Patterns of Effort Contribution and Demand and User
Classification based on Participation Patterns in NPM Ecosystem

Tapajit Dey
University of Tennessee, Knoxville
Knoxville, Tennessee
tdey2@vols.utk.edu

ABSTRACT

Background: Open source requires participation of volunteer and
commercial developers (users) in order to deliver functional high-
quality components. Developers both contribute effort in the form
of patches and demand effort from the component maintainers to
resolve issues reported against it. Open source components depend
on each other directly and transitively, and evidence suggests that
more effort is required for reporting and resolving the issues re-
ported further upstream in this supply chain. Aim: Identify and
characterize patterns of effort contribution and demand through-
out the open source supply chain and investigate if and how these
patterns vary with developer activity; identify different groups
of developers; and predict developers’ company affiliation based
on their participation patterns. Method: 1,376,946 issues and pull-
requests created for 4433 NPM packages with over 10,000 monthly
downloads and full (public) commit activity data of the 272,142 issue
creators is obtained and analyzed and dependencies on NPM pack-
ages are identified. Fuzzy c-means clustering algorithm is used to
find the groups among the users based on their effort contribution
and demand patterns, and Random Forest is used as the predictive
modeling technique to identify their company affiliations. Result:
Users contribute and demand effort primarily from packages that
they depend on directly with only a tiny fraction of contributions
and demand going to transitive dependencies. A significant portion
of demand goes into packages outside the users’ respective supply
chains (constructed based on publicly visible version control data).
Three and two different groups of users are observed based on the
effort demand and effort contribution patterns respectively. The
Random Forest model used for identifying the company affiliation
of the users gives a AUC-ROC value of 0.68, and variables repre-
senting aggregate participation patterns proved to be the important
predictors. Conclusion: Our results give new insights into effort
demand and supply at different parts of the supply chain of the
NPM ecosystem and its users and suggests the need to increase
visibility further upstream.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

PROMISE’19, September 18, 2019, Recife, Brazil

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7233-6/19/09...$15.00
https://doi.org/10.1145/3345629.3345634

Yuxing Ma
University of Tennessee, Knoxville
Knoxville, Tennessee
yma28@vols.utk.edu

Audris Mockus
University of Tennessee, Knoxville
Knoxville, Tennessee
audris@utk.edu

CCS CONCEPTS

« Software and its engineering — Open source model; - Com-
puting methodologies — Supervised learning by classification;
Cluster analysis;

KEYWORDS

User Contribution, Software Issue Reporting, Software Dependen-
cies, NPM Packages, Clustering, Random Forest model

ACM Reference Format:

Tapajit Dey, Yuxing Ma, and Audris Mockus. 2019. Patterns of Effort Con-
tribution and Demand and User Classification based on Participation Pat-
terns in NPM Ecosystem. In The Fifteenth International Conference on Pre-
dictive Models and Data Analytics in Software Engineering (PROMISE’19),
September 18, 2019, Recife, Brazil. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3345629.3345634

1 INTRODUCTION

Open Source Software is characterized by the fact that the source
code is publicly available and can be modified and reused with
limited restrictions by the public. This has led to the creation of
user communities that contribute regularly to the development
process [19, 27], primarily through reporting and, in many cases,
fixing bugs [16]. Reported bugs, in effect, create a demand for effort
needed to address them, and, it has been extensively documented
(see, e.g. [32]) that large numbers of low-quality issues may over-
whelm the projects. Some users also provide patches with their is-
sues (pull requests or PRs) which should require, at least in principle,
much less effort to address, and can be regarded as a contribution of
effort to the project (the effort spent by the user to create the patch).
We refer to PRs when talking about effort contribution and issues
without patches when talking about the demand of effort in the
further discussion. Since our data is collected from GitHub, which
treats pull requests as issues, we follow the same terminology in
our paper, i.e. when we talk about “issues”, we refer to both issues
with and without patches. Many of the contributors, who create
these issues and patches, are potential developers and/or developers
of their own projects. When we refer to “users” in this paper, we
actually are referring to this population of user-developers.
Software ecosystems, by their nature, enable creativity and pro-
ductivity by letting developers not to write software from scratch
but only focus on incremental improvements that depend on other
modules in the ecosystem for bulk of the functionality. This results
in a complex supply chain of dependencies within the ecosystem.
The supply chain of a user consists of the direct as well as transitive
dependencies on repositories to which they maintain. While some
studies found that contributing and demanding effort is more com-
plicated when it crosses project boundaries in direct and transitive

PROMISE’19, September 18, 2019, Recife, Brazil

dependencies [5, 26], it is not clear how prevalent such contribution
and demand is at the ecosystem level.

This question is closely associated with the concept of visibil-
ity [2] within a supply chain, which refers to how far a user can
“see” in the supply chain beyond their direct upstream dependen-
cies, i.e. if they are aware of the transitive dependencies of the
projects they are using. This is an important question since a lack
of visibility in an ecosystem is detrimental to the users’ capacity
to contribute, leading to a limitation in user innovation, potential
licensing conflicts due to a transitive dependency using a different
license, exposing users to higher risk due to the user not being
aware of bugs upstream that can be used to instigate a supply chain
attack 12 and various other types of risks (see, e.g. [1, 4, 25, 30]), and
various other problems. Visibility within a supply chain is not easy
to measure, however, the number of cross-project issues and PRs is
a good proxy. An ecosystem with greater visibility would allow its
users to be able to contribute to their transitive dependencies more
frequently. Therefore, by measuring where the issues and PRs are
concentrated in the supply chain, we can get a good sense about
the level of visibility within the ecosystem. Thus, we present our
first research question as:

RQ1: Where in the supply chain do the contribution of effort
and demands for effort occur?

We are also interested in discovering if we can identify different
groups of users based on their participation patterns, i.e. in which
layer of their respective supply chains they contribute effort or
demand effort from. The answer to this question is important to
identify and characterize different sub-communities of users within
the ecosystem. So, the second research question we are addressing
in this paper is:

RQ2: Can we identify different groups among the users based
on their participation patterns?

It has been previously observed that the so called one-time-
contributors [20, 21] might have different motivation and behave dif-
ferently from more involved participants. We, therefore, would like
to understand if such distinctions apply in large software ecosys-
tems, i.e. if more active developers contribute different proportion
of their effort to upstream projects than casual users. We identify
the more prolific users as those who have submitted at least 10 is-
sues to the ecosystem under consideration (we are not counting the
issues submitted to other ecosystems). The number 10 is somewhat
arbitrary, but, given that 75% of the users in our sample submit 3
or fewer issues, it only includes individuals representing less than
ten percent of all users.

RQ3: Do the answers of RQ1 and RQ2 change if we consider
only the more prolific users?

Finally, commercial entities tend to participate in FLOSS in ways
that are distinct from the way volunteer or independent developers
participate [35], which stem from a number of facts, like differ-
ences in motivation, interest, urgency, and expertise. Therefore, we
would like to understand if such distinctions apply in large software
ecosystems, and, in turn, if the participation patterns can be used to
predict if a user has a commercial affiliation. GitHub user profiles

!https://it.slashdot.org/story/19/06/08/1940204/how-npm-stopped-a-malicious-
upstream-code-update-from-stealing-cryptocurrency
Zhttps://www.bleepingcomputer.com/news/security/somebody-tried-to-hide-a-
backdoor-in-a-popular-javascript-npm-package/

Tapajit Dey, Yuxing Ma, and Audris Mockus

have the option of declaring if a user works for a company, and, it
can be argued that more serious users take their time to populate
their profiles accurately. However, the Git version control system
extends far beyond GitHub, and a model that can identify the com-
mercial affiliation of a user by looking into their participation (issue
and PR creation) patterns would be useful in classifying the types
of users in platforms that do not have this option. Thus, our last
research question is:

RQ4: Can we use the participation patterns of users to pre-
dict their commercial affiliation?

We chose node package manager (NPM) to answer our research
questions because of the size of the ecosystem, availability of data,
and the large number of its users who work for a company. NPM
is a package manager of JavaScript packages, and is one of the
largest OSS communities at present, with over 932,000 different
packages (Apr, 2019) and millions of users (estimated 4 million in
2016 [28], and about 4000 new users on an average day>. NPM is
used heavily by companies. According to the NPM website?, all 500
of the Fortune 500 companies use NPM, and they claim that: “ Every
company with a website uses npm, from small development shops
to the largest enterprises in the world.” Given the heavy industry
use of NPM, a good number of the users who contribute to it are
likely to have a commercial affiliation, which should give us a
more balanced dataset to answer RQ4. However, most packages
in NPM are not widely used and have limited or no issues or PRs.
We, therefore, focused on 4433 NPM packages with over 10,000
monthly downloads since January, 2018, that also had an active
GitHub repository with at least 1 issue. All issues ever filed against
these packages were obtained using the GitHub API (pull-requests
are treated as issues by the GitHub API) resulting in 1,376,946 issues
and PRs, out of which 541,715 (39%) were pull-requests. We also
retrieved information for the 272,142 still active users (some users
who filed issues had deleted their accounts and had their id replaced
the special GitHub id “ghost”).

Our primary findings are: (1) Users are more likely to contribute
issues and PRs to their direct dependencies, but a number of issues
were created for packages outside a user’s supply chain, and very
few cross-project issues and PRs were observed. (2) Three differ-
ent user groups were observed based on the users’ effort demand
patterns, those who are likely to create issues to their direct de-
pendencies, those who are likely to create issues to packages none
of their public repositories depend on, and a small group of users
who are likely to create cross-project issues. Based on the effort
contribution patterns we observed two major groups, similar to the
first two groups observed based on the effort demand pattern. (3)
We see that more prolific users are even more likely to contribute
to their direct dependencies and much less likely to contribute to
packages outside their respective supply chains. (4) We were able
to identify the company affiliations of the users with 70% accuracy
(95% Confidence Interval between 69.9% and 70.54%) with their
contribution patterns as predictors using a tuned Random Forest
model, with the value of AUC under the ROC curve being 0.68.

The rest of the paper is organized as follows: In Section 2, we
discuss the related works in the topic. In Section 3, we discuss the

Shttps://twitter.com/seldo/status/880271676675547136
*https://www.npmjs.com/

NPM User Participation and User Classification

Methodology, focusing on the analysis method we followed. In
Section 4, we describe the data collection and data processing steps,
focusing on the design choices made along the way. In Section 5, we
describe the results we found pertaining to our research questions.
The implications of the findings is discussed in Section 6. Finally,
we discuss the limitations of our study in Section 7 and conclude
our paper in Section 8.

2 RELATED WORK

The NPM ecosystem is one of the most active and dynamic JavaScript
ecosystems and [31] presents its dependency structure and package
popularity. Studies on NPM have mostly focused on its dependency
networks [12], its effect on popularity of NPM packages [13], and
problems associated with library migration [33].

As apart of our study we look at the dependencies of the JavaScript
projects in GitHub, and the different NPM packages. However, we
look not only at the direct dependencies, but also into the transitive
dependencies of the packages, i.e. dependencies of dependencies
of the packages. A number of studies looked into the handling of
dependencies of NPM ecosystem in particular. E.g., [34] conduct
an empirical study on the lag in updating a package in conjunction
to its dependencies in NPM and its effect, while [10] conduct an
comparative study of dependency handling by NPM, R-CRAN, and
RubyGems ecosystems, and compare the different strategies used
by the three in handling dependency updates.

Our first research question looked into the aspect of issue report-
ing and the prevalence of cross-project issues in NPM ecosystem.
The number of observed issues and PRs is directly dependent on
the amount of usage, as reported in [14]. [11] showed that failures
in upstream packages brought more and more troubles to the down-
stream projects. An approach to identify Cross-System-Bug-Fixings
in FreeBSD and OpenBSD kernels was proposed by [6]. Other stud-
ies in this topic explored how the downstream developers find the
root causes and coordinate with upstream developers to fix the
problems [22], the workarounds employed by downstream devel-
opers when faced with a bug in an upstream project [15], and the
question of how to automate the fix of a bug introduced by a third
party library upgrade [15]. Unlike these studies, we focus on both
effort demand and supply and employ a much larger data-set of
projects.

One of our research questions center around predicting users
with a company affiliation based on the differences in the types of
contributions. Just because a user is affiliated to a company doesn’t
necessarily imply that they use the NPM packages for their job
applications, but it may increase that likelihood. Our belief in this
assumption is bolstered by the result of the 2018 Node.js User Survey
Report®, which found that: “A majority (of users of NPM packages)
are developers (as opposed to dev managers), in small (<100 employees)
companies, with 5+ years of professional development experience.”
Given the typical user base, we believe it is a fair assumption that a
significant number of users who have disclosed that they have a
company affiliation, actually use these packages as a part of their
day job and not as a hobby.

FLOSS development started with the goal of emphasizing the
freedom of computer users®. Although initially the commercial

Shttps://nodejs.org/en/user-survey-report/
Shttps://www.gnu.org/philosophy/floss-and-foss.en.html

PROMISE’19, September 18, 2019, Recife, Brazil

software development community steered clear of open source soft-
ware, its benefits, as discussed in studies like [24], soon led them
into using and supporting open source software development. A
plethora of studies looked into the scenario of commercial adoption
of open source software, e.g. [7, 17] to name a few. Currently, the
interaction between open source software and different software
companies is much stronger and closer, with many companies ac-
tively supporting open source development, and using different
open source software in a daily basis. Although a number of studies
looked into the benefits of using open source software by a com-
pany(e.g. [27]), and the result of commercial involvement [8, 35] by
studying different project level metrics like sustainability, developer
inflow and retention etc., to our knowledge no study has looked
into the difference in types of contribution of individual commercial
and non-commercial users on a large scale software ecosystem like
NPM and used it for predicting if a user has commercial affiliation.

3 METHODOLOGY

In this section, we discuss some terminologies we used in this study
and discuss the analysis method we followed.

3.1 Terminologies

Our research questions look into the packages where a user creates
issues and PRs, and at which level of the user’s supply chain these
packages belong to, and we define some terminologies describing
these levels for the ease of referring to these levels.

The NPM packages that a user(developer) contributes to directly
are referred as level 0 packages for that user, i.e. only users who
have committed to an NPM package directly, and not through a pull
request, can have level 0 packages. Arguably, these user-developers
are part of the core team of that NPM package, since they have
direct write access to that repository.

The direct dependencies of all repositories a user has ever com-
mitted to (we utilize a recent version of WoC data [23] to collect
information from all repositories, including projects that are not
registered in NPM) are called level 1 packages for that user. Further-
more, level 1 packages also includes originating packages that the
said user has forked.

The direct and transitive dependencies of the level 1 packages
are classified as level 2+ packages of the user. Contributions to level
2+ packages can be regarded as cross-project contributions by the
said user, since these are transitive dependencies for them. The
reason we referred to level 2 or higher packages by aggregating
them into level 2+ is that the number of reported issues dropped
drastically starting from level 2. Moreover, since any issue reported
at level 2 onward would be qualified as a cross-project issue, such
aggregation seemed reasonable.

The remaining packages in NPM ecosystem are level X packages
for that user, since these include all the packages none of the public
repositories the user has committed to depend on even transitively.
For obvious reasons, we could only observe the publicly visible
repositories the user-developer committed to. These packages are
the ones that are outside a user’s supply chain, but for the sake of
consistency and ease of referring, we call them level X packages.

The issues and PRs created by a user for a package which belongs
to one of these levels of the supply chain for that user are regarded
as the issues and PRs created for that level by that user.

PROMISE’19, September 18, 2019, Recife, Brazil

3.2 Analysis Method

The data collection was done using Python, and the analysis was
performed using R.

We started by collecting the necessary data, which was used to
create our final dataset. The data collection and data processing
steps are described in detail in Section 4.

Python scripts were used to create the data files necessary for
analysis. We carefully tabulated the number of issues and PRs cre-
ated for each level of the supply chains of the users to address our
first research questions.

To answer RQ2, we decided to calculate the marginal probabili-
ties of each user creating an issue and a PR to each level in their
respective supply chains. However, we observed only around 1 in 3
users create a PR, and looking into the two probabilities together
would have automatically put 2/3rds of the users in one group and
the rest in other. So, we decided to look only at the probabilities of
users creating issues (at different levels in their respective supply
chains) when looking at all users, and look at the probabilities of
users creating PRs (at different levels in their respective supply
chains) only for the subset of users who have created at least one
pull request.

We used the fuzzy c-means clustering algorithm [3] for answer-
ing RQ2. We decided to use this instead of the more commonly
used k-means or hierarchical clustering algorithm because we sus-
pected, and later observed, that there is a lot of overlap in our data,
and k-means doesn’t work well with such data; as for hierarchical
clustering, given we have 272,142 users in our dataset, calculating
the distance matrix needed to construct the clusters proved very
difficult due to the computational resources required. The fuzzy
c-means algorithm assigns membership probabilities to each data
point instead of assigning them to clusters directly, which gives
the best results for the type of data we have. We used the fuzzy
c-means implementation in the e1071R package, and for visualizing
the clusters we used the “clusplot” function in the cluster R package.

We used Random Forest model (randomForest package) for train-
ing our predictive model (RQ4), since it is one of the best performing
models. The model parameters (“ntree" and “mtry") were tuned us-
ing functions from caret and e1071 packages.

4 DATA DESCRIPTION

In this section, we describe the data collection and data processing
steps, focusing on the design choices that were made along the way.

4.1 Data Collection

Keeping our research questions in mind, we needed the following
types of data:

(1) The list of NPM packages that satisfy our criteria of hav-
ing more than 10,000 downloads per month and a GitHub
repository with at least one issue.

(2) Link to GitHub repositories of these packages for collecting
the issues.

(3) List of all issues and issue creators of these packages.

(4) Detailed information on the issue creators to know if they
disclose their company affiliation.

(5) List of all commits made by these users, and the list of GitHub
repositories where they made those commits.

(6) List of source repositories of the forked repositories the users
may have committed to.

Tapajit Dey, Yuxing Ma, and Audris Mockus

(7) List of all dependencies (NPM packages) of the GitHub repos-
itories the users committed to.

(8) List of dependencies of all NPM packages for creating the
transitive list of dependencies for the repositories the users
committed to.

The data for item (1) was collected from the npms. io website,
using the API provided 7. The associated GitHub repository URL
(item 2) and the list of dependencies of the NPM packages (used
for item 8) were collected from their metadata information, which
was obtained by using a “follower" script, as described in NPM’s
GitHub repository 8. After filtering for our criteria that the NPM
package must have more than 10,000 monthly downloads (since
January, 2018), a functional link to its GitHub repository, and at
least one issue, we were left with 4433 different NPM packages.

The list of all issues for the packages (item 3) was obtained using
the GitHub API for issues’, using the state=all flag. We ended
up with 1,376,946 issues (until January, 2019, when the data was
collected) for the 4433 packages. It is worth mentioning here that
sometimes more than one NPM package can have the same associ-
ated GitHub repository, e.g. all TypeScript NPM packages (starting
with “@types/”, like @types/jasmine, @types/q, @types/selenium-
webdriver etc.) refer to GitHub repository
“DefinitelyTyped/DefinitelyTyped”. To avoid double-counting and
further confusion, we saved the issues keying on the repository
instead of the package name, though we also saved the list of pack-
ages associated with a repository. We found that there are 3797
unique repositories associated with these 4433 packages.

Then we extracted the list of all users who created these is-
sues and obtained detailed information on them (item 4) using the
GitHub API'?. We found that there were 272,142 users still active
(as of March, 2019, when the data was collected) out of 280,835 users
who had created issues for the NPM packages under consideration.

For obtaining information on items (5) and (6), we used the
GHTorrent database [18] available in the Google Cloud platform!!
(we used the ghtorrent-bq:ght_2018_04_01 database), and ex-
tracted the relevant information using Google BigQuery.

To get a list of all projects a user ever committed to (item 5), we
extracted the list of commits made by a user and got the list of the
repositories where those commits were made, finally getting the
list of all repositories the user committed to. We found that the
272,142 users committed to 6,676,089 projects in total, and it had a
very skewed distribution in terms of the number of projects a user
committed to. Note that these projects don’t have to be JavaScript
projects, since we obtained this information from all Git data [23].
Upon further analysis, it was found that 5,898,782 of them had a
package. json file, so we classified them as JavaScript projects, and
used them for further analysis.

For getting the sources of the forked repositories the users might
have committed to (item 6), we used the projects table in the GHTor-
rent database, which has a field named “forked_from”, and per-
formed a recursive search (since project A can be forked from B,
and B can be forked from C etc.) to get the list of all sources.

7https://api.npms.io/v2/package/[package-name]
8https://github.com/npm/registry/blob/master/docs/follower.md
“https://developer.github.com/v3/issues/
Ohttps://developer.github.com/v3/users/
http://ghtorrent.org/gcloud html

NPM User Participation and User Classification

For the data in item (7), we extracted information for all GitHub
repositories that has a package. json file and extracted the depen-
dency information from that. We also found that some repositories
use another file named lerna. json to list their dependencies. So,
we extracted dependency information from this file as well where
it was available.

There were cases where the users directly committed to a pack-
age repository. Those were treated as special cases and handled
using a map of package name and package URL constructed previ-
ously.

The transitive dependency map of item (8) was constructed by do-
ing a recursive search using the dependency information collected
for the packages. We listed the direct dependencies of a package
as level 1 dependencies of that package, the dependencies of the
packages in level 1 as level 2 dependencies of that package, and so
on. It is worth mentioning that if a package A, for example, was
found to be dependent on a package B directly, as well as through
another package C (A depends on C, C depends on B), we took
the lower number, i.e. B was still listed as level 1 dependency of A.
Moreover, although forks are not dependencies of a project in the
same way other dependencies work, we decided to add the sources
of the forked repositories as level 1 dependencies for ease of repre-
sentation. However, from level 2 onward, we only have packages
in the list of dependencies, which includes the dependencies of the
source repositories of the forked ones.

4.2 Data Processing

The raw data was processed to create a usable dataset for analy-
sis. For each user, we first extracted the list of repositories they
contributed to and then constructed the list of packages they tran-
sitively depend on. The transitive (level 2+) dependencies for a user
was calculated using the transitive list of dependency data (item (8)
above). Then we extracted the packages the user had raised issues
for, and observed if that package belongs to level 0, 1, 2+, or X for
that user.

We noticed that the user id that created issues to the most num-
ber of packages was found to be “ghost”, which is of little surprise,
and it was removed from subsequent analysis. The second and third
positions were occupied by two bots associated with the automated
dependency management website/service Greenkeeper'2, both of
which raised issues for more than 400 different packages, and cre-
ated pull-requests for 98% of those packages, and 92% of the issues
raised by these two bots were pull-requests. We further noticed that
bots tend to create a lot more issues and PRs compared to human
users. So, we decided to remove the users that we could identify
as bots, because bots are much more prolific by design, and could
skew the distributions significantly. We were able to identify 35
bots which were removed from further analysis.

The variables in our final dataset are listed in Table 1. Each entry
in the table is the observation for one user. All variables, except
User login and whether the user has company affiliation (marked
by $ in Table 1), are numerical in nature.

5 RESULTS

In this section we discuss our findings and answer the different
Research Questions we had, staring with some general statistics

2https://greenkeeper.io/

PROMISE’19, September 18, 2019, Recife, Brazil

about the data. Since our RQ3 is asking the same questions as our
RQ1 and RQ2, but with a different condition, we present the answer
of RQ3 together with the answers of RQ1 and RQ2.

5.1 General Statistics about the Data

Here we discuss some general statistics, which, in spite of not being
directly related to our research questions, can give us some insight
into the data and the NPM ecosystem in general.

To recap, our study focused on 4433 NPM packages (3797 unique
GitHub repositories) with more than 10,000 monthly downloads
since January, 2018. We collected 1,376,946 issues created for these
projects, including 541,715 pull-requests, which were created by
280,835 users, out of whom 272,142 were active at time of data
collection.

A few interesting statistics about the data are reported below:

e We found that 219,945, or around 81% of the total users had
committed to at least one public repository in GitHub.

o 84,813 (31%) users have a disclosed company affiliation, but
they created almost 57% of the pull-requests, and around 42%
of the issues.

e 87,653 (32%) users had created at least one pull request, or,
68% of the users have created issues but never submitted a
pull request.

e 38,080 (14%) users have never submitted any issue without a
patch, i.e. all the issues they submitted were PRs.

e 4585 (1.7%) users in our user base had committed to at least
one NPM package directly, so were likely part of the core
team of an NPM package.

e 139,917 (51%) users committed only issue, i.e. just over half
of the users who committed at least one issue were “one-
time-contributors”, and they create around 11% of the total
no. of issues, and around 4.6% of the total no. of PRs.

® 215,584 (79%) users committed at least one issue, and 31,330
(12%) of the users committed at least one PR to a package
not in their supply chain (level X).

o 21,144 (8%) and 4643 (1.7%) users committed at least one issue
and at least one PR respectively, to a transitive dependency
package. i.e. they submitted cross-project issues and cross-
project pull requests respectively.

e 89,149 (33%) and 62,262 (23%) users committed at least one
issue and at least one PR respectively, to a direct dependency
package.

e Only 19,376 users had created more than 10 issues (corre-
sponding to our condition in RQ3), which consists of roughly
7% of the entire user population, but they create around 60%
of the total issues and 75% of the total PRs.

o All of the numerical variables listed in Table 1 have extremely
skewed distribution.

Previous studies of contribution patterns reported a layered struc-
ture of a core team, bug fixers, and bug reporters for individual
projects (see, e.g. [9, 29]). We see a similar distribution of the users,
with 1.7% of the users likely to be part of the core team of some
package, 32%, who provide patches, could be thought of as bug
fixers, and the rest, which consists of the majority of the user base,
are issue reporters. This shows the premise of the onion model is
valid at the ecosystem level as well.

PROMISE’19, September 18, 2019,

Recife, Brazil

Table 1: Final List of Variables in the Dataset

Tapajit Dey, Yuxing Ma, and Audris Mockus

User login $

No. of projects the user committed to

No. of repos that are forks of other repos

No. of NPM packages committed to

No. of direct dependencies of all the
user’s packages

No. of transitive dependencies of all the
user’s packages

Total no. of issues created by the user

Total no. of PRs created by the user

No. of issues created for level 0 packages

No. of issues created for level 1 packages

No. of issues created for level 2+ pack-
ages

No. of issues created for level X packages

No. of PRs created for level 0 packages

No. of PRs created for level 1 packages

No. of PRs created for level 2+ packages

No. of PRs created for level X packages

Total no. of packages for which a issue
was created

Total no. of packages for which a PR was
created

No. of level 0 packages for which an issue
was created

No. of level 0 packages for which a PR
was created

No. of level 1 packages for which an issue
was created

No. of level 1 packages for which a PR
was created

No. of level 2+ packages for which an
issue was created

No. of level 2+ packages for which a PR
was created

No. of level X packages for which an is-

No. of level X packages for which a PR

Total no. of issues that are not pull re-

No. of non-pull-request issues created for

sue was created was created

quests level 0 packages

No. of non-pull-request issues created for
level 1 packages

No. of non-pull-request issues created for
level 2+ packages

No. of non-pull-request issues created for
level X packages

If the user has a company affiliation $

Table 2: Distribution of Issues created by Users for different levels in their respective supply chains
Numbers on the right show the values for users with 10 or more issues, pertaining to RQ3

Fraction of issues cre-

Fraction of issues cre-

Fraction of issues created | Fraction of issues created

ated for Level 0 ated for Level 1 for Level 2+ for Level X
All users who created anissue | 0.027 | 0.039 | 0.532]0.688 | 0.03910.039 | 0.402]0.234
Users who created issue for level 0 | 0.139 | 0.127 0.7610.778 0.028 | 0.028 0.07110.067
Users who created issue for level 1 | 0.033 | 0.041 0.760 | 0.772 0.039] 0.039 0.168 | 0.148
Users who created issue for level 2+ | 0.031 | 0.034 0.679 | 0.728 0.116 | 0.077 0.174 | 0.160
Users who created issue for level X | 0.019 | 0.029 0.456 | 0.652 0.035 | 0.042 0.490 | 0.278

Table 3: Distribution of Pull Requests (PRs) created by Users for different levels in their respective supply chains

Numbers on the right show the values for users with 10 or more issues, pertaining to RQ3

Fraction of PRs created

Fraction of PRs created

Fraction of PRs created | Fraction of PRs created

for Level 0 for Level 1 for Level 2+ for Level X
All users who created a PR | 0.0480.056 | 0.772]0.810 [0.020]0.015 [0.160]0.119
Users who created PR for level 0 0.171]0.155 0.791 | 0.809 0.009 | 0.009 0.029] 0.027
Users who created PR for level 1 0.047 | 0.057 0.884 | 0.881 0.014]0.014 0.054 | 0.049
Users who created PR for level 2+ | 0.042 | 0.044 0.843 | 0.868 0.055] 0.033 0.06 | 0.055
Users who created PR for level X 0.034 | 0.038 0.727 | 0.794 0.018 | 0.016 0.222 | 0.152

5.2

Where in the supply chain are the contribution of
effort and demands for effort concentrated? (RQ1)
Does the distribution change for the more prolific
users? (RQ3)

To answer this question we looked at the number of issues and
PRs created by each user at different levels of their supply chain,
as defined in Section 3.1. The results of the finding are reported
in Tables 2 and 3, where the distribution of issues and PRs created
by users for different levels in their respective supply chains are
reported in terms of the fraction of issues and PRs reported at each
level. The values on the left side are the fractions for all users under
consideration, and the values on the right side are the fractions for
the more prolific users.

We observe from Table 2 that, when considering all users, most
of the issues (53.2%) are reported for the direct dependencies of the
users, followed by issues created (40.2%) for packages on which
none of the users’ public repositories depend on. The fraction of
cross-project issues is pretty small (3.9%), and so is the number of
issues created for level 0 packages(2.7%). When looking at the more
prolific users, the fraction of issues created for level 1 packages
increases further, and the fraction of issues created for level X
packages gets reduced, while the other two remain almost similar.
This indicates they are more likely to create issues for their direct

dependencies and less likely to create issues for packages none
of their public repositories depend on, while their likelihood of
creating issues for level 0 and level 2+ packages remain similar to
the likelihood for all users.

We also decided to look at the conditional distributions of issues,
that are created by users who have created at least one issue to a
particular level in their respective supply chains. We noticed that
the fraction of issues created for level 1 packages is significantly
increased when we focus only on the users who have created at
least one issue for a level 0 or level 1 package. Looking at the users
who created at least one cross-project issue, the fraction of issues
created for level 1 packages is still increased, but by a lesser amount,
while the fraction is reduced when we focus on users who created
at least one issue for a level X package. This indicates the users
who create issues for a level X package are likely different from the
rest, which we investigate further while answering RQ?2.

While looking at the distribution of pull requests (Table 3), we
see a trend very similar to the one we saw for the issues, with
the fraction of PRs created for level 1 being even larger under all
condition, and the fraction being smaller for level X packages. The
fraction under the different conditions also follow a trend similar
to what saw for issues.

NPM User Participation and User Classification

Table 4: No. of members and Probabilities of creating issues
at different levels for the cluster centers for Cases I and III

‘ Case I H Case III

‘ Cluster 1 ‘ Cluster 2 ‘ Cluster 3 H Cluster 1 ‘ Cluster 2 ‘ Cluster 3
No. of members 78047 8520 (3%) | 185575 5612 8932 4832

‘ (29%) ‘ (68%) H (29%) (46%) (25%)
Probability of creat- | 0.002 0.01 0.001 0.02 0.01 0.004
ing issue in level 0
Probability of creat- | 0.952 0.03 0.007 0.53 0.89 0.050
ing issue in level 1
Probability of creat- | 0.006 0.92 0.001 0.13 0.02 0.012
ing issue in level 2+
Probability of creat- | 0.040 0.04 0.991 0.32 0.08 0.934
ing issue in level X

Table 5: No. of members and Probabilities of creating PRs at
different levels for the cluster centers for Cases II and IV

Case II Case IV

Cluster 1 ‘ Cluster 2 Cluster 1 ‘ Cluster 2
No. of members | 58826 (67%) | 28827 (33%) || 12842 (80%) | 3127 (20%)
Probability of creat- 0.007 0.01 0.01 0.04
ing PR in level 0
Probability of creat- 0.974 0.02 0.95 0.14
ing PRin level 1
Probability of creat- 0.007 0.02 0.01 0.04
ing PR in level 2+
Probability of creat- 0.012 0.95 0.03 0.78
ing PR in level X

In summary, looking at the distribution of issues, we notice that
most of the issues are created for the users’ direct dependency pack-
ages, but a number of issues are also created for packages on which
none of the users’ public repositories depend on even transitively,
which wasn’t something we expected. As for pull requests, we see
more of them being created for level 1 packages, but again, a num-
ber of PRs are being created for the level X packages. When looking
at the more prolific users, we see even more issues and PRs being
created for level 1 packages, and less issues/ PRs being created for
level X packages, but the fraction of issues/PRs being created for
level 0 or level 2+ packages don’t change by much. Also, we ob-
served very few cross-project issues, and even fewer cross-project
PRs under all conditions.

5.3 Can we identify different groups among the users
based on their participation patterns? (RQ2)
Does the distribution change when we look at the
more prolific users? (RQ3)

We discussed the analysis method used to answer this research
question in Section 3.2. We ran the fuzzy c-means clustering al-
gorithm 4 times, once with the marginal probabilities of all users
creating an issue (Case I), and once with the marginal probabilities
of users, who have created at least one PR, creating a PR (Case II) at
different levels of their respective supply chains. Then we repeated
the same with the users who have created 10 or more issues (Cases
III and IV). For the sake of brevity we only show the visual represen-
tation of the clusters created for all users’ probabilities of creating
issues (Case I). The others are available in our GitHub repository:
https://github.com/tapjdey/NPM_user_analysis, along with our code
and other results.

Looking at the result of clustering, we noticed 3 different clus-
ters for Cases I and III, however, for Cases Il and IV, we found

PROMISE’19, September 18, 2019, Recife, Brazil

Plot of different Clusters along the first two Principle Components

Component 2
2
|

Component 1
These two components explain 74.84 % of the point variability.

Figure 1: Visual Representation of the 3 clusters for Case I

two major clusters. We show a visual representation of the clus-
ters created for Case I in Figure 1, where the data points (in green)
are plotted along the first two principle components, and the three
clusters are shown as the three shaded regions. Since the first two
components explain around 75% of the data, we assume this is a
fairly accurate representation.

We show the number and percentage of data points in each
cluster, along with the cluster centers for Cases I and III in Table 4,
and for Cases Il and IV in Table 5. Since we used the probabilities of
users creating issues and PRs as our data source, the cluster centers
indicate at which level of their respective supply chains the users
in that cluster are more likely to contribute issues and PRs to.

Looking at Table 4, we notice that for Case I, more than 2/3rds
of all the users (cluster 3) belong to the group who are very likely
to create issues for packages in level X, around 29% of the users
(cluster 1) are avid contributors to their direct dependencies (level
1), and a small group of users (3%, cluster 2) also exists who con-
tribute heavily to their transitive dependencies (level 2+), i.e. they
are very likely to create cross-project issues. For the more prolific
users (Case III), we see a slightly different picture. Although we
again see a group of users who contribute heavily to their level X
projects (cluster 3), the percentage of the users is reduced to only
25%, while the population of users who contribute heavily to level
1 projects (cluster 2) now consist of around half (46%) of the popu-
lation. Once again, we see a group of users (around 29%) who are
much more likely than the overall population average to contribute
cross-project issues (cluster 1), but these users also contribute a lot
of level 1 issues, and some level X issues as well.

From Table 5, we notice that 2/3rds of the users (cluster 1, Case
1I)) who have created at least one pull request are very likely to
create them for their direct dependencies, while the rest (cluster
2) are more likely to create issues for their level X dependency
packages. Looking into the more prolific users (Case IV), we notice
that the percentage of users who are likely to create PRs to level 1
packages (cluster 1) is increased to 80%, while the other 20% (cluster
2) are more likely to create PRs to level X packages, but they also
create a number of PRs for level 1 packages, and are more likely to
create PRs for level 0 and 2+ packages.

We examined the amount of activities of different users belong-
ing to different clusters and found that the users who commit more

PROMISE’19, September 18, 2019, Recife, Brazil

Variable Importance Plot
for Random Forest model

no.project_committed_to o
no.PR_created o
no.non_PR_issues o
no.transitive_dependencies o
no.direct_dependencies o
no.issues_created s}

no.forked_project o

I I S I R R
25 30 35 40 45

MeanDecreaseAccuracy

Figure 2: Variable Importance plot - Random Forest model

to their direct dependencies are more active, creating more issues
and PRs, and committing to more repositories, while the users more
likely to commit to level X packages show very little activity and
many of them have company affiliations. The users who are likely to
create cross-project issues tend to have a large number of transitive
dependencies, and create very few PRs. All of these differences were
significant, which was verified using the Kolmogorov-Smirnov test.

In summary, we see three different groups of users based on
which level of their respective supply chains they create issues for.
While a large number of users are likely to create issues for level X
packages, a group consisting of a good number of users are more
likely to create issues for level 1 packages, and a small group of
users also exists who are likely to create cross-project issues. In
terms of creating PRs, we see two major group of users: 2/3rds of
the users are more likely to create PRs to level 1 packages, while the
rest are more likely to create PRs for level X packages. Looking into
the more prolific users, we again see three groups of users based on
their issue creation patterns, but the percentage of users who create
issues for level X packages is reduced, and the fraction of users who
create issues for level 1 packages is increased. As for the users who
created at least one PR and 10 or more issues, the fraction of users
belonging to the group who are very likely to create PRs to level 1
increase even further, while the rest of the users form a group who
are more likely to contribute PRs to level X packages.

5.4 Using participation patterns of users to identify

their company affiliation (RQ4)

To answer this question, we used Random Forest modeling tech-
nique, as mentioned in Section 3.2. Our dataset had the predictors
at listed in Table 1. We dropped the predictor “User.login”, and were
left with 30 predictors and our response variable was the binary
variable representing if the user had a company affiliation. To obtain
the optimal number of predictors we used the “rfcv” function from
the randomForest R package, which shows the cross-validated pre-
diction performance of models with sequentially reduced number
of predictors (ranked by variable importance) via a nested cross-
validation procedure. Looking at the output of this function, we
decided to use 7 predictors for our final model.

First, we created a Random Forest model with all the predic-
tors, and selected the top 7 predictors by looking at the variable
importance plot. To calculate the performance of the model, we
decided to use 70% of the data, selected randomly, as our training
set, and the other 30% as our test set. Then, to optimize our model,
we decided to tune the model parameters, viz. “mtry”, the number of

Tapajit Dey, Yuxing Ma, and Audris Mockus

variables randomly sampled as candidates at each split, and “ntree”,
the number of trees to grow. We used the “train” function from
the caret package in R for performing a grid search on the training
data to find the optimal values of the two parameters that gives
the highest Accuracy, using 10 fold cross-validation. The optimal
value of “mtry” was found to be 2, and “ntree” of 500 gave the best
performance.

Using the optimal values of the parameters “mtry” and “ntree”,
we fitted the Random Forest model on the training data, and tested
the performance of the model against the test data. Our model had
a sensitivity of 0.62, and it performed relatively worse in terms of
specificity (0.47), i.e. it did relatively better in terms of not classify-
ing users without a company affiliation as users with a company
affiliation, but a number of users with a company affiliation were
wrongly predicted as users without a company affiliation. The value
of AUC under the ROC curve was 0.68, and the overall accuracy of
our model was 0.70, with a 95% confidence interval between 0.69
and 0.75.

The variable importance plot for our final model is shown in
Figure 2. The 7 predictors we selected for our final model were (in
the same order of importance they appear in Figure 2): total no. of
Git repositories a user committed to, no. of pull requests created by
the user, no. of issues created by the user that are not pull requests,
total number of transitive dependencies of all of the user’s public
repositories, total number of direct dependencies of all of the user’s
public repositories, total number of issues created by a user, total no.
of repositories of the user that are forks of another repository. So,
we see that to which layer a user creates an issue or a pull request
isn’t really important in predicting their company affiliation, but
the total activity, the number of projects they committed to, the
number of issues, PRs, and non pull request issues they create, and
the number of packages the user’s public repositories depend on
directly and transitively are important in predicting their company
affiliation.

To observe how the values of these predictors are different be-
tween users with and without a company affiliation, we conducted
the one-sided Kolmogorov-Smirnov test to test if the distribution is
stochastically larger for one of the groups, for these variables. We
found that for users with a company affiliation, the distributions of
all of the predictor variables are stochastically larger, i.e. they create
more issues, more PRs, as well as more non PR issues, and they also
commit to more projects, have more dependencies, and more forked
projects. Overall, we can say that they have a larger footprint on
the NPM ecosystem.

6 DISCUSSION

In this section, we discuss the answers we obtained for our research
question, and the implications of our findings. The important
findings of our study include: (1) The distribution patterns of is-
sues and PRs for the NPM ecosystem, which highlight that there are
very few cross-project issues and PRs. (2) The presence of distinct
user groups, who differ significantly in their participation patterns
and amount of activity, and the existence of a large number of users
who contribute to packages in level X. (We expected some users
like this, since some of their activity may not be public, but we
didn’t expect so many users would be part of this group.) (3) The
shift in participation patterns for the more prolific users, and (4)

NPM User Participation and User Classification

The possibility of predicting the users’ company affiliation by their
participation patterns.

Our RQ1 was focused on the distribution of the total number of
issues created, and our RQ2 investigated the existence of different
groups of users based on the distribution of probabilities of them
creating issues at different levels of their respective supply chains.
We observed that in terms of creating issues, only 29% belonged
to the group who are more likely to create issues for their direct
dependencies, but they create around 53% of the total issues. An
opposite picture was observed for users who create issues for level
X packages, where 68% of the total users are likely to create issues
for those packages, but they create around 40% of the issues. This
indicates the users who create issues for their direct dependencies
are more active. This assumption is further validated when we
look at the more prolific users, which shows that more of the pro-
lific users are likely to create issues for their direct dependencies.
We observe a similar pattern when we focus on the distribution
of PRs and the users who create PRs. However, in this case, we
have more users in the group of those more likely to create PRs
for level 1 packages. Users creating more issues and PRs for their
direct dependencies isn’t surprising, since they might face more
issues from them and feel more obliged to fix the issues in those
packages. However, the overall trend observed while answering RQ1
and RQ?2 led to the following possible implications: (1) The users who
create demand mostly from their direct dependencies are different
in nature from those who create demand (issues) from packages
outside their supply chain, given they belong to different clusters,
and they also differ in their amount of activity. A study looking into
the differences between the two groups, their nature, motivation,
and reasons for their distinct contribution patterns might give new
insights into the NPM ecosystem. (2) We can assume the users who
submit PRs are, on an average, more technically proficient than
the rest, at least in the given domain. Given the prevalence of low
quality issues [32], it might be helpful to predict the quality of an
issue or a pull request using the contribution pattern of the user
who submitted it.

We observed very few cross-project (level 2+) issues, and
even fewer cross-project pull requests. We hypothesize that the
reason behind this is a mixture of two factors, (1) the users may
not be aware which package is causing some issue they are facing
or they do not know how to go about fixing the issue, and (2) they
might feel it is not their responsibility to report or fix those issues.
A similar situation was reported in [26], which studied the PyPi
ecosystem, where a developer said that their experience in trying
to fix a bug just two levels upstream was “Extremely Painful”, due
to their unfamiliarity with the issue reporting system and resolving
process, and not being able to convey their problem clearly to the
developers in charge. We suspect a similar situation could be true
for the NPM ecosystem as well. So, if the reason behind the users
not reporting and fixing cross-project issues is more due to the lack
of transparency, then this calls for the need of tools and practices
that would increase the visibility for the developers beyond the
direct dependencies of their code and that would help determine
how the packages far in the supply chain might be affecting some
issues that they discover when running their code. However, we
did observe a small group of users who are more likely to create
cross-project issues, both for all the users and the more prolific

PROMISE’19, September 18, 2019, Recife, Brazil

users, but such a group was not observed when investigating pull
requests. Investigating those users might be helpful in formulating
a way to increase visibility and streamline the cross-project issue
reporting process.

We observed that users with a company affiliation, over-
all, are more active than the rest, i.e. they contribute to as well
as demand more effort from the projects, which might mean that
the involvement of different companies is a major driving force
behind the growth of the NPM ecosystem. So, if an NPM package
gets supported/used by a company, it might be beneficial for the
growth of that package, and of the NPM ecosystem overall. Does it
indicate the FLOSS community is shifting from its initial structure
of software by and for the users [27]? That is a much larger question
that needs further study to answer, but our result indicates that
companies might have a larger impact on the NPM ecosystem. Us-
ing a model similar to ours for identifying the commercial affiliation
of the users, and identifying the differences in their contribution
patterns might be useful for answering that bigger question.

7 LIMITATIONS

There are a few limitations to our study that we would like to
highlight here. First of all, we only considered the Git repositories
with a package . json file as JavaScript projects, which is not always
true. Also, we extracted the dependency information by looking at
the package. json and lerna. json files, however, looking directly
into the source code might have given a much more accurate picture
of dependencies. As for dependencies, the dependency map we
constructed is for runtime dependency only, i.e. we did not consider
the devDependencies or any other type of dependencies .

We have assumed in this study that issues create a demand of
effort to fix it, and pull-requests can be regarded as contribution of
effort by the developers who use a package. While this might be true
in general, there is definitely the possibility that the maintainers of
a project end up spending a lot of effort fixing some pull-request of
poor quality, and, on the other hand, creating a good quality issue
report also takes effort from the part of an issue reporter, and the
maintainers might have to spend little effort fixing an issue of good
quality. However, we believe that our assumption holds true for
majority of the cases.

We only looked at the public repositories of the users, for obvious
reasons. So, it could be possible that, based on the activity of a user
in their private repositories or other projects not shared publicly in
Git, some of the packages that we classified as level 2+ for a user
could actually be level 1 for them, or some package in level X could
actually belong to level 0, 1, or 2+ for that user.

We looked at only 4433 NPM packages, which is less than 0.5% of
the total packages in NPM ecosystem, however, given that a huge
number of packages are almost never used, we believe this small
subset of packages experience bulk of the activity in the ecosystem.

As mentioned before, we extracted the company affiliation in-
formation for the users from the information they provided on
GitHub. We did not attempt to validate this information from any
other source, which leaves the room for some error in classification.
However, we believe that more professional developers are likely
to provide accurate information about themselves. Another related
situation could be that some users actually affiliated to a company

PROMISE’19, September 18, 2019, Recife, Brazil

never bothered to fill out that information about themselves, leading
to a misclassification.

While studying the issues, we did not differentiate between the
type of issue, if it is open or closed, and for the pull-requests, if it
was merged or not, nor have we checked if the company a user is
associated with is one that is centered around OSS development, or
a more traditional company.

Our study selected the users based on the criteria that must
have created at least one issue, which makes all of our findings are
conditional on that selection criteria, and the results may not apply
for the entire population of users.

The result we obtained in this paper might not generalize to
all types of software ecosystems, since NPM is heavily used by
different companies around the world, while many other types of
software are not as heavily used.

8 CONCLUSION

We have separated what is typically considered to be a contribution
of effort into a part that likely demands more effort from projects
(issue fixes) and a part that is likely to provide more value (patches)
and investigated where in the supply chain these occur and if there
are distinct participation patterns. Initial findings suggest the lack
of visibility and highlights groups of participants that contribute
in radically different ways. Future studies are needed to determine
how to increase the visibility and learn from distinct participation
patterns and how these findings apply in other ecosystems.

REFERENCES

[1] Christopher J Alberts, Audrey J Dorofee, Rita Creel, Robert J Ellison, and Carol
Woody. 2011. A systemic approach for assessing software supply-chain risk. In
2011 44th Hawaii International Conference on System Sciences. IEEE, 1-8.

Sadika Amreen, Bogdan Bichescu, Randy Bradley, Tapajit Dey, Yuxing Ma, Audris

Mockus, Sara Mousavi, and Russell Zaretzki. 2019. A Methodology for Measuring

FLOSS Ecosystems. In Towards Engineering Free/Libre Open Source Software

(FLOSS) Ecosystems for Impact and Sustainability. Springer, Singapore, 1-29.

James C Bezdek, Robert Ehrlich, and William Full. 1984. FCM: The fuzzy c-means

clustering algorithm. Computers & Geosciences 10, 2-3 (1984), 191-203.

Barry W. Boehm. 1991. Software risk management: principles and practices. IEEE

software 8, 1 (1991), 32-41.

Christopher Bogart, Christian Késtner, James Herbsleb, and Ferdian Thung. 2016.

How to break an API: Cost negotiation and community values in three software

ecosystems. In Proceedings of the 2016 24th ACM SIGSOFT International Symposium

on Foundations of Software Engineering. ACM, 109-120.

[6] Gerardo Canfora, Luigi Cerulo, Marta Cimitile, and Massimiliano Di Penta. 2011.
Social interactions around cross-system bug fixings: the case of FreeBSD and
OpenBSD. In Proceedings of the 8th working conference on mining software reposi-
tories. ACM, 143-152.

[7] Patrick YK Chau and Kar Yan Tam. 1997. Factors affecting the adoption of open
systems: an exploratory study. MIS quarterly (1997), 1-24.

[8] Malgorzata Ciesielska and Ann Westenholz. 2016. Dilemmas within commer-
cial involvement in open source software. Journal of Organizational Change
Management 29, 3 (2016), 344-360.

[9] Kevin Crowston and James Howison. 2003. The social structure of open source
software development teams. (2003).

[10] Alexandre Decan, Tom Mens, and Maélick Claes. 2017. An empirical comparison
of dependency issues in OSS packaging ecosystems. In 2017 IEEE 24th International
Conference on Software Analysis, Evolution and Reengineering (SANER). IEEE, 2—-
12.

[11] Alexandre Decan, Tom Mens, Maélick Claes, and Philippe Grosjean. 2016. When

GitHub meets CRAN: An analysis of inter-repository package dependency prob-

lems. In 2016 IEEE 23rd International Conference on Software Analysis, Evolution,

and Reengineering (SANER), Vol. 1. IEEE, 493-504.

Alexandre Decan, Tom Mens, and Eleni Constantinou. 2018. On the impact

of security vulnerabilities in the npm package dependency network. In 2018

IEEE/ACM 15th International Conference on Mining Software Repositories (MSR).

IEEE, 181-191.

Tapajit Dey and Audris Mockus. 2018. Are software dependency supply chain

metrics useful in predicting change of popularity of npm packages?. In Proceedings

[2

=

(3

S
&y

[12

[13

[14

[15

[16

=
=

[18

[19

[20

[21]

[22

[23

[24

[25

[26

[27]

[28

[29

[30

[31

[33

(34]

[35

Tapajit Dey, Yuxing Ma, and Audris Mockus

of the 14th International Conference on Predictive Models and Data Analytics in
Software Engineering. ACM, 66—69.

Tapajit Dey and Audris Mockus. 2018. Modeling Relationship between Post-
Release Faults and Usage in Mobile Software. In Proceedings of the 14th Interna-
tional Conference on Predictive Models and Data Analytics in Software Engineering.
ACM, 56-65.

Hui Ding, Wanwangying Ma, Lin Chen, Yuming Zhou, and Baowen Xu. 2017.
An empirical study on downstream workarounds for cross-project bugs. In 2017
24th Asia-Pacific Software Engineering Conference (APSEC). IEEE, 318-327.
Nicolas Ducheneaut. 2005. Socialization in an open source software community:
A socio-technical analysis. Computer Supported Cooperative Work (CSCW) 14, 4
(2005), 323-368.

Eugene Glynn, Brian Fitzgerald, and Chris Exton. 2005. Commercial adoption of
open source software: an empirical study. In 2005 International Symposium on
Empirical Software Engineering, 2005. IEEE, 10-pp.

Georgios Gousios. 2013. The GHTorrent dataset and tool suite. In Proceedings
of the 10th Working Conference on Mining Software Repositories (MSR ’13). IEEE
Press, Piscataway, NJ, USA, 233-236. http://dl.acm.org/citation.cfm?id=2487085.
2487132

Karim R Lakhani and Eric Von Hippel. 2004. How open source software
works:aAIJfreeaAl user-to-user assistance. In Produktentwicklung mit virtuellen
Communities. Springer, 303-339.

Amanda Lee and Jeffrey C Carver. 2017. Are one-time contributors different?
a comparison to core and periphery developers in floss repositories. In 2017
ACM/IEEE International Symposium on Empirical Software Engineering and Mea-
surement (ESEM). IEEE, 1-10.

Amanda Lee, Jeffrey C Carver, and Amiangshu Bosu. 2017. Understanding the
impressions, motivations, and barriers of one time code contributors to FLOSS
projects: a survey. In Proceedings of the 39th International Conference on Software
Engineering. IEEE Press, 187-197.

Wanwangying Ma, Lin Chen, Xiangyu Zhang, Yuming Zhou, and Baowen Xu.
2017. How do developers fix cross-project correlated bugs? a case study on
the GitHub scientific Python ecosystem. In 2017 IEEE/ACM 39th International
Conference on Software Engineering (ICSE). IEEE, 381-392.

Yuxing Ma, Chris Bogart, Sadika Amreen, Russell Zaretzki, and Audris Mockus.
2019. World of Code: An Infrastructure for Mining the Universe of Open Source
VCS Data. In IEEE Working Conference on Mining Software Repositories. papers/
WoC.pdf

Audris Mockus, Roy T Fielding, and James D Herbsleb. 2002. Two case studies of
open source software development: Apache and Mozilla. ACM Transactions on
Software Engineering and Methodology (TOSEM) 11, 3 (2002), 309-346.

Peter C Rigby, Yue Cai Zhu, Samuel M Donadelli, and Audris Mockus. 2016.
Quantifying and mitigating turnover-induced knowledge loss: case studies of
Chrome and a project at Avaya. In 2016 IEEE/ACM 38th International Conference
on Software Engineering (ICSE). IEEE, 1006-1016.

Marat Valiev, Bogdan Vasilescu, and James Herbsleb. 2018. Ecosystem-level
determinants of sustained activity in open-source projects: a case study of the
pypi ecosystem. In Proceedings of the 2018 26th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering. ACM, 644-655.

Eric Von Hippel. 2001. Learning from open-source software. MIT Sloan manage-
ment review 42, 4 (2001), 82-86.

Laurie Voss. 2016. how many npm users are there? (2016). https://blog.npmjs.
org/post/143451680695/how- many-npm-users-are- there

Patrick Wagstrom, Corey Jergensen, and Anita Sarma. 2012. Roles in a networked
software development ecosystem: A case study in GitHub. (2012).

Linda Wallace, Mark Keil, and Arun Rai. 2004. Understanding software project
risk: a cluster analysis. Information & management 42, 1 (2004), 115-125.

Erik Wittern, Philippe Suter, and Shriram Rajagopalan. 2016. A look at the
dynamics of the JavaScript package ecosystem. In Mining Software Repositories
(MSR), 2016 IEEE/ACM 13th Working Conference on. IEEE, 351-361.

Jialiang Xie, Minghui Zhou, and Audris Mockus. 2013. Impact of triage: a study
of mozilla and gnome. In 2013 ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement. IEEE, 247-250.

Rodrigo Elizalde Zapata, Raula Gaikovina Kula, Bodin Chinthanet, Takashi Ishio,
Kenichi Matsumoto, and Akinori Ihara. 2018. Towards smoother library migra-
tions: A look at vulnerable dependency migrations at function level for npm
JavaScript packages. In 2018 IEEE International Conference on Software Mainte-
nance and Evolution (ICSME). IEEE, 559-563.

Ahmed Zerouali, Eleni Constantinou, Tom Mens, Gregorio Robles, and Jests
Gonzalez-Barahona. 2018. An empirical analysis of technical lag in npm package
dependencies. In International Conference on Software Reuse. Springer, 95-110.
Minghui Zhou, Audris Mockus, Xiujuan Ma, Lu Zhang, and Hong Mei. 2016.
Inflow and retention in oss communities with commercial involvement: A case
study of three hybrid projects. ACM Transactions on Software Engineering and
Methodology (TOSEM) 25, 2 (2016), 13.

	Abstract
	1 introduction
	2 Related Work
	3 Methodology
	3.1 Terminologies
	3.2 Analysis Method

	4 Data Description
	4.1 Data Collection
	4.2 Data Processing

	5 Results
	5.1 General Statistics about the Data
	5.2 Where in the supply chain are the contribution of effort and demands for effort concentrated? (RQ1) Does the distribution change for the more prolific users? (RQ3)
	5.3 Can we identify different groups among the users based on their participation patterns? (RQ2) Does the distribution change when we look at the more prolific users? (RQ3)
	5.4 Using participation patterns of users to identify their company affiliation (RQ4)

	6 Discussion
	7 Limitations
	8 Conclusion
	References

