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Abstract

A matrix algorithm performs at sub-linear cost if it uses much fewer flops and mem-
ory cells than the input matrix has entries. Using such algorithms is indispensable for
Big Data Mining and Analysis, where the input matrices are so immense that one can
only access a small fraction of all their entries. Typically, however, such matrices admit
their Low Rank Approximation (LRA), which one can access and process at sub-linear
arithmetic cost, that is, by involving much fewer memory cells and arithmetic operations
than an input matrix has entries. Can, however, we compute LRA at sub-linear cost?
Adversary argument shows that no algorithm running at sub-linear cost can output
accurate LRA of the worst case input matrices, or even of the matrices of small families
of our Appendix A, but for more than a decade Cross—Approximation (CA) iterations,
running at sub-linear cost, have routinely been computing accurate LRA. We partly
resolve that long-known contradiction by proving that already a single two-stage C—A
loop computes reasonably close LRA of any matrix close to a matrix of sufficiently low
rank provided that the C-A loop begins at a submatrix that shares its numerical rank
with an input matrix. We cannot obtain such an initial submatrix for the worst case
input matrix without accessing all or most of its entries, but have this luck with a high
probability for any choice from a random input matrix and increase our chances for
success with every new C-A iteration. All this should explain the well-known empirical
power of C-A iterations applied to real world inputs.
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1 Introduction

1.1 LRA problem and our main result

Low rank approzimation (LRA) of a matrix® is a fundamental subject of Numerical Linear
Algebra NLA) and Computer Science (CS). An m x n matrix W admits its close approxi-

'Here and hereafter the concepts “low”, “large”, “small”, “far”, “close”, etc. are defined in context.
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mation of rank at most r if and only if the matrix W has numerical rank at most r (then
we write nrank(W) < r) or equivalently if and only if

W =AB+E, [[E||/|IW]| < (1)

for A € C™*", B € C"™", a small integer r, a matrix norm || - ||, and a small tolerance
€. Such an LRA approximates the mn entries of W by using (m + n)r entries of A and B
rather than the mn entries of the matrix W, which is dramatic saving in the case where
(m+n)r < mn. (Here and hereafter inequalities a < b and b > a show that the ratio |a/b|
is small in context.) This is a crucial benefit in applications of LRA to Big Data Mining
and Analysis, where the input matrices are so immense that one can only access a tiny
fraction of all their entries, and one can further save memory space by representing LRA,
in its special form of CUR LRA (see Section 2).

Can we, however, compute close LRA at sub-linear cost, that is, by using much fewer
flops and memory cells than the input matrix has entries? Based on adversary argument
one can prove that no algorithm running at sub-linear cost can output close LRA of the
worst case inputs and even of the matrices of a small families of our Appendix A, but for
more than a decade Cross—Approximation (CA) iterations, running at sub-linear cost, have
been routinely computing close CUR LRA worldwide. Our main result (see Corollary 23,
Remark 24, and the end of Appendix A) provides long-missing partial formal support for
this empirical phenomenon.

Namely we restrict the class of input matrices to those close to matrices of sufficiently
low rank and assume that a loop of two C—A iterations begins at a submatrix that shares
its numerical rank with an input matrix. Then we readily prove that this loop outputs a
reasonably close CUR LRA.

We cannot choose an initial submatrix sharing numerical rank with a worst case input
matrix without accessing all or most of its entries of input matrix and similarly for the small
families of input matrices in Appendix A), but with a high probability this property holds
for any submatrix of a random input matrix [PLSZal, which can already explain empirical
power of C-A iterations dealing with real world input matrices. Moreover it is sufficient to
obtain such a desired submatrix for any C-A iteration, and the chances only increase at the
next C-A iteration together with the volume of the submatrix.

Our study provides new insight into LRA by means of C-A iterations. Our upper
estimates for the output errors of LRA slowly increase as an input matrix deviates from a
low rank matrix, but that restriction is rather mild (see Appendix C). These upper estimates
grow exponentially in numerical rank of an input matrix, thus restricting our main result to
inputs having a small constant numerical rank, but we firmly believe that with more work
that restrictions can be relaxed.

1.2 Earlier works

The reader can access extensive bibliography on LRA and CUR LRA via [HMT11], [M11],
[W14], [CBSW14], [0Z16], [KS16], [BW17], [SWZ17], [OZ18], [P18], and the references
therein.

The study of CUR (aka CGR and pseudo-skeleton) LRA can be traced back to the
skeleton decomposition in [G59] and QRP factorization in [G65] and [BG65], redefined and
refined as rank-revealing factorization in [C87].

The CUR LRA algorithms in [CH90], [CH92], [HP92], [HLY92], [CI94], [GE96], and
[P00] largely rely on the maximization of the volume (det(G*G))'/? of a CUR generator G



(which is a submatrix of an input matrix). This fundamental idea goes back to [K85] and
has been developed in [GZT95], [T96], [GTZ97], [GTZ97a], [GTO01], [GOSTZ10], [GT11],
[M14], and most recently in [OZ18].

The study in [GZT95], [T96], [GTZ97], and [GTZ97a] towards volume maximization
revealed the crucial property that the computation of LRA requires no factorization of the
input matrix but just proper selection of its row and column sets.

C—A iterations were a natural extension of this observation preceded by the Alternating
Least Squares method of [CC70] and [H70] and leading to dramatic empirical decrease of
quadratic memory space and cubic arithmetic time used by LRA algorithms. The concept
of C-A was implicit in [T96] and coined in [T00]; we credit [B00], [BRO3], [GOSTZ10],
[OT10], [B11], [KV16], and [KV16] for devising efficient C-A and adaptive C-A algorithms.

Our present results appeared in arxiv reports [PLSZ16, Section 5] and [PLSZ17, Part
II] together with various results on LRA of random input matrices.?

1.3 Organization of our paper

We define CUR LRA and C-A iterations in the next section. We devote Section 3 to
background material on matrix volumes, their maximization and its impact on LRA. In
Section 4 we recall C-A iterations and in Section 5 prove that they output reasonably close
LRA of a matrix having sufficiently low numerical rank. We recall relevant definitions of
matrix computations and some auxiliary results in the Appendix, where we also specify
some small families of input matrices that admit close LRA but are hard for computing it
at sub-linear cost.

2 Background: CUR LRA

We use basic definitions for matrix computations recalled in Appendix B.

CUR LRA of a matrix W of numerical rank at most r is defined by three matrices C,
U, and R, with C' and R made up of [ columns and k rows of W, respectively, U € C!**
said to be the nucleus of CUR LRA,?

0<r<k<m, r<Il<n, kl <mn, (2)

W =CUR+ E, and ||E||/||W]| <€, for a small tolerance € > 0. (3)

CUR LRA is a special case of LRA of (1), say, for A = LU, B = R, and k =1 = r.
Conversely, given LRA of (1) one can compute CUR LRA of (3) at sub-linear cost (see
[PLa] and [PLSZa]).

Define a canonical CUR LRA as follows.

(i) Fix two sets of columns and rows of W and define its two submatrices C' and R made
up of these columns and rows, respectively.

2The pioneering papers [PLSZ16] and [PLSZ17] provide first formal support for LRA at sub-linear cost,
which they call “superfast” LRA. That work, unsuccessfully submitted to ACM STOC 2017, has extended
to LRA the earlier techniques of [PQY15], [PZ17a], and [PZ17a], proposed for the analysis of randomized
Gaussian elimination with no pivoting and other fundamental matrix computations.

3The pioneering papers [GZT95], [GTZ97], [GTZ97a], [GT01], [GT11], [COSTZ10], [M14], [0Z16], and
[0Z18] define CGR approximations having nuclei G; “G” can stand, say, for “germ”. We use the acronym
CUR, more customary in the West. “U” can stand, say, for “unification factor”, and we notice the alternatives
of CNR, CCR, or CSR with N, C, and S standing for “nucleus”, “core”, and “seed”.



(ii) Define the k x I submatrix W}, ; made up of all common entries of C' and R, and call
it CUR generator.

(ili) Compute its rank-r truncation Wy, by setting to 0 all its singular values, except
for the r largest ones.

(iv) Compute the Moore-Penrose pseudo inverse U =: W,j . and call it the nucleus of
CUR LRA of the matrix W (cf. [DMMO08], [0Z18]); see alternative choices of nuclei in
[MDO09], [BW17], [SWZ17].

Notice that W,., = W, .., and if a CUR generator W, , is nonsingular, then U = Wr}l.

3 Background: Matrix Volumes

3.1 Definitions and the Hadamard’s bound

Definition 1. For a triple of integers k, [, and r such that 1 < r < min{k,[}, the volume
vo(M) and the r-projective volume vy (M) of a k x [ matrix M are defined as follows:

min{k,l}

vM):= [[ o;(M), vay(M) =] o;(M), (4)
j=1 j=1
vo (M) = vo(M) if r = min{k, 1}, (5)

v3(M) = det(MM*) if k > 1; v3(M) = det(M*M) if k <1, v3(M) = |det(M)|* if k = L.

By following [CI94], [GZT95], [GTZ97], [GTZ97a], [GE96], [P00], [GTO01], [GOSTZ10],
[GT11], [M14], [0Z16], and [OZ18], we use the concepts of volume and projectuve volume in
our study of CUR LRA; [B-192] shows some distinct applications of the concept of projective
volume.

Definition 2. The volume of a £ x [ submatrix Wz 7 of a matrix W is h-mazimal over all
k x | submatrices if it is maximal up to a factor of h. The volume vo(W<z 7) is column-wise
(resp. row-wise) h-maximal if it is h-maximal in the submatrix Wz, (resp. W. 7). The
volume of a submatrix Wz 7 is column-wise (resp. row-wise) locally h-maximal if it is h-
maximal over all submatrices of W that differ from the submatrix Wz 7 by a single column
(resp. single row). Call volume (he, hy)-mazimal if it is both column-wise h.-maximal and
row-wise h,-maximal. Likewise define locally (h, h,)-mazimal volume. Call 1-maximal and
(1, 1)-maximal volumes mazimal. Extend all these definitions to r-projective volumes.

For a k x | matrix M = (m;)] ;_;, write m; := (mij)k_ | and m; = ((mw)ézl)* for all
i and j. For k =1 = r recall the Hadamard’s bound

T T
vo(M) = |det(M)| <min {J] [lmyll, JT I, r”“gj@flmmlr}- (6)
j=1 i=1 e

3.2 Volume maximization and bounding a singular value

Hereafter we write
tgmh = (q— r)rh2 + 1. (7)



Lemma 3. (See [C194], [GZTY5], [GTZ97], [GTZ97a], [GEIE], [P0OO], [M1}], [OZ16], and
[0Z18].) Suppose that min{h, h'} > 1, Wz 7 € C¥*! is a submatriz of a matriz W € C™*".
Then

tngh or(Wr,7) > 0p(Wz,:)
if k=1 <1 and if the volume vo(W< 7) is locally column-wise h-mazimal and
tmrn 0r(Wz,7) > 00(W. 7)
if k> 1 =17 and if this volume is locally row-wise h'-mazximal.
Notice that vo(Wz,7) = va,(Wz, ) for the above matrices Wz, 7 of sizes r x [ and k x .

Proof. The lemma turns into [P00, Lemma 3.5] for £ = [ = r and is extended to the case
where r = min{k, [} because no singular value of a matrix increases in the transition to its
submatrix. O

3.3 The impact of volume maximization on CUR LRA

The estimates of the two following theorems in the Chebyshev matrix norm || - || increased
by a factor of y/mn turn into estimates in the Frobenius norm || - ||r (see (11)).

Theorem 4. [0Z18].* Suppose that v := min{k,l}, Wz 7 is the k x| CUR generator, U =
WIJFJ is the nucleus defining a canonical CUR LRA of an mxn matric W, E =W —CUR,
h > 1, and the volume of Wz g is h-mazimal, that is,

h UQ(WLJ) = mgx UQ(B)
where the mazimum is over all k X | submatrices B of the matriz W. Then

(k+1)(1+1)

Ello < h f(k,1) ora(W) for f(k,1) := k1

Theorem 5. [0Z18]. Suppose that Wy = Wz 7 is a k x | submatriz of an m x n matriz
W, U = W,;r“, 1s the nucleus of a canonical CUR LRA of W, E=W — CUR, h > 1, and
and the r-projective volume of Wz 7 is h-mazimal, that is,

h U27T(WZ7J) = rngx U27T(B)

where the mazimum is over all k X | submatrices B of the matriz W. Then

(k+ 1)1 +1)
G—r+1)(-r+1)

HEHC <h f(k?,l,T) JT+1(W) for f(ki,l,?") = \/

Observe the following corollary of Theorem 28.

Corollary 6. Suppose that BW = (BU|BV) for a nonsingilar matrix B and that the
submatrix U is h-maximal in the matrix W = (U|V'). Then the submatrix BU is h-maximal
in the matrix BW.

“The theorem first appeared in [GTO01, Corollary 2.3] in the special case where k = [ = r and m = n.



4 C—A iterations

Next we describe C—A iterations by involving two auxiliary Sub-algorithms A and B.

For a fixed 4-tuple of integers k, I, p, and g such that r < k <p<mandr <I<g<n
Sub-algorithm A is applied to a p X ¢ submatrix W of W and computes a k X [ submatrix
of W whose volume or projective volume is maximal up to a fixed factor A > 1 among all
k x | submatrices of WW.

Sub-algorithm B verifies whether the error norm of the CUR LRA built on a fixed CUR
generator is within a fixed tolerance T (see [PLa] on some verification recipes).

For simplicity one can first consider the C-A algorithm in the case where k = [ = r (see
Figure 1, borrowed from [PLSZa]).

Figure 1: The three successive C—A steps output three striped matrices.

Algorithm 7. C-A iterations.

INPUT: An m xn matrix W, a target rank r for its CUR LRA, a target size k x [ of a CUR
generator such that (2) holds, a positive 7, and a positive integer ITER.

OutpuT: A CUR LRA of W with error norm at most 7 or FAILURE.
INITIALIZATION: Fix a submatrix Wy made up of [ columns of W.

CoOMPUTATIONS: The algorithm recursively alternates “vertical” and “horizontal” C-A
steps. The ith C-A step is “vertical” for even ¢ and “horizontal” for odd i.
In both cases at the i-th step Sub-algorithm A is applied to a p x ¢ submatrix W;
of W and outputs a k x [ submatrix W/ of W;, which is used as a CUR generator in
order to build on it a CUR LRA of W.
At the “vertical” steps, p :=m, ¢ := [, and W; := W. 7 is an m x [ matrix made up
of [ columns of W.
At the “horizontal” steps, p := k, ¢ :=n, and W; := Wz, . is a k X n matrix made up
of k rows of W.
Sub-algorithm B verifies whether the error norm of the CUR LRA built of the CUR
generator W/ := Wz, 7. is within the tolerance 7. If so, the CUR LRA is output and
the computation stops.
If ¢ > ITER, the computation stops and FAILURE is output.
Otherwise the k x [ submatrix W/ of W is embedded into a submatrix W;,1 of W of

size k x n for even i and of size m x [ for odd i, and the next (i + 1)st C-A step is
initiated at this submatrix.



5 CUR LRA by Means of C—A Iterations

We can apply C—A steps by choosing deterministic algorithms of [GE96] for Sub-algorithm
A. In this case ml and kn memory cells and O(mi?) and O(k?n) flops are involved in “ver-
tical” and “horizontal” C-A iterations, respectively. They are superfast if k2 = o(m) and
12 = o(n) and output submatrices having h-maximal volumes for h being a low degree poly-
nomial in m + n. Every iteration outputs a matrix that has locally A-maximal volume in a
“vertical” or “horizontal” submatrix, and the hope is to obtain globally h-maximal subma-
trix (for reasonably bounded h) when maximization is performed recursively in alternating
directions.

Remark 8. Alternative algorithms of [P00] do the same as those of [GE96], although they
square the h of [GE96]. Empirically the algorithms of both [GE96] and [P00] are superseded
by the algorithm mazvol of [GOSTZ10].

Of course, the contribution of C-A step is nil where it is applied to a p X ¢ input whose
volume 0 or nearly vanishes compared to the target maximum, but the consistent success
of C-A iterations in practice suggests that in a small number of loops such a degeneration
is regularly avoided.

Next we show that it is avoided and that already two successive C-A iterations output
a CUR generator having h-maximal volume and projective volume (and then we estimate
h) in the case where the iterations begin at a p x ¢ submatrix of W that shares its rank
r > 0 with W. By continuity of the volume the result is extended to small perturbations of
such matrices.

In the next two subsections we consider the worst case input matriz W of a rank r and
two successive C-A steps initiated at its two submatrices of rank r. In this case we prove
that the k x [ output matrix Wy for min{k,!} = r has h-maximal volume among k x I
submatrices of the input matrix W for h of order (mnr)™/2, which decreases to order of 7"
if k =1 = r. This order is reasonable for small r, and in that case we arrive at a reasonably
close CUR LRA of the matrix W by virtue of Theorem 4.

In Section 5.3 we extend these results to the maximization of r-projective volume rather
than the volume of a CUR generator. (Theorem 5 shows benefits of such a maximization.)

In Section 5.4 we summarize our study in this section and comment on the estimated
and empirical performance of C-A iterations.

5.1 From locally to globally A-maximal volumes of full rank submatrices

Theorem 9. Suppose that a rx1 submatriz U has a nonzero column-wise locally h-mazimal
volume in the matriz W = (U | V)) € C™*" for h > 1. Then this submatriz has h-mazimal
volume in the matric W for h =1t . fort,.n of (7).

n,r,h

Proof. By means of orthogonalization of the rows of the matrix W obtain its factorization
W = RQ where R is a r X r nonsingular matrix and Q = (R7'U | R7'V) is a r x n unitary
matrix and deduce from Corollary 6 that the volume of the matrix R~'U is column-wise
locally h-maximal in the matrix Q.

Therefore o,,(R71U) > 0,(Q)/tn.rn by virtue of Lemma 3.

Combine this bound with the relationships ¢,.(Q) = 1 and ve(R™'V) > (0.(R™V))"
and deduce that /ﬂvg(R_lU) >1for h = tr .5, of equation (7).

Notice that v9(Q;) < v2(Q) =1 for any’r7 x | submatrix Q; of Q.



Hence the volume vy(R™1U) is h-maximal in Q.
Now Theorem 9 follows from Corollary 6. 0

Example 10. The bound of Theorem 9 is quite tight for r = h = 1. Indeed the unit row
vector v = ﬁ(l, ..., )T of dimension n is a r x n matrix for 7 = 1. Its coordinates are

r X r submatrices, all having volume % Now notice that v/n & h = ((n—1)+1)1/2 = tn1
(cf. equation (7)).

Remark 11. The theorem is readily extended to the case of a k x n matrix W of rank r,
0 < r <k < n, where r-projective volume replaces volume. Indeed row ortogonalization
reduces the extended claim precisely to Theorem 9.

Next we decrease the upper bound h= tr ., of Theorem 9 in the case where [ = r (cf.
[GOSTZ10]). We begin with a lemma.

Lemma 12. Let W = (I, | V) € C™*" for r < n and let the submatriz I, have column-wise
locally h-mazimal volume in W for h > 1. Then ||W||c < h.

Proof. Let |w;;| > h for an entry w;; of the matrix W, where, say, i = 1. Interchange its
} T

first and jth columns. Then the leftmost block I, turns into the matrix R = wéj Iu )
r—1

Hence va(R) = |det(R)| = |wi;| > h. Therefore I, is not a column-wise locally h-maximal

submatrix of W. The contradiction implies that ||[W||c < h. O

Theorem 13. Suppose that r X r submatriz U has a nonzero column-wise locally h-mazimal
volume in a matric W = (U | V') € C™" for h > 1. Then this submatriz has h-mazimal
volume in W for h = h'r"/2,

Proof. Apply Lemma 12 to the matrix U™'W = (I, | V) for V = U~'V’ and obtain that
[|[U='W]||c < h. Hadamard’s bound (6) for M = V implies that the volume 1 of the
submatrix I is h-maximal in the matrix U~ W for the claimed value of h. Now deduce
from Corollary 6 that the submatrix U has h-maximal volume in W. O

Remark 14. Clearly the bound h= ty.rp, Of Theorem 9 is larger than the bound h=7r"/2 of
Theorem 13, but how much larger? Substitute a slightly smaller expression ((k — r)rh?)1/?
for tg . = ((k —7)rh? + 1)1/2 of equation (7) into the equation h = t,,.n and observe that
the resulting decreased value is still larger than h = h"r"/2 by a factor of (n — r)"/2.

5.2 Volume of the output of a C—A loop

First we compare SVDs of two matrices W and W and obtain the following lemma.
Lemma 15. ¢;(W)o;(W™) =1 for all matrices W and all subscripts j, j < rank(W).

Corollary 16. vo(W)va(W*) =1 and va . (W)ve, (W) = 1 for all matrices W of full rank
and all integers r such that 1 < r < rank(W).

Now we are ready to prove that for some specific constants g and h nonzero volume of
a k x | submatrix of a rank-r matrix W is g-maximal globally, that is, over all its k x [
submatrices, if it is h-maximal locally, over the k x [ submatrices of two input matrices of
two successive C-A steps.



Theorem 17. Suppose that the volume of a k x | submatrix Wz, 7 is nonzero and (h,h')-
mazimal in a matric W for h > 1 and ' > 1 where rank(W) = r = min{k,l}. Then this
volume is hh'-mazimal over all its k x | submatrices of the matriz W.

Proof. The matrix Wz 7 has full rank because its volume is nonzero.
Fix any k x [ submatrix Wz 7/ of the matrix W, recall that W = CU R, and obtain that

W g0 = WI/JWZJCJWIJ/.
If £ <, then first apply claim (iii) of Theorem 28 for G := Wy 7 and H := WI"FJ; then
apply claim (i) of that theorem for G := Wy, jW_fi—i: 7 and H := Wz 7 and obtain that
va(Wr g Wi s Wz,50) < va(Wrr 7 )v2 (Wi 1 )va(Wr 7).
If £ > | deduce the same bound by applying the same argument to the matrix equation
Wig0 = Wi Wi 5Wi 5.
Combine this bound with Corollary 16 for W replaced by Wz 7 and deduce that
(W g1) = v2(Wr g Wi Wz 71) < v2(Wrr 7 )va(Wr,g7) [0(Wr,7). (8)
Recall that the matrix Wz 7 is (h, h')-maximal and conclude that
hva(Wz,7) > va(Wr 77) and hva(Wz,7) > va(Wrr 7).
Substitute these inequalities into the above bound on the volume vo(W7/ 7/) and obtain
that vo(Wzr 7/) < hh'va(Wz 7). O
5.3 From maximal volume to maximal r-projective volume

Recall that the CUR LRA error bound of Theorem 4 is strengthened when we shift to Theo-

rem 5, that is, maximize r-projective volume for » < k = [ rather than the volume. Next we

reduce maximization of r-projective volume of a CUR generators to volume maximization.
Corollary 6 implies the following lemma.

Lemma 18. Let M and N be a pair of k x I submatrices of a k x n matrix and let () be
a k X k unitary matriz. Then va(M)/va(N) = vo(QM)/v2(QN), and if r < min{k,l} then
also va (M) /var(N) = v2,(QM)/v2,(QN).

Algorithm 19. [From the maximal volume to the maximal r-projective volume.]

INPUT: Four integers k, I, n, and r such that 0 < r < k and r <[ < n, a k X n matrix
W of rank r and a black box algorithm that computes a r x [ submatrix of maximal
volume in a r X n matrix of full rank r.

OuTPUT: A column set J such that the £ x [ submatrix W. 7 has maximal r-projective
volume in the matrix W.

COMPUTATIONS: 1. Compute a rank-revealing QRP factorization W = QRP, where Q
/

g),andR’isarxn

matrix.? (See [GL13, Sections 5.4.3 and 5.4.4] and [GE96].)

is a unitary matrix, P is a permutation matrix, R = (

5One can apply other rank-revealing factorizations instead.



2. Compute a r x I submatrix R ; of R’ having maximal volume v2(R’) and output
the matrix W. 7.

/
@)
the matrix R, respectively, by virtue of Theorem 28 and because vy(R) = v, (R) = v, (R').

Therefore the submatrix W. 7 has maximal r-projective volume in the matrix W by virtue
of Lemma 18.

The submatrices R’ and (R

) have maximal volume and maximal r-projective volume in

Remark 20. By transposing a horizontal input matrix W and interchanging the integers
m with n and k with [ we extend the algorithm to computing a k x [ submatrix of maximal
or nearly maximal r-projective volume in an m x [ matrix of rank r.

5.4 Complexity and accuracy of a two-step C—A loop

By combining Theorems 9 and 13 deduce that the volume of a 7 x [ submatrix is A-maximal
in a 7 X n matrix of rank r for h = b if I > r and for h = h"r"/2 if | = r provided that
the volume of the submatrix is column-wise locally h-maximal. In this case we obtain that
Algorithm 19 computes a k x [ submatrix having maximal r-projective volume in an m x n
matrix of rank r for any 5-tuple of integers k, [, m, n, and r such that r < k < m and
r <1 < n. The following theorem summarizes these observations.

Theorem 21. Given five integers k, [, m, n, and r such that r < k < m andr <1 < n,
suppose that two successive C-A steps (say, based on the algorithms of [GE96] or [P00])
combined with Algorithm 19 have been applied to an m x n matrix W of rank r and have
output k x 1 submatrices W{ and W4 = Wz, 7, with nonzero r-projective column-wise
locally h-mazimal and nonzero r-projective row-wise locally h'-mazximal volumes, respec-
tively. Then the submatriz W} has h-mazimal r-projective volume in the matrizx W for
h:= (tnrhtmenr)" for tt21,r,h = (g —7r)rh® 41 of equation (7). The bound on h decreases to
(hW'r) ifk=1=r.

Proof. By applying Algorithm 19 reduce the claim of the theorem to the case where -
projective volume is equal to the volume of a matrix of full rank . Then combine Theorems
9,13, and 17. ]

Remark 22. [Cf. Remark 14.] How sharp is the estimate h := (tnrhtmrnr)" of Theorem
21?7 Substitute a slightly smaller expression ((k—r)rh?)Y/2 for ty, ., = ((k—r)rh?+1)"/? into
the product (¢, ptm,rn7)". Then its value decreases but still exceeds the bound (hh/r)" by
a factor of ((m —r)(n —r))"/2.

In this section we arrived at a C—A algorithm that computes a CUR approximation of
a rank-r matrix W. Let us summarize our study by combining Theorems 4, 5, and 21.

Corollary 23. Under the assumptions of Theorem 21 apply a two-step C—A loop to an
m X n matrix W and suppose that both its C-A steps output k x [ submatrices having
nonzero r-projective column-wise and row-wise locally h-maximal volumes (see Remarks 24
and 8). Build a canonical CUR LRA on a CUR generator Wy = Wy, of rank r output by
the second C-A step. Then

(i) the computation of this CUR LRA by using the auxiliary algorithms of [GE96] or
[P00] involves (m + n)r memory cells and O((m + n)r?) flops® and

5For r = 1 an input matrix turns into a vector of dimension m or n, and then we compute its absolutely
maximal coordinate just by applying m — 1 or n — 1 comparisons, respectively.
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(ii) the error matrix E of the output CUR LRA satisfies the bound [[Ellc <
g(k,l,7) h op41(W) for h of Theorem 21 and g(k,l,r) denoting the functions f(k,l) of
Theorem 4 or f(k,l,r) of Theorem 5. In particular ||E||c < 2hh oo(W) for k=1=1r = 1.

Remark 24. Theorem 27 enables us to extend Algorithm 19, Theorem 21, and Corollary
23 to the case of an input matrix W of numerical rank r provided that the volume of the
k x n input submatrix of C—A iterations stays nonzero in the transition from this matrix

W to its LRA W'.
Appendix

A Small families of hard inputs for sub-linear cost LRA

Any sub-linear cost LRA algorithm fails on the following small families of LRA inputs.

Example 25. Define the following family of m x n matrices of rank 1 (we call them o-
matrices): {A;j, i=1,...,m; j=1,...,n}. Also include the m x n null matrix O, , into
this family. Now fix any sub-linear cost algorithm; it does not access the (i, 7)th entry of its
input matrices for some pair of 7 and j. Therefore it outputs the same approximation of the
matrices A; ; and Oy, ,,, with an undetected error at least 1/2. Apply the same argument
to the set of mn + 1 small-norm perturbations of the matrices of the above family and to
the mn 41 sums of the latter matrices with any fixed m x n matrix of low rank. Finally, the
same argument shows that a posteriori estimation of the output errors of an LRA algorithm
applied to the same input families cannot run at sub-linear cost.

This example actually covers randomized LRA algorithms as well. Indeed suppose that
an LRA algorithm does not access a constant fraction of the entries of an input matrix.
Then with a constant probability the algorithm misses an entry whose value greatly exceeds
those of all other entries, in which case the algorithm can hardly approximate that entry
closely. We show, however, that close LRA can be computed at sub-linear cost in two
successive C-A iterations provided that we avoid choosing degenerating initial submatrix,
which is precisely the problem with the matrix families of Example 25. The sub-linear
cost algorithms of [MW17] and [BW18] compute LRA of matrices of two important special
matrix classes.

B Definitions for matrix computations and a lemma

Next we recall some basic definitions for matrix computations (cf. [ABBB99], [GL13]).
C™*™ is the class of m x n matrices with complex entries.
I denotes the s x s identity matrix. O, denotes the ¢ x s matrix filled with zeros.
diag(Bi,...,Bg) = diag(Bj);?:1 denotes a k x k block diagonal matrix with diagonal
blocks By, ..., Bg.
(By| ... | Bx) and (Bhy,...,By) denote a 1 x k block matrix with blocks By, ..., By.
WT and W* denote the transpose and the Hermitian transpose of an m x n matrix
W = (wij)i5Z,, respectively. W* = WT if the matrix W is real.
For two sets Z C {1,...,m} and J C {1,...,n} define the submatrices

Wz, = (wij)iezj=1,..n, Wo.7 = (Wi j)i=1,...mjeg, and Wz 7 := (w;;)iezjeg. (9)

11



An m x n matrix W is unitary (also orthogonal when real) if W*W = I, or WW* = [,,,.
Compact SVD of a matrix W, hereafter just SVD, is defined by the equations

W = SwEwTy, (10)

where Sy Sw = Ty Tw = 1,, Sw = diag(aj(W))]R:l, p = rank(W),

0;(W) denotes the jth largest singular value of W for j =1,...,p; 0;(W) =0 for j > p.
W] = |[W||2, ||W]|F, and ||W]|c denote spectral, Frobenius, and Chebyshev norms of
a matrix W, respectively, such that (see [GL13, Section 2.3.2 and Corollary 2.3.2])

m,n rank(W)
Wl =or(W), [[W][7:= > lwyl>= D o2(W), [Wlc:= max [wyg,
ij=1 j=1 =
(Wlle < [IW]| < |IW][r < Vmn [[W]lo, [[W][E < min{m,n} |[W]]*. (11)

W+ = TWEI;}S% is the Moore—Penrose pseudo inverse of an m x n matrix W.
Wl (W) =1 (12)

for a full rank matrix W.

A matrix W has e-rank at most r > 0 for a fixed tolerance ¢ > 0 if there is a matrix W’
of rank r such that |[|[W’ — W]||/||W|| < e. We write nrank(W) = r and say that a matrix
W has numerical rank r if it has e-rank r for a small e.

Lemma 26. Let G € CF*", ¥ € C™" and H € C™! and let the matrices G, H and ¥ have
full rank v < min{k,l}. Then |[(GZH)Y|| <||GT|| [T ||HT]]-

Proof. For the sake of completeness we include a proof of this well-known result.

Let G = SgXaglg and H = SyXgTy be SVDs where Sg, T, Dy, and Ty are unitary
matrices, X and Xy are the r x r nonsingular diagonal matrices of the singular values,
and T and Sp are r X r matrices. Write

M :=3ScTeSSyYy.
Then
Mt =2 Sy iTEs st

and consequently
- -1 - -1
MY < IZZISEIIETHITEN 11EE]:

Hence
MY < = IETH] B

because Sy and T are unitary matrices. It follows from (12) for W = M that

or(M) > 0,(G)or(X)o,(H).

Now let M = Sy 3T be SVD where Sy; and Ty are r X r unitary matrices.

Then S := S¢Sy and T := Ty Ty are unitary matrices, and so GXH = SY /1T is SVD.

Therefore 0,(GEH) = 0,(M) > 0,(G)o,(X)o,(H). Combine this bound with (12) for
W standing for G, ¥, H, and GXH. O
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C The volume and r-projective volume of a perturbed matrix

Theorem 27. Suppose that W' and E are k x | matrices, rank(W') = r < min{k, [},
W =W'+E, and ||E|| < e. Then

(1-5) = 11 (- om) Zj,f(%) <1 (o) = (o) - )
If min{k, 1} = r, then va(W) = va (W), va(W') = va,,(W'), and
(1= 5am) = Zjévvvvg - 5§<(VVVV)> < (1+ o) 1)

Proof. Bounds (13) follow because a perturbation of a matrix within a norm bound € changes
its singular values by at most € (see [GL13, Corollary 8.6.2]). Bounds (14) follow because
V(M) = va, (M) = [}, 0j(M) for any k x | matrix M with min{k,l} = r, in particular
for M =W and M =W =W'+ E. O

If the ratio W is small, then (1 — W)T =1- O(#) and (1 + W)T -

1+ O(o,f(ﬂ;V)) which shows that the relative perturbation of the volume is amplified by at

most a factor of r in comparison to the relative perturbation of the r largest singular values.

D The volume and r-projective volume of a matrix product

Theorem 28. [See Examples 29 and 30 below.]
Suppose that W = GH for an m x q matriz G and a ¢ X n matriz H. Then
(i) v2a(W) = va(G)va(H) if ¢ = min{m,n}; va(W) =0 < v2(G)v2(H) if ¢ < min{m,n}.
(1) va, (W) < wva,(G)vg,(H) for 1 <r <gq,
(i53) va(W) < v2(G)v2(H) if m =n <gq.

The following examples show some limitations on the extension of the theorem.

Example 29. If G and H are unitary matrices and if GH = O, then va(G) = vo(H) =
V2, (G) =v9,(H) =1 and v2(GH) = vo,(GH) = 0 for all » < q.

Example 30. If G = (1 | 0) and H = diag(1,0), then v2(G) = v2(GH) = 1 and va(H) = 0.

Proof. The theorem has been proved in [OZ18]. Next we include an alternative proof.

We first prove claim (i).

Let G = Sg¥XgT{ and H = SyXyTy be SVDs such that Yg, T4, Sy, Yy, and
U =T}Su are g x ¢ matrices and Sg, T, Sg, Tf;, and U are unitary matrices.

Write V' := ¥qUXp. Notice that det(V) = det(X¢q)det(U)det(Xg). Further-
more |det(U)| = 1 because U is a square unitary matrix. Hence vo(V) = |det(V)| =
|det(X¢) det(Xg)| = v2(G)va(H).

Now let V' = Sy Xy Ty, be SVD where Sy, Xy, and T3, are ¢ x ¢ matrices and where Sy
and T7; are unitary matrices.

Observe that W = SqVTy = SaSvEivIyTy = SwivTy, where Sy = SgSy and
Ty, = Ty, Ty, are unitary matrices. Consequently W = Sy Xy 17, is SVD, and so Yy = Xy

Therefore va(W) = v2(V) = v2(G)va(H) unless ¢ < min{m,n}. This proves claim (i)
because clearly va(W) = 0 if ¢ < min{m,n}.

13



Next prove claim (ii).

First assume that ¢ < min{m,n} as in claim (i) and let W = Sy Xw Ty, be SVD.

In this case we have proven that Xy = Yy for V = XqUXH, ¢ X ¢ diagonal matrices
Y and Yy, and a ¢ x ¢ unitary matrix U. Consequently vy (W) = va,(Xv).

In order to prove claim (ii) in the case where ¢ < min{m,n}, it remains to deduce that

0277«(2\/) < ’Ugm(G)UQ,T(H). (15)

Notice that Xy = S}, VTy = S, XqUX Ty for ¢ X q unitary matrices Sy, and Hy .

Let X,y denote the r x r leading submatrix of Xy, and so X,y = GH where G =
Srv2qU and H = YuT,.yv and where S,y and T,y denote the r x ¢ leftmost unitary
submatrices of the matrices Sy and Ty, respectively.

Observe that aj(é) < 0(G) for all j because G is a submatrix of the ¢ x ¢ matrix
Sy veU, and s1m11arly oj(H H) < oj(H) for all j. Therefore ’UQJ(@) = 15(G) < v2.-(G) and
’UQ,T(H) = UQ(H) < vy r( ) Also notice that Ug,r(znv) = Ug(va).

Furthermore vy (%, ) < v9(G)va(H) by virtue of claim (i) because Yv = GH.

Combine the latter relationships and obtain (15), which implies claim (ii) in the case
where ¢ < min{m,n}.

Next we extend claim (ii) to the general case of any positive integer gq.

Embed a matrix H into a ¢ x ¢ matrix H' := (H | O) banded by zeros if ¢ > n. Otherwise
write H' := H. Likewise embed a matrix G into a g x ¢ matrix G’ := (GT | O) banded by
zeros if ¢ > m. Otherwise write G’ := G.

Apply claim (ii) to the m’ x ¢ matrix G’ and ¢ x n’ matrix H where ¢ < min{m’,n’}.

Obtain that ve,(G'H') < vg,(G")ve,(H').

Substitute equations va ,(G') = v2,,(G), vo,(H') = v2,(H), and v, (G'H') = v, (GH),
which hold because the embedding keeps invariant the singular values and therefore keeps
invariant the volumes of the matrices G, H, and GH. This completes the proof of claim
(ii), which implies claim (iii) because v2(V') = vo (V) if V stands for G, H, or GH and if
m=n<gq. O

E Optimization of the sizes of CUR generators

Let us optimize the size k x [ of a CUR generator towards minimization of the bounds of
Theorems 4 and 5 on the error norm ||E||c.
The bound of Theorem 4 turns into

1Elle < (r+1) hora (W)

if k =1=r and into

1Elle < A+ 1/5)( + 1) h oy (W)
ifk=r=0B+1)l—-1lorl=r= (b + 1)k — 1 and if b > 0, that is, we decrease the output

error bound by a factor of in the latter case.

1+1/b
The bound of Theorem 5 turns into

|Ellc < (1+1/b)h orpa (W)

and is minimized for k =1 = (b+ 1)r — 1 and a positive b.
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Thus the volume is maximal where min{k,l} = r < max{k,[}, and the r-projective
volume is maximal where [ = k > r. The upper estimate of Theorem 5 for the norm ||E||c
converges to 0,41 (W) as h — 1 and b — oo.
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