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Abstract
Deep neural networks (DNNs), especially deep convolutional
neural networks (CNNs), have emerged as the powerful tech-
nique in various machine learning applications. However, the
large model sizes of DNNs yield high demands on computa-
tion resource and weight storage, thereby limiting the prac-
tical deployment of DNNs. To overcome these limitations,
this paper proposes to impose the circulant structure to the
construction of convolutional layers, and hence leads to cir-
culant convolutional layers (CircConvs) and circulant CNNs.
The circulant structure and models can be either trained from
scratch or re-trained from a pre-trained non-circulant model,
thereby making it very flexible for different training environ-
ments. Through extensive experiments, such strong structure-
imposing approach is proved to be able to substantially re-
duce the number of parameters of convolutional layers and
enable significant saving of computational cost by using fast
multiplication of the circulant tensor.

Introduction
Large-scale deep neural networks (DNNs), especially deep
convolutional neural networks (CNNs), have achieved ex-
traordinary success in various artificial intelligence appli-
cations such as image recognition, video analysis, etc.
(Krizhevsky, Sutskever, and Hinton 2012; He et al. 2016;
Karpathy et al. 2014). However, the large model sizes of
DNNs make themselves both computation-intensive and
memory-intensive, thereby potentially hindering the ex-
pected widespread deployment of DNNs in many latency-
sensitive resource-constrained applications.

To address these limitations, many approaches (Han,
Mao, and Dally 2015; Gong et al. 2014; Wen et al. 2016;
Feng and Darrell 2015) have been proposed to reduce the
computational cost and/or memory footprint of DNNs. In
general, those existing efforts can be roughly categorized as
two types: fully-connected layer-oriented reduction, such as
connection pruning (Han, Mao, and Dally 2015)1, weight
clustering (Gong et al. 2014), and convolutional layer-
oriented reduction, such as low rank approximation (Jader-
berg, Vedaldi, and Zisserman 2014), sparsity regularization
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1It can also bring reduction for convolutional layers to some
degree. But the most reduction in the number of parameters is
achieved on fully-connected layers.

(Wen et al. 2016; Feng and Darrell 2015). Nowadays, con-
sider 1) convolutional layers consume most of the com-
putational processing in DNNs and 2) many state-of-the-
art DNNs, such as ResNet (He et al. 2016) and Inception
(Szegedy et al. 2015), use very few fully-connected layers
that only contain a small portion of parameters of the en-
tire models (e.g. less than 5% parameters for fully-connected
layers in ResNet-152), the reduction on computational cost
and numbers of parameters of convolutional layers become
very essential.

Technical preview and advantages. In this paper we
propose to impose the circulant structure to the construc-
tion of convolutional layers shown in Figure 1, yielding
low-computation-complexity, low-space-cost circulant con-
volutional layers (CircConvs) and the corresponding circu-
lant CNNs. Different from prior convolutional layer-oriented
compression approaches that are based on the unstructured
tensors, the model-size reduction in this paper results from
the use of circulant tensors (Rezghi and Eldén 2011): The
weight tensors for convolutional layers, which were origi-
nal unstructured, are now constructed in the circulant for-
mat, thereby leading to substantial reduction in computa-
tional cost and numbers of parameters. In short, the proposed
approach brings the following advantages:

1) It reduces the space cost of the convolutional layers
because of the inherent spatial regularity of circulant tensors,
thereby resulting in high compression ratios for the overall
network model sizes.

2) It saves the computation of the convolutional layers
by leveraging the fast circulant tensor-specific multiplication
algorithm, and hence greatly reduces the computational cost
of the entire networks.

3) It enables the improved accuracy for the correspond-
ing circulant CNNs as compared with the similar-size non-
circulant CNNs. In other words, the benefits of model-size
reduction resulting from using circulant convolutional layers
can translate to the increase of accuracy.

4) The circulant structure can be imposed by either train-
ing from scratch or re-training from a pre-trained non-
circulant model, thereby making circulant CNNs very flexi-
ble for different training environments.

We conduct extensive experiments on circulant CNNs
and the results show that the proposed circulant structure-
imposing approach can effectively reduce the model sizes



Figure 1: Illustration of a circulant weight tensor. Blocks of
the same color in the middle share the same set of kernel
weights (on the right). This significantly reduces the total
amount of parameters needed to represent this tensor. In ad-
dition, the placement of blocks displays a circulant structure,
facilitating FFT-based fast algorithms.

and floating point operations (FLOPs) with negligible ac-
curacy drop. In addition, the experiments on wide ResNets
show that the proposed approach leads to better accuracy
than the non-circulant ResNet models with similar numbers
of parameters. Furthermore, we also compare the FLOPs of
the proposed circulant CNN models with the non-circulant
CNN models, and experimental results show that our pro-
posed method can reduce FLOPs for the inference.

Related Work
Weight pruning/clustering. (Gong et al. 2014) proposes
to cluster the weights to reduce the model sizes of DNNs.
In that work, various types of weight clustering, including
scalar quantization, product quantization, residual quantiza-
tion, are investigated. (Han, Mao, and Dally 2015) proposes
a multi-step compression pipeline comprising of weight
pruning, clustering, and quantization to achieve high com-
pression ratios for the entire networks. Notice that as indi-
cated in (Wen et al. 2016), because most parameter reduc-
tion in (Gong et al. 2014) and (Han, Mao, and Dally 2015)
are achieved on fully-connected layers, the reduction in the
computational cost of convolutional layers is not significant.
In addition, it is also found that weight parameters in fre-
quency domain can be pruned (Wang et al. 2016) or clus-
tered via a hashing function (Chen et al. 2016).

Low rank approximation (LRA). LRA is an efficient
approach to compress DNNs (Jaderberg, Vedaldi, and Zis-
serman 2014; Sainath et al. 2013; Zhao, Li, and Gong 2016).
In (Jaderberg, Vedaldi, and Zisserman 2014), various types
of LRA-based solutions are proposed to reduce the numbers
of parameters and computational cost of convolutional lay-
ers. However, the model-size reduction using LRA usually
requires costly reiterations of decomposition and fine-tuning
to minimize the approximation error and retain the accuracy.

Sparsity regularization. Increasing the sparsity of net-
work by performing regularization is another popular tech-
nique to reduce model sizes of DNNs. (Feng and Darrell
2015), (Girosi, Jones, and Poggio 1995) and (Wen et al.
2016) propose several sparsity-introducing techniques by
leveraging different types of regularization, such as L1-
norm, group-lasso etc. Though sparsity regularization essen-
tially provides a stable reduction in computational cost, the
resulting reduction in model size is not significant.

Structured transform. By using structured matrices, the
structured transform can enable very high compression ra-

tios for fully-connected (FC) layers. In (Sindhwani, Sainath,
and Kumar 2015; Cheng et al. 2015; Moczulski et al. 2015),
weight matrices are constructed in the format of structured
matrices to achieve significant reduction in model sizes.
(Zhao et al. 2017) further proves that the low displacement
rank-based neural networks, which are the generalization of
the structured networks can still exhibit universal approxi-
mation property. However, the FC layer-specific approaches
in (Sindhwani, Sainath, and Kumar 2015; Cheng et al. 2015;
Moczulski et al. 2015) cannot be directly applied to the
popular and important convolutional layers. Instead, con-
sider FC layer can be viewed as a type of special convo-
lutional layer, our proposed circulant convolution-imposing
approach has more generality and is very useful for practi-
cal applications. Particularly, compared with (Cheng et al.
2015) and (Sindhwani, Sainath, and Kumar 2015), we gen-
eralize the structure from regular 2D weight matrix in fully
connected layer to the 4D weight tensor in convolutional
layer, where the underlying computation is totally different.

Moreover, this paper is significantly different from two
related works (Ding et al. 2017; Wang et al. 2018) in fol-
lowing aspects: 1) we propose an approach on direct opera-
tion on 4D circulant tensor with all the algorithm-level de-
tails; while prior works require extra processing step to con-
vert tensor to matrix; 2) we perform comprehensive experi-
ments on circulant convolution and present accuracy results
and analysis on different datasets; 3) we propose a novel al-
gorithm to convert non-circulant tensor into circulant ten-
sor, thereby making obtaining circulant convolution on pre-
trained non-circulant models become possible; while prior
works can only train the structure from scratch.

Imposing Circulant Structure to
Convolutional Layers

Circulant Convolutional Layer

Conventional convolutional layer. In general, a convo-
lutional layer maps a 3-dimensional input tensor X ∈
RW0×H0×C0 into a 3-dimensional output tensor Y ∈
RW2×H2×C2 through convolution with a 4-dimensional ker-
nel tensor W ∈ RW1×H1×C0×C2 . Here Wi and Hi for
i = 0, 1, 2, are the spatial width and height of the input,
kernel, and output tensor, respectively; C0 and C2 are the
number of input channels and output channels. The convo-
lution operation is expressed as follows:

Y(w2, h2, c2) =

W1∑
w1=1

H1∑
h1=1

C0∑
c0=1

(
X (w2 − w1, h2 − h1,

c0) · W(w1, h1, c0, c2)
)
. (1)

Although stride can be set for convolution, we consider
the case of stride that equals to 1 to make a better under-
standing of circulant convolution. It should be noted that
stride wouldn’t affect our convolution algorithm and design.
Moreover, we can express Eq. 1 in the form of a fiber multi-



plied by a slice as below:

Y(w2, h2, :) =

W1∑
w1=1

H1∑
h1=1

(
X (w2 − w1, h2 − h1, :)

∗W(w1, h1, :, :)
)
, (2)

where ∗ and : denote the matrix-vector multiplication and
the range of indices, respectively.

Circulant convolutional layer. Different from a conven-
tional convolutional layer, the circulant convolutional layer
has a weight tensor W that exhibits circulant structure. In
other words, theW of a circulant convolution layer is a 4D
circulant tensors (Rezghi and Eldén 2011). In general, a cir-
culant tensor can exhibit circulant structure along any pair
of its dimensions. However, as W1 and H1 are usually much
smaller than C0 and C2 for tensor W , we impose the cir-
culant structure along the input channel and output channel
dimensions to achieve high model-size compression ratio.
Note that in practice we need to partition the tensorW into
circulant sub-tensors of size W1×H1×N×N . This is nec-
essary because the circulant structure requires that the two
corresponding dimension must be equal, while C0 and C2

are usually not the same. Larger N means larger compres-
sion ratio but it could hurt the model performance to some
degree. By adjusting the partition size N we can balance the
trade-off between compression ratio and model accuracy.

More specifically, let N be the partition size with C0 =
R × N and C2 = S × N 2, then W can be defined by a
4-dimensional base tensorW ′ ∈ RW1×H1×RN×S :

W(w1, h1, c0, c2) =W ′(w1, h1, p, q), (3)

where p, q are indices satisfying bc0/Nc = bp/Nc,
bc2/Nc = q, and c0 − c2 ≡ p (mod N). Fig. 1 illustrates
the circulant structure of weight tensor W . From this fig-
ure, it can be seen that the circulant structure is imposed to
W along the input/output channel dimensions. The block-
circulant weight tensor consists of six circulant weight sub-
tensors, where different colors represent different circulant
weight sub-tensors. Each circulant weight sub-tensor con-
sists of sixteen kernel filters that are represented in different
colors such as green and yellow.

Fast Forward and Backward Propagation Schemes
on Circulant Convolutional Layer
Eq. 3 shows that the weight tensorW of a circulant convo-
lutional layer exhibits the circulant structure and has the re-
duced number of independent parameters. Besides, accord-
ing to the tensor theory (Rezghi and Eldén 2011), circulant
tensor also has the advantage of fast multiplication. Since
multiplication is the kernel computation in neural network
training and inference, the existence of fast multiplication of
circulant tensor enables the immediate reduction in compu-
tational cost. Next, we describe the fast forward and back-
ward propagation schemes by leveraging the fast multiplica-
tion of circulant weight tensor.

2Zero-padding is needed when N does not divide C0 or C2.

Fast forward propagation. We first present the fast for-
ward propagation scheme. Recall that Eq. 2 is the forward
propagation scheme for a general convolutional layer. To
ease the notation, define Nk = ((k − 1)N + 1, ..., kN) for
k = 1, ...,max(R,S), and rewrite Eq. 2 as below:

Y(w2, h2, Ni) =

W1∑
w1=1

H1∑
h1=1

R∑
j=1

(
X (w2 − w1,

h2 − h1, Nj) ∗W(w1, h1, Nj , Ni)
)
, (4)

where i ∈ {1, . . . , S}. According to (Rezghi and Eldén
2011; Pan 2012), Fast Fourier Transform (FFT) can be used
to accelerate the multiplication of a fiber and a slice of cir-
culant tensor with time complexity reduced from O(N2) to
O(N logN). Therefore, whenW is a circulant tensor, Eq. 4
can be reformulated using FFT as below:

Y(w2, h2, Ni) = ifft
( W1∑

w1=1

H1∑
h1=1

R∑
j=1

fft
(
X (w2 − w1,

h2 − h1, Nj)
)
◦ fft

(
W ′(w1, h1, Nj , Ni)

))
. (5)

Here ◦ is the element-wise multiplication.
Fast backward propagation. Now consider backward

propagation. Given loss function L, it is well known that
the goal of backpropgation algorithm (LeCun et al. 1998) is
to compute gradients of loss function L with respect to each
weight and input. Hence according to the chain rule, the gra-
dient computation for circulant convolutional layer can be
derived from Eq. 3 and Eq. 4 as below:

∂L

∂W ′(w1, h1, p, q)
=

W2∑
w2=1

H2∑
h2=1

qN∑
c2=(q−1)N+1

∂L

∂Y(w2, h2, c2)

∂Y(w2, h2, c2)

∂W ′(w1, h1, p, q)
, (6)

∂L

∂X (x, y, c0)
=

W1∑
w1=1

H1∑
h1=1

∑
c2≡c0( mod N)

∂L

∂Y(w1 + x, h1 + y, c2)

∂Y(w1 + x, h1 + y, c2)

∂X (x, y, c0)
. (7)

Again, according to (Rezghi and Eldén 2011), whenW is
a circulant tensor, Eq. 6 and Eq. 7 can also be accelerated by
using FFT as below:

∂L

∂W ′(w1, h1, Nj , i)
= ifft(

W2∑
w2=1

H2∑
h2=1

fft(
∂L

∂Y(w2, h2, Ni)
) ◦ fft(x′j)) (8)

∂L

∂X (x, y,Nj)
= ifft(

W1∑
w1=1

H1∑
h1=1

S∑
i=1

fft(

∂L

∂Y(w1 + x, h1 + y,Ni)
) ◦ fft(w′j,i)), (9)



where x′j and w′j,i are fibersX (w1, h1, T ) andW ′(x, y, (j−
1)N + T, i) with T = (1, N, ..., 2).

Capability of training Circulant CNN from scratch. It
should be noted that the gradient computations described in
Eq. 8 and Eq. 9 are actually based onW ′. Since we can al-
ways construct the circulant tensorW from base tensorW ′
using Eq. 3, Eq. 8 and 9 imply that the circulant structure of
weight tensor W is always kept during the training phase.
In other words, if we initialize W as the circulant tensor
at the initialization stage of training, then during the train-
ing procedure Eq. 8 and 9 can guarantee W always exhibit
circulant structure. Therefore, a circulant CNN can be com-
pletely trained from the scratch.

Conversion from Non-circulant Tensor to
Circulant Tensor
Forward and backward propagation section indicates that a
circulant convolutional layer can be trained from scratch. In
this subsection, we also present a conversion technique that
can directly convert a non-circulant weight tensor to a circu-
lant one. Such conversion is very useful when a pre-trained
model is already available and needs to be imposed with cir-
culant structure.

Specifically, the proposed conversion technique is based
on the circulant approximation approach (Chu and Plem-
mons 2003) used for circulant matrix. In matrix theory, let
Z1 ∈ RN×N denote a permutation matrix as following:

Z1 =


0 1 0 . . . 0
0 0 1 . . . 0
...

. . . . . .
...

0 1
1 0 0 . . . 0

 . (10)

Then a circulant matrix Wcirc ∈ RN×N with its first row
w = (w0, w1, . . . , wN−1) can be represented in the polyno-
mial form of Z1 as follows:

Wcirc =
∑N−1

i=0 wiZ1
i. (11)

According to (Chu and Plemmons 2003), for a non-
circulant matrix Wnon−circ ∈ RN×N , its nearest circulant
matrix Wcirc (measured in the Frobenius norm) is given by
projection:

w = projNWnon−circ,

∀wi ∈ w, wi =
1

N
〈Wnon−circ,Z1

i〉F,
(12)

where 〈·, ·〉F is the Frobenius inner product.
Note that the 4-D weight tensor of a convolutional layer

can be viewed as a matrix of size W1 × W2 where each
entry is a matrix of size C0 × C2. Therefore, by using Eq.
12, the conversion from a non-circulant tensorWnon−circ to
a circulant tensorWcirc can be achieved by performing the
projection as follows:

W ′(w1, h1, Nj , i) = projNWnon−circ(w1, h1, Nj , Ni),
(13)

Table 1: Comparison with (Mathieu, Henaff, and LeCun
2013) in terms of FFT, time and space complexity, where
N = C0 = C2.

Approach Time Complexity Space Complexity FFT Type
Original O(W2H2W1H1N

2) O(W1H1N
2) N/A

This Work O(W2H2W1H1N logN) O(W1H1RNS) 1-D
(Mathieu, Henaff, and LeCun 2013) O(N2W0H0 logW0H0) O(W1H1N

2) 2-D

where W ′ is the base tensor that defines circulant tensor
Wcirc, and the mapping from W ′ to Wcirc is given in Eq.
3.

Capability of training Circulant CNN from a pre-
trained model. Based on the conversion scheme shown
in Eq. 13, any non-circulant convolutional layer of a pre-
trained model can be directly converted to a circulant convo-
lutional layer. Typically such direct conversion brings non-
negligible accuracy drop incurred by the approximation er-
ror. In order to recover the accuracy, further re-training on
the converted model is needed by following the backward
propagation scheme in Eq. 8 and 9. Consequently, a non-
circulant pre-trained model can be imposed with circulant
structure by using the proposed circulant conversion and re-
training schemes with preserving high accuracy.

Efficiency on Space and Computation
Table 1 summarizes the space and time complexity of the
circulant convolutional layers. It can be seen that the pro-
posed circulant structure-imposing approach enables simul-
taneous improvement on both space efficiency and compu-
tation efficiency. Larger N can result in larger FFT size and
lower space and time complexity. Also, compared with the
2-D FFT-based fast convolution in (Mathieu, Henaff, and
LeCun 2013), our 1-D FFT-based approach has much lower
space and time complexity since N is typically much larger
than R and S.

Experiments
Dataset, Baseline & Experiment Environment. We evalu-
ate our circulant structure-imposing approaches on two typ-
ical image classification datasets: CIFAR-10 (Krizhevsky
and Hinton 2009) and ImageNet ILSVRC-2012 (Deng et
al. 2009). For each dataset, we take classical network mod-
els (ResNet (He et al. 2016) for CIFAR-10 and AlexNet
(Krizhevsky, Sutskever, and Hinton 2012) for ImageNet) as
the baseline models. The compressed circulant CNN models
are generated by replacing convolutional layers of the base-
line models with circulant convolutional layers. All models
in this paper are trained using NVIDIA GeForce GTX 1080
GPUs and Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz.

Selection of Training Strategy. As presented in Sec-
tion imposing CircConv, the circulant CNN model can be
trained either from scratch or re-trained from a pre-trained
non-circulant model. In our experiments we evaluate these
two different training strategies on different datasets. Exper-
imental results show that with the same compression config-
uration setting, the compressed circulant CNN models gen-
erated by these two training strategies have very similar test
accuracies. Therefore in this paper we only report the results



using training-from-scratch strategy.

ResNet on CIFAR-10
In this experiment, ResNet-32 is selected as the baseline
model due to its high accuracy and easiness of training. The
training data is augmented by following the method in (Si-
monyan and Zisserman 2014): First pad each side of the im-
age with four pixels and then apply 32 × 32 sized random
crops with horizontal flipping. The compressed ResNet-32
models are trained using stochastic gradient descent (SGD)
optimizer with learning rate 0.1, momentum 0.9, batch size
64 and weight decay 0.0001.

Model setting. ResNet-32 consists of 15 convolutional
blocks, where each convolutional block contains two or three
convolutional layers. Considering the number of possible
compression configurations on different convolutional lay-
ers is very large, we choose to make the layers in the same
block have the same compression ratio. In other words, a
block-wise compression strategy is adopted. Notice that be-
cause the first few convolutional layers of ResNet are very
sensitive for compression (He et al. 2016), in this experiment
we do not impose circulant structure to the convolutional
layers in the 1st and 2nd blocks of ResNet-32. Besides, the
6th and 11th blocks are not compressed due to their small
weight tensor.

Table 2 shows the detailed compression configurations for
different convolutional blocks of ResNet-32. Here we ex-
plore 7 different compression configurations and then ob-
tain 7 compressed models. For each compressed model, the
compression ratios for its component convolutional blocks
are listed in the row direction. Here each number i in a spe-
cific compression configuration scheme indicates the com-
pression ratio as i for the convolutional layers in the corre-
sponding convolutional block. When the block is associated
with 1, that means the corresponding convolutional block is
not compressed. Notice that due to the sensitivity of front
blocks, for all the 7 models in Table 2 the compression ra-
tios of the front blocks are typically less than those of the
later blocks.

Trade-off between accuracy and model size. Figure 2
shows the test error for 7 compressed models. It can be seen
that model 1 even achieves slightly better performance with
a smaller model size than the baseline. Moreover, model 2,
3 and 4 achieve around 50% reduction in model size with
negligible accuracy drop. With more aggressive compres-
sion configurations are selected (such as model 5, 6 and 7),
more reduction in model size can be further achieved with
slight increase of test error.

Trade-off between accuracy and FLOPs. Our experi-
ment also shows that the use of circulant convolutional layer
helps reduce computational cost significantly. As shown in
Figure 3, compressed model 1 and 2 achieve fewer FLOPs
than baseline with the same or even less test error. For model
3, it can achieve 50% reduction in FLOPs with negligible
test error increase. An interesting discovery is that though
model 4, 5 and 6 have more aggressive compression con-
figurations than model 3, their corresponding reduction in
FLOPs are less than what model 3 achieves. This is because
the convolutional layers in the model 3 are mainly com-

Table 2: Compression Configurations. For the convolutional
block with compression ratio i, all the convolutional layers
in that block has the same compression ratio i.

Partitioned Model ID
Block ID 1 2 3 4 5 6 7

1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1
3 1 1 2 2 2 4 4
4 1 1 2 2 2 4 4
5 1 1 2 2 2 4 4
6 1 1 1 1 1 1 1
7 1 1 2 2 4 4 8
8 1 1 2 2 4 4 8
9 1 1 2 2 4 4 8

10 1 1 2 2 4 4 8
11 1 1 1 1 1 1 1
12 1 2 2 4 4 4 16
13 1 2 2 4 4 4 16
14 2 2 2 4 4 4 16
15 2 2 2 4 4 4 16

baseline (He et al. 2016):ResNet-32 without partitioning

pressed with the factor of 2, which corresponds to 2-point
FFT computation that only needs real number operations.
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Figure 2: ResNet-32 Test Error and Model Size. Use of cir-
culant convolutional layer can bring half of parameters re-
duction with negligible test error increase.

Wide ResNet on CIFAR-10
We also conduct the experiment on CIFAR-10 dataset using
Wide ResNet (Zagoruyko and Komodakis 2016), which has
better performance than conventional ResNet in term of test
accuracy. In this experiment, the compressed Wide ResNet
models are trained using SGD with learning rate 0.01, mo-
mentum 0.9, batch size 64 and weight decay 0.0005.

Model settings. To construct baseline Wide ResNet mod-
els, we take the same basic convolutional block structure in
(Zagoruyko and Komodakis 2016) and set different num-
bers of convolutional blocks and widening parameters for
different models. To achieve better performance, we add two
more blocks to the convolutional blocks that are wider than
16× k, where k is the inherent widening parameter of each
block. Different from the experiment in ResNet experiment
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Figure3:ResNet-32TestErrorandModelSize.Useofcir-
culantconvolutionallayercanbringhalfofFLOPsreduction
withnegligibletesterrorincrease.

r

Figure4: WideResNetModelSizeReduction.Compared
withbaselinemodels,compressedmodelsachievesimilar
modelsizeasResNet-110.Compressedmodelnamedlike
”48-4”has48convolutionallayersandwideningparameter
as4.

section,thisexperimenton WideResNetadoptsveryag-
gressivecompressionstrategy:Foroneconvolutionallayer,
ifthenumbersofinputchannels(C0)andoutputchannels
(C2)arethesame,thenthecompressionratioforthatlayer
isi=C0=C2;otherwisetheconvolutionallayerisnot
compressed.Weapplythiscompressionstrategytofivedif-
ferent WideResNetbaselinesandobtainfivecompressed
WideResNetmodels.Foreachcompressedmodel,itisla-
beledwithtwonumbers(”d-k”),wheredandkdenotethe
numberofconvolutionallayers(”depth”)andwideningpa-
rameter(”width”),respectively.Thesecompressedmodels
arecomparedwiththeircorrespondingbaselinemodelsas
wellasResNet-110,whichachievesthebestperformance
onCIFAR-10in(Heetal.2016).
Modelsizereduction.Figure4showsthenumberofpa-

rametersof WideResNetbaselinesandthecorresponding
compressedmodelsafterimposingcirculantstructure.Itcan
beseenthatthecompressedmodelsgreatlyreducethemodel
size.Inparticular,model”60-4”canachieve8.35timesre-
ductioninthemodelsize.Also,itcanbeseenthatthenum-
bersofparametersofWideResNetmodelsaresimilartothe
sizeofResNet-110afterapplyingcirculantconvolutional
layer.Forinstance,Model”48-4”hasaround1.6Mparame-

terswhichislessthan1.7MforResNet-110.
Testerroranalysis.Figure5showstesterrorsofbase-
lineWideResNetmodelsandthecorrespondingcompressed
modelsusingcirculantconvolutionallayer.Itcanbeseen
thatallcompressedmodelshaveslightlytesterrorincrease
lessthan1%.Inaddition,comparedwiththestate-of-the-art
ResNet-110,allofthecompressedmodelshavearound1%
testerrordecrease.

Figure5:WideResNetTestError.Baselinemodelsaredif-
ferentoriginal WideResNetsandtheyarecomparedwith
thecorrespondingcompressedmodelsandResNet-110.

Figure6:WideResNetFLOPs.TheoverallFLOPsmeasure
theFLOPspercentageofcompressedmodelsovercorre-
spondingbaselines.WealsolistFLOPspercentageofcom-
pressedconvolutionalblocksoveroriginalblocks.

ComparisonwithResNet-110.FromFigure5wecan
seethatallcompressed WideResNetmodelshaveless
testerrorthanResNet-110. Meanwhile,Figure4shows
thesecompressedmodelshavesimilarnumbersofparam-
etersascomparedwithResNet-110,andmodel”48-4”has
evenfewerparameters.Theseresultsdemonstratethatcircu-
lantstructure-imposingapproachcanbeusefulinreducing
modelredundancyandholdinglesstesterrorwhilemain-
tainingsimilarmodelsizes.
FLOPsreduction.AsshowninFigure6,wemeasurethe
overallFLOPsreductionof WideResNet.Itisfoundthat
thecompressedWideResNetmodelscanachievesignificant
reductioninFLOPs:allofthemonlyrequirearound36%
FLOPsascomparedtothecorrespondingbaselinemodels.
Inaddition,theFLOPsreductionforthecompressedblocks



Table 3: Comparison among AlexNet models.
AlexNet
Model

Compression
Configuration Test Error (%) Parameters (%) FLOPs(%)

Original
(Baseline) N/A 42.9 100 100

CircConv 1-2-2-2-2 42.75 50.36 31.3
CircConv 1-2-2-4-2 42.99 40.01 31.3
CircConv 1-2-4-2-2 43.13 45.19 31.3

(Wen et al. 2016) N/A 42.75 51.20 39.0
(Wen et al. 2016) N/A 43.00 44.40 43.0
(Wen et al. 2016) N/A 43.25 42.30 45.0

are very significant. From Figure 6 it can be seen that the
FLOPs in the compressed blocks of all compressed models
are only less than 6% of the corresponding uncompressed
blocks in the original Wide ResNet baseline models.

AlexNet on ImageNet
To test the effectiveness of the proposed circulant-imposing
approach on large-scale datasets, we evaluate the perfor-
mance of circulant CNNs on ImageNet (ILSVRC2012).
Here the baseline model is AlexNet (Krizhevsky, Sutskever,
and Hinton 2012). All training images are randomly dis-
torted as suggested in (Szegedy et al. 2016) We train our
AlexNet models using RMSprop (Tieleman and Hinton
2012) with learning rate 0.01, momentum 0.9, batch size 32
and decay 0.9.

Model settings. We explore three different compres-
sion configurations for the five convolutional layers in
AlexNet. Table 3 listed the detailed compression configu-
ration schemes by using notation ”a-b-c-d-e”. For instance,
”1-2-2-2-2” means the first convolutional layer is not com-
pressed, and the rest four layers are compressed with the
factor of 2. By using these configurations, three compressed
AlexNet models are generated and compared with origi-
nal AlexNet baseline model. Also, since SSL in (Wen et
al. 2016) is the state-of-the-art work that explores the re-
lationship between accuracy and compressed model size
for AlexNet, we also compare our circulant convolutional
layer-based compressed AlexNet models with three SSL
regularization-based compressed AlexNet models in (Wen
et al. 2016).

Test error analysis. Table 3 shows the test errors of
compressed AlexNet models by using circulant structure-
imposing and SSL approaches. It can be seen that both these
two approaches can render the compressed models with the
similar test errors to the original AlexNet model. Among
them, the circulant model with ”1-2-2-2-2” compression
configuration achieves the least test error.

Model size reduction. Table 3 shows the percentage of
number of parameters of each model over original AlexNet
model. It can be seen that circulant convolution-based mod-
els have similar numbers of parameters to SSL-based mod-
els. Among them the circulant convolution-based model
with ”1-2-2-4-2” compression configuration has the least
number of parameters.

FLOPs reduction. Table 3 shows the percentage of
FLOPs of each model over the original AlexNet model. It
can be found that all circulant convolution-based models
require fewer FLOPs than the SSL regulation-based mod-

els. All the circulant convolution-based models have around
31% FLOPs of original uncompressed AlexNet baseline.

Overall comparison. As shown in Table 3 , circulant
convolution-based models have similar accuracy to the state-
of-the-art SSL models while maintaining similar number
of parameters. Meanwhile, Table 3 shows that circulant
convolution-based models requires less FLOPs than the SSL
models when targeting to the similar accuracy. Therefore,
imposing circulant structure to convolutional layer is a very
promising accuracy-retained approach to reduce both the
space and computational costs.
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Conclusion
In this paper, we propose to impose the circulant structure to
convolutional neural network. This structure-imposing ap-
proach leads to significant reduction in model size, FLOPs
with negligible accuracy drop. Complexity analysis and ex-
periments on different datasets and different network models
demonstrate the effectiveness of the proposed approach.
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