ROLE OF LOCAL GEOMETRY IN ROBUSTNESS OF POWER GRID NETWORKS
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ABSTRACT

We introduce a novel approach to study robustness of a power
grid network employing the tools of topological data analysis
(TDA). This approach not only enables one to incorporate in-
trinsic network properties such as electrical conductance but
more importantly also offers a systematic and comprehensive
framework to study the role of topology in its functionality
and robustness. This is achieved by viewing the network as a
weighted graph, equipping it with a nested simplicial complex
structure and extracting topological summaries in the form of
the Betti numbers and persistent diagrams. These summaries
are then used to characterize network vulnerability under crit-
ical conditions such as targeted attacks.

Index Terms— Power grids, complex networks, topolog-
ical data analysis, Betti numbers, power system vulnerability

1. INTRODUCTION

A power grid can be intrinsically modeled as a complex net-
work, where nodes are either transformers, substations or gen-
erators, and edges represent physical cables connecting two
nodes [1, 2, 3]. Methods of complex network analysis have
provided new insights into the fundamental and intrinsic char-
acteristics of power system efficiency, vulnerability and re-
silience. In particular, numerous recent results indicate that
both the topological and functional structure of power grid
networks can dramatically impact power system reliability
and the effectiveness of associated risk mitigation strategies [4,

5, 6]. The electrical engineering (EE) concepts, e.g. impedance,

maximum power, etc., can also be incorporated into the CN
analysis through a hybrid approach [2]. Though the common
vulnerability metrics of a power grid networks are primar-
ily lower-order connectivity features, e.g., degree distribution,
average path length (APL), clustering coefficient (CC), etc., a
number of recent studies suggest that the power grid robust-
ness is also associated with higher-order network features,
e.g., network motifs [7, 8, 9].
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In the present work, we study power grid functionality,
more specifically its robustness under targeted attacks, by in-
troducing concepts of topological data analysis (TDA), which
systematically allow to account for both fundamental CN and
EE properties of the networks. TDA has recently been recog-
nized as an indispensable tool for analysis of many complex
systems, from nanotechnologies to genetics to neuroscience
to music [10, 11, 12]. The tools of TDA, most notably persis-
tent homology, are shown to unveil some critical characteris-
tics behind functionality of many complex systems and inter-
actions of their components at multi-scale levels, which are
otherwise largely unaccessible with conventional analytical
approaches. However, despite its success in many domains,
TDA is a novel and yet uncharted research area in application
to analysis of power grids. In this paper, we aim to bridge this
gap and open up novel research directions and fresh insights
on how the arsenal of emerging methods of TDA can be used
for inference on power flow networks.

2. BACKGROUND ON GRAPHS AND
TOPOLOGICAL DATA ANALYSIS

We start by providing a brief mathematical overview of the
key concepts.

Preliminaries on Power Grids as Graphs We consider a
graph G = (V| E) as a model for a power grid network, with
node set V' and set of edges £ C V x V. Here ey, € E
represents an edge, e.g., a transmission line between nodes
u and v, and nodes represent, e.g., generators, transformers,
and load buses. We assume that G is undirected i.e., for all
eww € F, ey, = eyy. Since the topological structure of G
does not reflect the functional information about the power
grid [2, 5], we can also consider an (edge)-weighted graph, or
a pair (G,w). Here w : V' x V = R is an (edge) weight
function such that each edge e,,,, € E has a weight w,,,. Also,
for technical purposes, we assume e,,,, € E and w,, = 0 for
allu e V.

Persistent Homologies and Their Measures While re-
current multi-node subgraph pattern i.e., network motifs has
a high potential in providing an invaluable insight into lo-
cal higher-order properties of power grid networks and their
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Fig. 1: Dynamics of the Betti numbers under degree based attacks.
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Fig. 2: Dynamics of the Wasserstein distances among the persistent
diagrams, based on one-dimensional holes, under degree based at-
tacks.

role in power grid vulnerability and resilience [7, 8, 9], motif
analysis is largely restricted to unweighted graphs and hence,
does not allow the systematic incorporation of such impor-
tant real-world characteristics of power grids as, for instance,
weights due to time evolving operating conditions and differ-
ent node characteristics, e.g., generators, substations, trans-
formers, etc. As an alternative, we propose to bring the tools
of TDA, in particular, persistent homology to the inference on
weighted power grid networks [10, 11, 12, 13, 14].

Consider an (edge)-weighted graph (G, w) as a represen-
tation of a power grid network. If we select a certain threshold
(or scale) v; > 0 and keep only edges with weights w,, <
v;, we obtain a graph G; with an associated adjacency ma-

trix Ay, = 1u,,<y;- Now, changing the threshold values
v1 < vy < ... < vy results in a hierarchical nested sequence
of graphs G; C G5 C ... C G, that is called as a network
filtration. As a result, we can associate an abstract simplicial
complex with each Gj, j = 1,...,n, which, in turn, allows to
approximate the underlying geometry of (G, w) with a combi-
natorial structure. For instance, the Vietoris-Rips (VR) com-
plex is one of the most popular choices in TDA due to its sim-
plicity and computational advantages [14, 15]. In particular,
if we view weights w,,,, as some “distance” measure between
nodes u and v, then the Vietoris-Rips complex at threshold v,
is defined as VR; = {0 C Vl]wyy < vjforallu,v € o}.
That is, V R; contains all the k-node subsets of G, k =
1,..., K, which are pairwise connected by an edge as sim-
plices of dimension k£ — 1 (i.e., a node is a O-simplex, an edge
is a 1-simplex, a triangle is a 2-simplex, etc).

Now, armed with the associated VR filtration, VR, C
V Ry C ... C VR,, we can quantitatively track the change in
topological features such as the numbers of connected com-
ponents, one-dimensional holes and higher-order structures,
that appear and disappear with an increasing threshold v;. In
turn, the analysis of evolution and lifespan of such topolog-
ical features provides a multi-scale quantitative insight into
network geometry and its role in network organization, func-
tionality, and interactions among network components under
varying operating conditions. Systematic evaluation of pat-
terns and dynamics of multi-scale network geometry can be
approached via an algebraic tool, based on the adaptation of a
homology theory to applied data analysis and known as per-
sistent homology. That is, the idea is to detect features which
are long-lived, or persistent over varying thresholds v;. Such
persistent features are likelier to impact power grid network
functionality. The most widely used topological summaries
of persistent features are the Betti numbers, persistent bar-
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codes, and persistent diagrams. Though the definition of Betti
numbers is rather abstract, they have a very tangible mean-
ing. Namely, for a given simplicial complex, Betti-0 (5)
represents the number of its connected components; Betti-1
(B1) is the number of one-dimensional holes, Betti-2 (35) is
the number of two-dimensional holes etc. Barcodes can be
viewed as a persistence analog of the Betti numbers and de-
pict the birth and death times of each topological feature as
a bar (see Fig. 3). As a result, barcodes provide an insight
on the significance of various topological features and allow
to distinguish persistent features from topological noise [16].
Another visual representation of topological properties is a
persistent diagram where each topological feature is denoted
by a point and the (z, y)-coordinates of the point correspond-
ing to the birth and death times, respectively. Hence, features
with a longer lifespan, i.e. a stronger persistence, are those
points that are far from the main diagonal.

3. PERSISTENT HOMOLOGY BASED NETWORK
SIMILARITY MEASURES

To assess the similarity of two power grid networks (G, w)
and (G2, w2), we can compare their persistence diagrams. In-
deed, persistence diagrams are often viewed as topological
proxies for the input data [17, 10]. Hence, similarity be-
tween the persistent diagrams can be viewed as proxy sim-
ilarity measures between the two power grids (G1,ws) and
(G2,w2). Given two diagrams D; and Dj of (G1,wq) and
(G2, ws), respectively, we can compare their similarity using
their bottleneck distance

Woo(D1, D2) = inf sup ||z —7(2)||o0,
Y x€Dy

where v ranges over all bijections between D, and Ds, and
[|2|]|]oc = max;|z;|. The intuitive idea behind the bottle-
neck distance is to superimpose two persistent diagrams and
to quantify the shift required to force the points at the two
diagrams to match [12]. Alternatively, we can use more con-
ventional matching metrics such as Wasserstein distance

We(D1, D2) = inf (Y Jlz = 1(@)l[2)'"
x€D

Both the bottleneck and Wasserstein distances are feasible
choices as power grid matching metrics due to their robust-
ness with respect to minor perturbation of the input data and
associated topological noise [17].

Vulnerability of Power Grids Many factors, both known
and hidden, impact power grid robustness. Moreover, there
exist several notions of grid robustness and therefore one can
observe different vulnerability properties from the same grid
under various types of intentional attacks and random fail-
ures. [8, 18] empirically show that stability of unweighted
power grid networks is related to local network properties
and, particularly, network motifs. Most recently, [9] provide
a motif-based analysis of local power grid vulnerability under
random and intentional attacks. [9] have found that the dy-
namics of distributions of 4-node motifs under various attacks
differ with respect to the global tail-based grid classification
of power grid fragility proposed in [18]. Moreover, robust and
fragile power systems are shown to exhibit different degrees
of local sensitivity and degradation with respect to the type
of attack and the type of motif. However, these studies are
limited to unweighted power grid networks and do not allow
to incorporate critical information on EE properties of power
systems.

We investigate how the summaries of topological features



such as the Betti numbers 3,, p € Z*, and persistent di-
agrams evolve under intentional targeted attacks. Also, we
evaluate sensitivity of these topological summaries to the at-
tack. Note that many of the introduced TDA concepts are
abstract and may not have straightforward explanation on the
relations between, e.g., the number of p-dimensional holes
and the power system robustness. Our main postulate here is
that a system can be called more resilient if it tends to preserve
longer its original properties under the attack, and our primary
focus is on analysis of geometric properties of the system. In
turn, the Betti numbers 5, p € Z +, and persistent diagrams
provide systematic characterization of the system geometry.
As a result, multiple power grid networks can be classified in
terms of their resilience to the attack at a multi-scale level.

4. A CASE STUDY

We present a study on robustness/vulnerability of electricity
transmission networks of four European countries, e.g., Ger-
many, Italy, France and Spain, where nodes indicate power
stations/sub-stations. The data are obtained from the Union
for the Coordination of the Transmission of Electricity (UCTE).
Table | presents the number of nodes, edges of the networks.

Table 1: Network descriptions

Power grid  # of nodes  # of edges
Germany 445 567
Italy 273 375
France 677 913
Spain 461 664

The edge weight function of the grids is defined as the
reciprocal of electrical conductance [19], i.e. a ratio of the
normalized geographic distance between nodes u and v to the
number of direct transmission lines between them. (Conven-
tionally, we set up the weight w,, to infinity if e,,, & E.)
Furthermore, since the observed power grids do not typically
contain inter-connected groups of four nodes, we limit the di-
mension of VR complexes by three.

Having equipped the observed power grid networks with
the corresponding VR complex filtration, we now calculate
the Betti numbers 3y and 8, (one for each threshold value)
for the original power grid networks and the power grid net-
works under degree based attacks, that is, when a fraction of
nodes with the highest degrees are removed. The changes in
the Betti numbers under attacks are calculated relative to the
initial Betti numbers prior to the attack, i.e.,

-0 =D -0
1B% = Billo/ 1Bkl k€ {01},

where ||.||, denotes the Euclidean distance, p is the fraction of
=0 —=p
removed nodes, 3, = {8, ..., 8%, } and B, = {B%,, ..., BL. }

are the sequences of Betti numbers of a power grid network
before and after the attack respectively. As Fig. | indicates,
the power grid networks of Spain and France exhibit the steep-
est (relative) change in the Betti-0 and Betti-1 numbers. This
implies that the targeted attacks change the topology under-
lying these two networks more adversely than that of Italy
and Germany. Hence, the power grid networks of Italy and
Germany appear to be more robust in terms of their topologi-
cal structure. Furthermore, Fig. 2 shows the dynamics of the
Wasserstein distances W (Dy, D)) between the persistent di-
agrams Dy and D,, for each power grid network, where D
and D,, are the persistent diagrams of a power grid network
prior to and after the attack, respectively. Fig. | and 2 con-
firm the earlier observation that the Spanish and French power
grids are likely to be more vulnerable than the German and
Italian power systems.

Fig. 3 compares the barcode plots of the German and Span-
ish power grid networks. Here, the barcodes of Hj (shown
in black) and H; (shown in red) correspond to the number
of connected components and one-dimensional holes, respec-
tively, as a function of a changing threshold v € [0, 3]. Notice
that the number of persistent one-dimensional holes in the
Spanish power grid network is greater than the correspond-
ing number in the German power grid network. That is, the
Spanish power grid network exhibits a heavier left tail in the
barcode plot of H; for lower thresholds.

In this case study we limited ourselves to a degree-based
attack. The proposed framework, however, is general enough
to handle other types of targeted attacks, such as the one where
edges with the highest weight are removed.

5. CONCLUSION AND DISCUSSION

We have introduced a TDA-based framework to study power
grid network functionality, and in particular its behavior un-
der targeted attacks. To our knowledge, this is the first ap-
plication of TDA to the analysis of power grids. In our pilot
study, we have investigated robustness properties of power
grid networks in four European countries. Our results have
demonstrated that the extracted topological summaries such
as the Betti numbers and persistent diagrams can be used to
characterize network vulnerability under targeted attacks.

Given that Figs. 1 and 2 suggest that the Spanish power
system tends to be more fragile under attacks, we hypothe-
size that vulnerability properties of grids tend to be linked (at
least) to the persistence of one-dimensional holes. Remark-
ably, one-dimensional holes are also intrinsically connected
to a number of cycles and related network motifs in the un-
weighted networks [20]. In turn, such cyclical network motifs
are known to impact stability of unweighted power grid net-
work [8, 9, 18]. However, a deeper understanding of the role
of persistent homologies, their functional relationship with
the power grid organization and measures of associated un-
certainties requires a more systematic analysis.
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