)+| ≤ |R| ν+r,l|Σ−1

H | (apply Lemma A.1 and recall that VH is an orthogonal matrix).

Substitute |Σ−1
H | = |H+| and obtain |(V ∗

1 H)+| ≤ ν+r,l|H+| |R|.
Deduce from (4.2) that the matrices R and Gn,r share all their singular values. Therefore

|R| = νn,r, and so |(V ∗
1 H)+| ≤ νn,rν

+
r,l|H+|.

By combining this bound with (3.4) prove claim (i) of the theorem.
Already for a reasonably large ratio l/r the random variable φ2

r,l,n = 1 + (νn,rν
+
r,l|H+|)2 is

strongly concentrated about its expected values

E(φ2
sp,r,l,n) = 1 +

((
√
nl +

√
rl)e||H+||

l − r

)2
and E(φ2

F,r,l,n) = 1 +
( nr2

l − r − 1
||H+||F

)2
,

respectively (cf. Theorems A.4 and A.5), which are close to

1 + (e||H+||)2n/l and 1 + (nr2||H+||F /l)2,

respectively, if r ≪ l ≤ n. Apply Jensen’s inequality and deduce claim (ii) of the theorem.

Bound the output errors of Algorithms 2.3–2.4 by combining the estimates of this section and
Section 3.2 and by transposing the input matrix M .
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4.3 Impact of pre-multiplication in the case of Gaussian noise

Next we deduce randomized estimates for the impact of pre-multiplication in the case where an input
matrix M includes considerable additive white Gaussian noise,6 which is a classical representation
of natural noise in information theory, is widely adopted in signal and image processing, and in
many cases properly represents errors of measurement and rounding (cf. [SST06]).

Theorem 4.4. Suppose that the multipliers F and H are orthogonal and let the input matrix M
be the sum of a fixed matrix A and a scaled Gaussian matrix E,

M = A+ E,
1

λE
E = Gm,n ∈ Gm×n (4.3)

for a constant λE proportional to the norm ||E||. Then for any pair of orthogonal multipliers F
and H it holds that

|W | ≤ |Im|+ λE |M |min{ν+n−l,l, ν
+
l,l}, |W | ≤ |Im|+ λE |M |ν+n−l,l for n ≥ 2l, (4.4)

E

( ||W ||F −√
m

λE ||M ||F

)
≤ l

n− 2l − 1
, E

((||W || − 1

λE ||M ||
)
≤ e

√
n

n− 2l
for n− l ≥ l ≥ 2. (4.5)

Proof. Assumption (4.3) and Lemma A.4 together imply that FEH is a scaled Gaussian matrix:
1
λE

FEH ∈ Gk×l. Hence FMH = FAH+ 1
λE

Gk,l. Apply Theorem A.3 and obtain that |(FMH)+| ≤
λE min{ν+n−l,l, ν

+
l,l}. Recall from (3.5) that |W | ≤ |Im| + |(FMH)+| |M | since the multipliers F

and H are orthogonal. Substitute the above bound on |(FMH)+| and obtain (4.4). Substitute
equations ||Im||F =

√
m and ||Im|| = 1 and claim (iii) of Theorem A.5 and obtain (4.5).

Remark 4.1. For k = l = ρ, S = T = Ik, sub-permutation matrices F and H, and a nonsingular
matrix FMH, Algorithms 2.3 and 2.4 output LRA in the form CUR where C ∈ R

m×ρ and R ∈
R
ρ×n are two submatrices made up of ρ columns and ρ rows of M and U = (FMH)−1. [PLSZa]

extends our current study to devising and analyzing algorithms for the computation of such CUR
LRA in the case where k and l are arbitrary integers not exceeded by ρ.

5 Multiplicative pre-processing and generation of multipliers

5.1 Multiplicative pre-processing for LRA

We proved that sub-linear cost variations of Algorithms 2.3 and 2.4 tend to output accurate LRA
of random input whp. In the real world computations input matrices are not random, but we can
randomize them by multiplying them by random matrices.

Algorithms 2.1 – 2.4 output accurate LRA whp if the multipliers are Gaussian, SRHT, SRFT
or Rademacher’s (cf. [HMT11, Sections 10 and 11], [T11], [CW09]), but multiplication by these
matrices run at super-linear cost. Our heuristic recipe is to apply these algorithms with a small
variety of sparse multipliers Fi and/or Hi, i = 1, 2, . . . , with which computational cost becomes
sub-linear and then to monitor the accuracy of the output LRA by applying the criteria of the
previous section, [PLa], and/or [PLSZa].

6Additive white Gaussian noise is statistical noise having a probability density function (PDF) equal to that of
the Gaussian (normal) distribution. Additive white Gaussian noise is widely adopted in information theory and used
in signal and image processing; in many cases it properly represents the errors of measurement and rounding (cf.
[SST06]).

9



Various families of sparse multipliers have been proposed in [PLSZ16] and [PLSZ17]. One
can readily complement these families with sub-permutation matrices and, say, sparse quasi Rad-
macher’s multipliers (see [PLSZa]) and then combine these basic multipliers together by using
orthogonalized sums, products or other lower degree polynomials of these matrices as multipliers
(cf. [HMT11, Remark 4.6]).

Next we specify a particular family of sparse multipliers, which was highly efficient in our tests
when we applied them both themselves and in combination with other sparse multipliers.

5.2 Generation of abridged Hadamard and Fourier multipliers

We define multipliers of this family by means of abridging the classical recursive processes of the
generation of n × n SRHT and SRFT matrices for n = 2t. These matrices are obtained from the
n× n dense matrices Hn of Walsh-Hadamard transform (cf. [M11, Section 3.1]) and Fn of discrete
Fourier transform (DFT) at n points (cf. [P01, Section 2.3]), respectively. Recursive representation
in t recursive steps enables multiplication of the matrices Hn and Fn by a vector in 2tn additions
and subtractions and O(tn) flops, respectively.

We end these processes in d recursive steps for a fixed recursion depth d, 1 ≤ d ≤ t, and obtain
the d-abridged Hadamard (AH) and Fourier (AF) matrices Hd,d and Fd,d, respectively, such that
Ht,t = Hn and Ft,t = Fn. Namely write Hd,0 = Fd,0 = In/2d , i =

√
−1, and ωs = exp(2πi/s)

denoting a primitive s-th root of 1, and then specify two recursive processes:

Hd,0 = In/2d , Hd,i+1 =

(
Hd,i Hd,i

Hd,i −Hd,i

)
for i = 0, 1, . . . , d− 1, (5.1)

Fd,i+1 = P̂i+1

(
Fd,i Fd,i

Fd,iD̂i+1 −Fd,iD̂i+1

)
, D̂i+1 = diag

(
ωj
2i+1

)2i−1

j=0
, i = 0, 1, . . . , d− 1, (5.2)

where P̂i denotes the 2i × 2i matrix of odd/even permutations such that P̂iu = v, u = (uj)
2i−1
j=0 ,

v = (vj)
2i−1
j=0 , vj = u2j , vj+2i−1 = u2j+1, j = 0, 1, . . . , 2i−1 − 1.7

For any fixed pair of d and i, each of the matrices Hd,i (resp. Fd,i) is orthogonal (resp. unitary)
up to scaling and has 2d nonzero entries in every row and column. Now make up multipliers F
and H of k ×m and n × l submatrices of Fd,d and Hd,d, respectively. Then in view of sparseness
of Fd,d or Hd,d, we can compute the products FM and MH by using O(kn2d) and O(lm2d) flops,
respectively, and they are just additions or subtractions in the case of submatrices of Hd,d.

By combining random permutation with either Rademacher’s diagonal scaling for AH matrices
Hd,d or or random unitary diagonal scaling for AF matrices Fd,d, we obtain the d–Abridged Scaled
and Permuted Hadamard (ASPH) matrices, PDHn, and d–Abridged Scaled and Permuted Fourier
(ASPF) n × n matrices, PDFn, where P and D are two matrices of permutation and diagonal
scaling. Likewise define the families of ASH, ASF, APH, and APF matrices, DHn,d, DFn,d, Hn,dP ,
and Fn,dP , respectively. Each random permutation or scaling contributes up to n random parame-
ters. We can involve more random parameters by applying random permutation and scaling to the
intermediate matrices Hd,i and Fd,i for i = 0, 1, . . . , d.

Now the first k rows for r ≤ k ≤ n or first l columns for r ≤ l ≤ n of Hd,d and Fd,d form a d-
abridged Hadamard or Fourier multiplier, which turns into a SRHT or SRFT matrix, respectively,
for d = t. For k and l of order r log(r) Algorithm 2.1 with a SRHT or SRFT multiplier outputs
whp accurate LRA of any matrix M admitting LRA (see [HMT11, Section 11]), but in our tests the

7For d = t this is a decimation in frequency (DIF) radix-2 representation of FFT. Transposition turns it into the
decimation in time (DIT) radix-2 representation of FFT.
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output was consistently accurate even with sparse abridged SRHT or SRFT multipliers computed
just in three recursive steps.

6 Numerical tests

In this section we cover our tests of dual sub-linear cost variants of Algorithm 2.1. The tests for
Tables 6.1–6.4 have been performed by using MatLab on a Dell computer with the Intel Core 2
2.50 GHz processor and 4G memory running Windows 7; the standard normal distribution function
randn of MATLAB has been applied in order to generate Gaussian matrices. The MATLAB
function ”svd()” has been applied in order to calculate the ξ-rank, i.e., the number of singular
values exceeding ξ for ξ = 10−5 in Sections 6.2 and 6.3 and ξ = 10−6 in Section 6.4. The tests for
Tables 6.5–6.7 have been performed on a 64-bit Windows machine with an Intel i5 dual-core 1.70
GHz processor by using custom programmed software in C++ and compiled with LAPACK version
3.6.0 libraries.

6.1 Input matrices for LRA

We generated the following classes of input matrices M for testing LRA algorithms.

Class I: Perturbed n×n factor-Gaussian matrices with expected rank r, M = G1∗G2+10−10G3,
for three Gaussian matrices G1 ∈ Gn×r, G2 ∈ Gr×n, and G3 ∈ Gn×n.

Class II: M = UMΣMV ∗
M , for UM and VM being the Q factors of the thin QR orthogonalization

of n × n Gaussian matrices and ΣM = diag(σj)
n
j=1; σj = 1/j, j = 1, . . . , r, σj = 10−10, j =

r + 1, . . . , n (cf. [H02, Section 28.3]), and n = 256, 512, 1024. (Hence ||M || = 1 and κ(M) = 1010.)

Class III: (i) The matrices M of the discretized single-layer Laplacian operator of [HMT11,
Section 7.1]: [Sσ](x) = c

∫
Γ1

log |x− y|σ(y)dy, x ∈ Γ2, for two circles Γ1 = C(0, 1) and Γ2 = C(0, 2)

on the complex plane. We arrived at a matrix M = (mij)
n
i,j=1, mi,j = c

∫
Γ1,j

log |2ωi − y|dy for a

constant c, ||M || = 1 and the arc Γ1,j of Γ1 defined by the angles in the range [2jπn , 2(j+1)π
n ].

(ii) The matrices that approximate the inverse of a large sparse matrix obtained from a finite-
difference operator of [HMT11, Section 7.2].

Class IV: The dense matrices of six classes with smaller ratios of “numerical rank/n” from the
built-in test problems in Regularization Tools, which came from discretization (based on Galerkin
or quadrature methods) of the Fredholm Integral Equations of the first kind:8

baart: Fredholm Integral Equation of the first kind,
shaw: one-dimensional image restoration model,
gravity: 1-D gravity surveying model problem,
wing: problem with a discontinuous solution,
foxgood: severely ill-posed problem,
inverse Laplace: inverse Laplace transformation.

8See http://www.math.sjsu.edu/singular/matrices and http://www2.imm.dtu.dk/∼pch/Regutools
For more details see Chapter 4 of the Regularization Tools Manual at

http://www.imm.dtu.dk/∼pcha/Regutools/RTv4manual.pdf
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6.2 Tests for LRA of inputs of class II (generated via SVD)

Next we present the results of our tests of Algorithm 2.1 applied to matrices M of class II.
Table 6.1 shows the average output error norms over 1000 tests for the matrices M for each pair

of n and r, n = 256, 512, 1024, r = 8, 32, and for either 3-AH multipliers or 3-ASPH multipliers,
both defined by Hadamard recursion (5.2), for d = 3.

Table 6.1: Error norms for SVD-generated inputs and 3-AH and 3-ASPH multipliers

n r 3-AH 3-ASPH

256 8 2.25e-08 2.70e-08

256 32 5.95e-08 1.47e-07

512 8 4.80e-08 2.22e-07

512 32 6.22e-08 8.91e-08

1024 8 5.65e-08 2.86e-08

1024 32 1.94e-07 5.33e-08

Table 6.2 displays the average error norms in the case of multipliers B of two families defined
below, both generated from the Basic Set of n × n 3-APF multipliers defined by three Fourier
recursive steps of equation (5.2), for d = 3, with no scaling, but with a random column permutation.

For multipliers B we used the n× r leftmost blocks of (1) either n× n matrices from the Basic
Set or (2) the product of two such matrices. Both tables show similar tests results.

In sum, for all classes of input pairs M and B and all pairs of integers n and r, Algorithm 2.1
with our pre-processing has consistently output approximations to rank-r input matrices with the
average error norms ranged from 10−7 or 10−8 to about 10−9 in all our tests.

Table 6.2: Error norms for SVD-generated inputs of class II and multipliers of two classes

n r class 1 class 2

256 8 5.94e-09 2.64e-08

256 32 2.40e-08 8.23e-08

512 8 1.11e-08 2.36e-09

512 32 1.61e-08 1.61e-08

1024 8 5.40e-09 6.82e-08

1024 32 2.18e-08 8.72e-08

6.3 Tests for LRA of input matrices of class III (from [HMT11])

In Tables 6.3 and 6.4 we show the results of the application of Algorithm 2.1 to the matrices of class
III with multipliers B being the n× r leftmost submatrices of n×n Gaussian multipliers, Abridged
permuted Fourier (3-APF) multipliers, and Abridged permuted Hadamard (3-APH) multipliers.

Then again we defined each 3-APF and 3-APH matrix by applying three recursive steps of
equation (5.2) followed by a single random column permutation.

We performed 1000 tests for every class of pairs of n × n or m× n matrices of classes III(i) or
III(ii), respectively, and n× r multipliers for every fixed triple of m, n, and r or pair of n and r.
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Tables 6.3 and 6.4 display the resulting data for the error norm ||UV −M ||.

Table 6.3: LRA of Laplacian matrices of class III(i)

n multiplier r mean std

200 Gaussian 3.00 1.58e-05 1.24e-05

200 3-APF 3.00 8.50e-06 5.15e-15

200 3-APH 3.00 2.18e-05 6.48e-14

400 Gaussian 3.00 1.53e-05 1.37e-06

400 3-APF 3.00 8.33e-06 1.02e-14

400 3-APH 3.00 2.18e-05 9.08e-14

2000 Gaussian 3.00 2.10e-05 2.28e-05

2000 3-APF 3.00 1.31e-05 6.16e-14

2000 3-APH 3.00 2.11e-05 4.49e-12

4000 Gaussian 3.00 2.18e-05 3.17e-05

4000 3-APF 3.00 5.69e-05 1.28e-13

4000 3-APH 3.00 3.17e-05 8.64e-12

Table 6.4: LRA of the matrices of discretized finite-difference operator of class III(ii)

m n multiplier r mean std

88 160 Gaussian 5.00 1.53e-05 1.03e-05

88 160 3-APF 5.00 4.84e-04 2.94e-14

88 160 3-APH 5.00 4.84e-04 5.76e-14

208 400 Gaussian 43.00 4.02e-05 1.05e-05

208 400 3-APF 43.00 1.24e-04 2.40e-13

208 400 3-APH 43.00 1.29e-04 4.62e-13

408 800 Gaussian 64.00 6.09e-05 1.75e-05

408 800 3-APF 64.00 1.84e-04 6.42e-12

408 800 3-APH 64.00 1.38e-04 8.65e-12

6.4 Tests with additional families of multipliers

In the next three tables we display the output error norms of Algorithm 2.1 applied to the input
matrices of classes II–IV with six additional families of multipliers to be specified later.

In particular we used 1024 × 1024 SVD-generated input matrices of class II having numerical
rank r = 32, 400 × 400 Laplacian input matrices of class III(i) having numerical rank r = 36,
408× 800 matrices having numerical rank r = 145 and representing finite-difference inputs of class
III(ii), and 1000 × 1000 matrices of class IV (from the San Jose University database).

Then again we repeated the tests 100 times for each class of input matrices and each size of an
input and a multiplier, and we display the resulting average error norms in Tables 6.5–6.7.

We generated our n× (r + p) multipliers for random p = 1, 2, . . . 21 by using 3-ASPH, 3-APH,
and Random permutation matrices.
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We obtained every 3-APH and every 3-ASPH matrix by applying three Hadamard’s recursive
steps (5.1) followed by random column permutation defined by random permutation of the integers
from 1 to n inclusive. While generating a 3-ASPH matrix we also applied random scaling with a
diagonal matrix D = diag(di)

n
i=1 where we have chosen the values of random iid variables di under

the uniform probability distribution from the set {−4,−3,−2,−1, 0, 1, 2, 3, 4}.
We used the following families of multipliers: (0) Gaussian (for control), (1) sum of a 3-ASPH

and a permutation matrix, (2) sum of a 3-ASPH and two permutation matrices, (3) sum of a 3-
ASPH and three permutation matrices, (4) sum of a 3-APH and three permutation matrices, and
(5) sum of a 3-APH and two permutation matrices.

The test results in Tables 6.5–6.7 show high output accuracy with error norms in the range
from about 10−6 to 10−9 with the exception of multiplier families 1–5 for the inverse Laplace input
matrix, in which case the range was from about 10−3 to 10−5.

The numbers in parentheses in the first line of Tables 6.6 and 6.7 show the numerical rank of
input matrices.

SVD-generated Matrices Laplacian Matrices Finite Difference Matrices

Family No. Mean Std Mean Std Mean Std

Family 0 4.97e-09 5.64e-09 1.19e-07 1.86e-07 2.44e-06 2.52e-06

Family 1 4.04e-09 3.17e-09 2.32e-07 2.33e-07 5.99e-06 7.51e-06

Family 2 5.49e-09 7.15e-09 1.91e-07 2.13e-07 3.74e-06 4.49e-06

Family 3 6.22e-09 7.47e-09 1.66e-07 1.82e-07 2.64e-06 3.34e-06

Family 4 3.96e-09 3.21e-09 1.91e-07 1.95e-07 1.90e-06 2.48e-06

Family 5 4.05e-09 3.01e-09 1.81e-07 2.01e-07 2.71e-06 3.33e-06

Table 6.5: Relative error norms in tests for matrices of classes II and III

Appendix

A Background on matrix computations

A.1 Some definitions

• An m× n matrix M is orthogonal if M∗M = In or MM∗ = Im.

wing (4) baart (6) inverse Laplace (25)

Family No. Mean Std Mean Std Mean Std

Family 0 1.20E-08 6.30E-08 1.82E-09 1.09E-08 2.72E-08 7.50E-08

Family 1 2.00E-09 1.34E-08 2.46E-09 1.40E-08 1.21E-03 4.13E-03

Family 2 7.96E-09 4.18E-08 5.31E-10 3.00E-09 6.61E-04 2.83E-03

Family 3 3.01E-09 2.23E-08 5.55E-10 2.74E-09 3.35E-04 1.81E-03

Family 4 2.27E-09 1.07E-08 2.10E-09 1.28E-08 3.83E-05 1.66E-04

Family 5 3.66E-09 1.57E-08 1.10E-09 5.58E-09 3.58E-04 2.07E-03

Table 6.6: Relative error norms for input matrices of class IV (of San Jose University database)
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foxgood (10) shaw (12) gravity (25)

Family No. Mean Std Mean Std Mean Std

Family 0 1.56E-07 4.90E-07 2.89E-09 1.50E-08 2.12E-08 4.86E-08

Family 1 3.70E-07 2.33E-06 1.79E-08 8.70E-08 3.94E-08 1.14E-07

Family 1 1.76E-06 3.76E-06 1.46E-08 5.92E-08 4.81E-08 1.26E-07

Family 2 9.77E-07 1.71E-06 1.11E-08 6.67E-08 2.82E-08 8.37E-08

Family 3 7.16E-07 1.14E-06 1.87E-08 1.04E-07 5.70E-08 2.52E-07

Family 4 7.52E-07 1.24E-06 4.77E-09 1.79E-08 6.32E-08 1.99E-07

Family 5 9.99E-07 2.27E-06 1.03E-08 3.81E-08 3.94E-08 1.00E-07

Table 6.7: Relative error norms for input matrices of class IV (of San Jose University database)

• For a matrix M = (mi,j)
m,n
i,j=1 and two sets I ⊆ {1, . . . ,m} and J ⊆ {1, . . . , n}, define the

submatrices MI,: := (mi,j)i∈I;j=1,...,n,M:,J := (mi,j)i=1,...,m;j∈J , and MI,J := (mi,j)i∈I;j∈J .

• rank(M) denotes the rank of a matrix M . ǫ-rank(M) is argmin|E|≤ǫ|M | rank(M + E), called
numerical rank, nrank(M), if ǫ is small in context.

• Mr is the rank-r truncation, obtained from M by setting σj(M) = 0 for j > r.

• κ(M) = ||M || ||M+|| is the spectral condition number of M .

A.2 Auxiliary results

Lemma A.1. [The norm of the pseudo inverse of a matrix product.] Suppose that A ∈ R
k×r,

B ∈ R
r×l and the matrices A and B have full rank r ≤ min{k, l}. Then |(AB)+| ≤ |A+| |B+|.

Lemma A.2. (The norm of the pseudo inverse of a perturbed matrix, [B15, Theorem 2.2.4].) If
rank(M + E) = rank(M) = r and η = ||M+|| ||E|| < 1, then

1√
r
||(M + E)+|| ≤ ||(M + E)+|| ≤ 1

1− η
||M+||.

Lemma A.3. (The impact of a perturbation of a matrix on its singular values, [GL13, Corollary
8.6.2].) For m ≥ n and a pair of m× n matrices M and M + E it holds that

|σj(M + E)− σj(M)| ≤ ||E|| for j = 1, . . . , n.

Theorem A.1. (The impact of a perturbation of a matrix on its top singular spaces, [GL13,
Theorem 8.6.5].) Let g =: σr(M) − σr+1(M) > 0 and ||E||F ≤ 0.2g. Then for the left and right
singular spaces associated with the r largest singular values of the matrices M and M + E, there
exist orthogonal matrix bases Br,left(M), Br,right(M), Br,left(M +E), and Br,right(M +E) such that

max{||Br,left(M + E)−Br,left(M)||F , ||Br,right(M + E)−Br,right(M)||F } ≤ 4
||E||F

g
.

For example, if σr(M) ≥ 2σr+1(M), which implies that g ≥ 0.5 σr(M), and if ||E||F ≤
0.1 σr(M), then the upper bound on the right-hand side is approximately 8||E||F /σr(M).
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A.3 Gaussian and factor-Gaussian matrices of low rank and low numerical rank

Lemma A.4. [Orthogonal invariance of a Gaussian matrix.] Suppose that k, m, and n are three
positive integers, k ≤ min{m,n}, Gm,n ∈ Gm×n, S ∈ R

k×m, T ∈ R
n×k, and S and T are orthogonal

matrices. Then SG and GT are Gaussian matrices.

Definition A.1. [Factor-Gaussian matrices.] Let r ≤ min{m,n} and let Gm×n
r,B , Gm×n

A,r , and Gm×n
r,C

denote the classes of matrices Gm,rB, AGr,n, and Gm,rCGr,n, respectively, which we call left, right,
and two-sided factor-Gaussian matrices of rank r, respectively, provided that Gp,q denotes a p × q
Gaussian matrix, A ∈ R

m×r, B ∈ R
r×n, and C ∈ R

r×r, and A, B and C are well-conditioned
matrices of full rank r.

Theorem A.2. The class Gm×n
r,C of two-sided m× n factor-Gaussian matrices Gm,rΣGr,n does not

change if in its definition we replace the factor C by a well-conditioned diagonal matrix Σ = (σj)
r
j=1

such that σ1 ≥ σ2 ≥ · · · ≥ σr > 0.

Proof. Let C = UCΣCV
∗
C be SVD. Then A = Gm,rUC ∈ Gm×r and B = V ∗

CGr,n ∈ Gr×n by virtue
of Lemma A.4, and so Gm,rCGr,n = AΣCB for A ∈ Gm×r and B ∈ Gr×n.

Definition A.2. The relative norm of a perturbation of a Gaussian matrix is the ratio of the
perturbation norm and the expected value of the norm of the matrix (estimated in Theorem A.4).

We refer to all three matrix classes above as factor-Gaussian matrices of rank r, to their per-
turbations within a relative norm bound ǫ as factor-Gaussian matrices of ǫ-rank r, and to their
perturbations within a small relative norm as factor-Gaussian matrices of numerical rank r to
which we also refer as perturbations of factor-Gaussian matrices.

Clearly ||(AΣ)+|| ≤ ||Σ−1|| ||A+|| and ||(ΣB)+|| ≤ ||Σ−1|| ||B+|| for a two-sided factor-Gaussian
matrix M = AΣB of rank r of Definition A.1, and so whp such a matrix is both left and right
factor-Gaussian of rank r.

Theorem A.3. Let Mk,l ∈ R
k×l and Gk,l ∈ Gk×l for k ≥ l. Then |(Mk,l+Gk,l)

+| ≤ min{ν+l,l, ν+k−l,l}.

Proof. Let Mk,l = UΣV ∗ be full SVD such that U ∈ R
k×k, V ∈ R

l×l, U and V are orthogonal
matrices, Σ = (D | Ol,k−l)

T , and D is an l × l diagonal matrix. Write Wk,l := U∗(Mk,l + Gk,l)V
and observe that U∗Mk,lV = Σ and U∗Gk,lV ∈ Gk×l by virtue of Lemma A.4. Hence W T

k,l =

(D + Gl,l | Gl,k−l), and so |W+
k,l| ≤ min{|(D + Gl,l)

+|, ν+k−l,l}. Now Theorem A.3 follows because

|(Mk,l+Gk,l)
+| = |W+

k,l| and because |(D+Gl,l)
+| ≤ ν+l,l by virtue of claim (iv) of Theorem A.5.

A.4 Norms of a Gaussian matrix and its pseudo inverse

Γ(x) =
∫∞
0 exp(−t)tx−1dt denotes the Gamma function.

Theorem A.4. [Norms of a Gaussian matrix. See [DS01, Theorem II.7] and our Definition 4.1.]
(i) Probability{νsp,m,n > t+

√
m+

√
n} ≤ exp(−t2/2) for t ≥ 0, E(νsp,m,n) ≤

√
m+

√
n.

(ii) νF,m,n is the χ-function, with E(νF,m,n) = mn and probability density 2xn−iexp(−x2/2)

2n/2Γ(n/2)
.

Theorem A.5. [Norms of the pseudo inverse of a Gaussian matrix (see Definition 4.1).]

(i) Probability {ν+sp,m,n ≥ m/x2} < xm−n+1

Γ(m−n+2) for m ≥ n ≥ 2 and all positive x,

(ii) Probability {ν+F,m,n ≥ t
√

3n
m−n+1} ≤ tn−m and Probability {ν+sp,m,n ≥ t e

√
m

m−n+1} ≤ tn−m for

all t ≥ 1 provided that m ≥ 4,
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(iii) E((ν+F,m,n)
2) = n

m−n−1 and E(ν+sp,m,n) ≤ e
√
m

m−n provided that m ≥ n+ 2 ≥ 4,

(iv) Probability {ν+sp,n,n ≥ x} ≤ 2.35
√
n

x for n ≥ 2 and all positive x, and furthermore ||Mn,n +
Gn,n||+ ≤ νn,n for any n× n matrix Mn,n and an n× n Gaussian matrix Gn,n.

Proof. See [CD05, Proof of Lemma 4.1] for claim (i), [HMT11, Proposition 10.4 and equations
(10.3) and (10.4)] for claims (ii) and (iii), and [SST06, Theorem 3.3] for claim (iv).

Theorem A.5 implies reasonable probabilistic upper bounds on the norm ν+m,n even where the
integer |m − n| is close to 0; whp the upper bounds of Theorem A.5 on the norm ν+m,n decrease
very fast as the difference |m− n| grows from 1.

B Proof of Theorem 4.2

Readily obtain Theorem 4.2 by combining bound (3.2) with the following lemma.

Lemma B.1. Under the assumptions of Theorem 4.2 let Σ2, C1, and C2 denote the matrices of
(3.3)–(3.2). Then ||C+

1 || ≤ 1
1−ξ νsp,r,nν

+
sp,r,lκ(H).

Proof. At first assume that E = M − M̃ = O. Write M = M̃ := AB where B = Gr,n.
Let A = UAΣAV

∗
A and B = UBΣBV

∗
B be SVDs. Then AB = UAPV ∗

B for P = ΣAV
∗
AUBΣB ,

where P,ΣA, V
∗
A, UB , and ΣB are r × r matrices. Let P = UPΣPV

∗
P be SVD. Write U := UAUP ,

V ∗ := V ∗
PV

∗
B, and C̃1 := C1 and observe that U ∈ R

m×r and V ∗ ∈ R
r×n are orthogonal matrices of

sizes m× r and r× n, respectively. Therefore M̃ = AB = UΣPV
∗ is SVD. Furthermore this is the

top rank-r SVD of M̃ because rank(AB) = r. Therefore C̃1 = V ∗H = V ∗
PV

∗
BH.

Recall that UB and ΣB are r × r matrices and deduce from SVD B = UBΣBV
∗
B that V ∗

B =
U∗
BΣ

−1
B B. Substitute this expression and obtain that C̃1 = V ∗

PU
∗
BΣ

−1
B BH. Notice that VP and UB

are r × r orthogonal matrices, and so |C̃+
1 | = |(Σ−1

B BH)+|.
Deduce that |C̃+

1 | ≤ |ΣB | |(BH)+| from Lemma A.1.
Recall that B ∈ Gr×n, substitute |ΣB| = |B| = νr,n, and obtain |C̃+

1 | ≤ νr,n|(BH)+|.
In the SVD H = UHΣHV ∗

H the matrix VH is orthogonal, ΣH and VH are r × r matrices, and
|Σ−1

H | = |H+|. Lemma A.4 implies that Gr,n := BUH ∈ Gr×l. Hence |(BH)+| ≤ ν+r,l|H+|.
Substitute this inequality into the above bound on |C̃+

1 | and obtain

|C̃+
1 | ≤ νr,nν

+
r,l|H+|. (B.1)

Next suppose that E = M − M̃ 6= O but that α := ||E||F /(σr(M) − σr+1(M)) ≤ 0.2 (cf.
(4.1)). Let Br,right(M) and Br,right(M̃ ) denote two orthogonal matrix bases of the two linear spaces
spanned by top r right singular vectors of M and M̃ , respectively. Then deduce from Theorem A.1
that ||Br,right(M)−Br,right(M̃)||F ≤ 4α.

Define SVDs of M̃ and M where these matrix bases are VM̃ and VM , respectively. Then

|VM̃ − VM | ≤ ||VM̃ − VM ||F ≤ 4α, implying that |C̃ −C| = |V ∗
M̃
H − V ∗

MH| ≤ 4α|H|.
It follows that |σr(C̃1) − σr(C̃1)| ≤ 4α||H|| by virtue of Lemma A.3. Deduce that ||C+

1 ||−1 =
σr(C1) ≥ σr(C̃1)− 4α||H|| = ||(C̃1)

+||−1 − 4α||H||.
Substitute(B.1), obtain ||C+

1 ||−1 ≥ (νsp,r,nν
+
sp,r,l||H+

r ||)−1−4α||H||, and deduce Lemma B.1.
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C Small families of hard inputs for sub-linear cost LRA

Any sub-linear cost LRA algorithm fails on the following small families of LRA inputs.

Example C.1. Define the following family of m× n matrices of rank 1 (we call them δ-matrices):
{∆i,j, i = 1, . . . ,m; j = 1, . . . , n}. Also include the m× n null matrix Om,n into this family. Now
fix any sub-linear cost algorithm; it does not access the (i, j)th entry of its input matrices for
some pair of i and j. Therefore it outputs the same approximation of the matrices ∆i,j and Om,n,
with an undetected error at least 1/2. Apply the same argument to the set of mn + 1 small-norm
perturbations of the matrices of the above family and to the mn+1 sums of the latter matrices with
any fixed m× n matrix of low rank. Finally, the same argument shows that a posteriori estimation
of the output errors of an LRA algorithm applied to the same input families cannot run at sub-linear
cost.

The example actually covers randomized LRA algorithms as well. Indeed suppose that an LRA
algorithm does not access a constant fraction of the entries of an input matrix. Then with a constant
probability the algorithm misses an entry whose value greatly exceeds those of all other entries, in
which case the algorithm can hardly approximate that entry closely. The paper [Pa] shows, however,
that close LRA can be computed at sub-linear cost in two successive C-A iterations provided that
we avoid choosing degenerating initial submatrix, which is precisely the problem with the matrix
families of Example C.1. The sub-linear cost algorithms of [MW17] and [BW18] compute LRA of
matrices of two important special matrix classes.

Acknowledgements: We were supported by NSF Grants CCF–1116736, CCF–1563942, CCF–
1733834 and PSC CUNY Award 69813 00 48. N. L. Zamarashkin pointed us out reference [O18].
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