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Abstract
Decomposition is a general principle in com-
putational thinking, aiming at decomposing a
problem instance into easier subproblems. Indeed,
decomposing a transition system into a parti-
tioned transition relation was critical to scaling
BDD-based model checking to large state spaces.
Since then, it has become a standard technique for
dealing with related problems, such as Boolean
synthesis. More recently, partitioning has begun
to be explored in the synthesis of reactive sys-
tems. LTLf synthesis, a finite-horizon version
of reactive synthesis with applications in areas
such as robotics, seems like a promising candidate
for partitioning techniques. After all, the state
of the art is based on a BDD-based symbolic
algorithm similar to those from model checking,
and partitioning could be a potential solution to the
current bottleneck of this approach, which is the
construction of the state space.

In this work, however, we expose fundamental lim-
itations of partitioning that hinder its effective ap-
plication to symbolic LTLf synthesis. We not only
provide evidence for this fact through an extensive
experimental evaluation, but also perform an in-
depth analysis to identify the reason for these re-
sults. We trace the issue to an overall increase in
the size of the explored state space, caused by an
inability of partitioning to fully exploit state-space
minimization, which has a crucial effect on perfor-
mance. We conclude that more specialized decom-
position techniques are needed for LTLf synthesis
which take into account the effects of minimization.

1 Introduction
Decomposing problems into smaller tasks and recombin-
ing them to find a solution is a fundamental tool of com-
putational thinking. A notable example in formal verifica-
tion is the idea of decomposing a transition system using
a partitioned transition relation. In this approach, the sys-
tem is represented by the product of individual components,
and the transition relation of the entire system can be ex-

pressed by the set of individual transition relations. Parti-
tioning was critical to scaling BDD-based model checking to
large state spaces [Burch et al., 1991], by producing a more
compact and efficient representation for the transition rela-
tion of the system. Thanks to the success in model check-
ing, partitioning has become a standard technique in sym-
bolic and BDD-based algorithms, and was applied also to re-
lated problems such as symbolic Boolean satisfiability [Pan
and Vardi, 2005] and Boolean synthesis [John et al., 2015;
Tabajara and Vardi, 2017].

A problem that might seem to be a promising candi-
date for partitioning techniques is that of LTLf synthe-
sis [De Giacomo and Vardi, 2015], an adaptation to finite-
horizon semantics of the classic problem of synthesizing re-
active systems from specifications in Linear Temporal Logic
(LTL), which has promising applications in areas such as
robotics [He et al., 2017]. The current state of the art for
LTLf synthesis is based on a reduction to a reachability game
played on a deterministic finite automaton (DFA), which is
solved using a BDD-based symbolic fixpoint algorithm [Zhu
et al., 2017], similar to those that benefited from partitioning
in model checking. Furthermore, the main limiting factor of
current approaches is the construction of the DFA, which can
often be very large and in the worst case doubly-exponential
in the size of the formula [Kupferman and Vardi, 2001]. This
problem is amplified by the fact that state-of-the-art tech-
niques use an explicit construction of the automaton state
space, only later encoding it symbolically. Partitioning would
allow the DFA to be represented as a product of smaller com-
ponent DFAs that can be constructed much more efficiently
than a single monolithic DFA, thus eliminating the bottleneck
of DFA construction.

In fact, previous efforts have already been made to ap-
ply similar decomposition techniques to reactive synthesis
frameworks. Decomposition has been used successfully in
explicit-state (infinite-horizon) LTL synthesis by the tool
STRIX [Meyer et al., 2018], which won the 2018 reactive syn-
thesis competition (SYNTCOMP). Decomposition has also
been employed in [Camacho et al., 2018], where LTLf syn-
thesis is reduced to FOND planning, though their results show
that even using decomposition the FOND-planning approach
does not always perform more efficiently than the standard
BDD-based algorithm. A natural question to ask, then, is how
such techniques perform when integrated into the BDD-based



symbolic algorithm. It would be natural to assume that parti-
tioning could be applied to symbolic LTLf synthesis to reap
similar improvements as the ones obtained in model checking
and related problems.

In this work, however, we expose fundamental limitations
of partitioning that hinder its application in symbolic LTLf

synthesis. An extensive experimental evaluation shows that,
although decomposing the LTLf formula avoids an initial
overhead during DFA construction, this comes at a signifi-
cant expense for computing the game’s winning strategy. We
follow this evaluation with an in-depth analysis of the algo-
rithm’s execution that traces the issue to an overall increase
in the size of the explored state space. We are able to at-
tribute this increase to the partitioned representation being
unable to fully exploit state-space minimization when con-
structing the DFA. Although at the initial phases of the fix-
point computation the partitioned transition relation is able to
provide a compact representation that mitigates this issue, as
the fixpoint computation progresses BDD sizes increase sig-
nificantly in relation to the monolithic version. Our analysis
indicates that this increase cannot be contained by simply us-
ing better heuristics for processing the partitioned transition
relation.

These results suggest that, while DFA minimization is ex-
pensive, it is crucial to the success of LTLf -synthesis algo-
rithms. Therefore, for a decomposition strategy to be effec-
tive for this problem, it must interact well with minimization,
a property that partitioning lacks. The conclusion that we
draw is that, while partitioning is an effective technique for
symbolic model checking and other related problems, LTLf

synthesis may require a different way of thinking and perhaps
more powerful decomposition approaches.

2 Preliminaries
2.1 LTL over Finite Traces (LTLf )
The syntax of LTLf is identical to that of LTL over infinite
traces. We define it over a set of propositions P as follows:

ϕ ::= > | ⊥ | p | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 |Xϕ | ϕ1Uϕ2

We also define in the usual way additional temporal opera-
tors Fϕ ≡ >Uϕ and Gϕ ≡ ¬F¬ϕ.

LTLf differs from LTL in its semantics, being interpreted
over finite rather than infinite traces. A (finite) trace of length
m is a sequence ρ = ρ[0], ρ[1], . . . , ρ[m− 1] ∈ (2P )∗, where
each ρ[i] is an interpretation or assignment of the proposi-
tions in P , represented by the subset of the propositions that
are true in instant i. In contrast, an infinite trace is a se-
quence ρ = ρ[0], ρ[1], . . . ∈ (2P )ω of infinite length. The
semantics of LTLf are defined inductively through a relation
ρ, i |= ϕ, which denotes that finite trace ρ satisfies ϕ at in-
stant i. See [De Giacomo and Vardi, 2013] for the formal
definition of ρ, i |= ϕ. We say that a trace ρ satisfies formula
ϕ, denoted by ρ |= ϕ, if ρ, 0 |= ϕ.
Definition 1 (LTLf Synthesis). Let ϕ be an LTLf formula
over set of propositions P = X ∪ Y , for disjoint sets
X and Y . X is the set of input variables and Y is the
set of output variables. ϕ is realizable if there exists a
function γ : (2X )∗ → 2Y from histories of input variables

to output variables such that, for every infinite sequence
X0, X1, . . . ∈ (2X )ω , there is m ≥ 0 such that ρ =
(X0, γ(X0)), (X1, γ(X0, X1)), . . . , (Xm, γ(X0, . . . , Xm))
satisfies ϕ. The problem of LTLf synthesis is, given ϕ, to
decide if ϕ is realizable, and if so to construct such a γ.

The function γ works as a model of a system whose traces
always satisfy ϕ. The output of the system in the current
instant depends on the entire history of the inputs received
so far. It is worth noting that in this work we consider
that the system is able to take the current input into ac-
count when choosing an output, rather than only past inputs.
This accounts for the slight difference in the definition of γ
from [Zhu et al., 2017]. We choose this formulation first
because it is more natural for specifying the benchmarks in
Section 4, and second because in the symbolic algorithm (see
Section 3) the order of quantifiers is more amenable to parti-
tioning. Yet, our results will show that even using this formu-
lation LTLf synthesis is not able to benefit from partitioning.

2.2 DFA Game
An instance of LTLf synthesis can be solved by reduction to
a game played over a Deterministic Finite Automaton (DFA).
A DFA is a tuple A = (S,Σ, ι,∆, F ), where:

• S is the set of states of the automaton.

• Σ is a finite alphabet.

• ι ∈ S is the initial state.

• ∆ ⊆ S×Σ×S is the (deterministic) transition relation.

• F ⊆ S is the set of accepting states.

The run of a finite trace on a DFA A is the sequence of
states visited by the trace when starting from the initial state.
The fact that ∆ is deterministic guarantees that the run of a
trace is unique. A run is accepting if the last state is in F . The
language of A, denoted L(A), is the set of traces for which
the corresponding run is accepting.

The product of DFAs A1, . . . , Ak over the
same alphabet Σ is the DFA A1 × . . . × Ak =
(S1 × . . . × Sk,Σ, (ι1, . . . , ιk),∆, F1 × . . . × Fk),
where ((s1, . . . , sk), σ, (s′1, . . . , s

′
k)) ∈ ∆ if and only

if (s1, σ, s
′
1) ∈ ∆i for all i. It is not hard to see that

L(A1 × . . .×Ak) = L(A1) ∩ . . . ∩ L(Ak).
Every LTLf formula ϕ can be translated into a DFAA over

alphabet Σ = 2P such that ρ ∈ L(A) if and only if ρ |= ϕ [De
Giacomo and Vardi, 2015].

A DFA game is a reachability game played using a DFA
as the arena. The two players of the game represent the sys-
tem and the environment. The game starts at the initial state
of the DFA, and at every round the environment chooses an
assignment to the X variables, while the system chooses an
assignment to the Y variables. The combined assignment de-
termines the state the game moves to. The system wins the
game if it eventually reaches an accepting state of the DFA.
We say that a state is a winning state if from that state the
system can always make choices that will cause the game to
reach an accepting state.

A strategy for the system is represented by a transducer
(specifically, a Mealy machine) T = (Q, 2X , 2Y , τ, ν) with



state space Q, input and output alphabets 2X and 2Y , initial
state τ and transition function ν : Q × 2X → 2Y × Q. The
state of the transducer stores information about the history of
the game so far, with the transition function serving to choose
what output to produce and how to update its state. A strategy
is winning for the system if, starting from the initial state of
the DFA, a system that follows the strategy wins regardless
of the choices of the environment. A winning strategy for the
DFA game implicitly defines a solution to the LTLf synthesis
problem for the original formula ϕ [Zhu et al., 2017].

3 Partitioned LTLf Synthesis
Integrating partitioning into LTLf synthesis requires having
a way to construct a partitioned transition relation from an
LTLf formula. This construction should also be more ef-
ficient than constructing the monolithic DFA. The fact that
most specifications take the form of a conjunction of con-
straints gives a natural way to decompose the formula: trans-
late each conjunct individually into a DFA, then take the tran-
sition relation of all DFAs together as a partitioned transition
relation for their product. This approach, which we detail
below, follows the same general idea employed for decom-
posing specifications in [Camacho et al., 2018] and [Meyer
et al., 2018].

3.1 DFA of a Conjunctive Formula
Let ϕ = ϕ1 ∧ . . . ∧ ϕk be an LTLf formula over input vari-
ables X and output variables Y . ϕ can be translated into a
DFA A = (S, 2X∪Y , ι,∆, F ) that accepts the language of
traces that satisfy ϕ. We call this a monolithic DFA for ϕ.
This is the DFA that is originally used in [Zhu et al., 2017].
Alternatively, each conjunct ϕi can be individually translated
to a DFA Ai = (Si, 2

X∪Y , ιi,∆i, Fi) that accepts the lan-
guage of traces that satisfy ϕi. Although ϕi might depend
on only a subset of the variables, for simplicity we inter-
pret it as a formula over X ∪ Y . Under this interpretation,
L(A) = L(A1) ∩ . . . ∩ L(Ak) = L(A1 × . . .×Ak). There-
fore, A1 × . . . × Ak is also a DFA for ϕ. We call this a
partitioned DFA for ϕ. Rather than explicitly computing the
product state space S1 × . . . × Sk, a partitioned DFA can be
represented simply by its individual componentsA1, . . . , Ak.

In order to apply partitioned techniques, each component
DFA Ai must be encoded symbolically. This can be done
using the same symbolic DFA encoding of [Zhu et al., 2017]:
• The state space Si is encoded as a set of state variables
Zi such that |Zi| = log2(|Si|). We create a copy z′i of
each variable zi ∈ Zi to use as a next-state variable, and
denote this set by Z ′i .
• The initial state ιi is represented by an assignment Ii ∈

2Zi of the state variables.
• The transition relation ∆i is represented by a boolean

formula δi over Zi, X , Y and Z ′i .
• The set of accepting states Fi is represented by a boolean

formula fi over Zi.
A symbolic representation of the product DFA can then

be obtained from the representation of the individual com-
ponents, by taking Z =

⋃k
i=1Zi, Z ′ =

⋃k
i=1Z ′i , I =

I1 ∪ . . . ∪ Ik, δ = δ1 ∧ . . . ∧ δk and f = f1 ∧ . . . ∧ fk.
As in [Zhu et al., 2017], BDDs can be used to represent the
boolean formulas. In the case of a partitioned DFA, however,
rather than constructing a single BDD for the conjunctions δ
and f , it is possible to instead construct one BDD for each
individual component δi and fi, which can be expected to be
much smaller. Next, we describe how to adapt the symbolic
algorithm of [Zhu et al., 2017] to a partitioned representation.

3.2 Solving a DFA Game over a Partitioned DFA
The algorithm of [Zhu et al., 2017] is based on a least fix-
point that expands at every iteration an under-approximation
of the setW of winning states (for the system) of the DFA for
ϕ. The initial under-approximation, W0, is simply the set of
accepting states. After that, every iteration expands Wj into
a larger under-approximation Wj+1, until no more states can
be added. At this point, we know that the current set is the
entire set of winning states, and the system can win the game
if and only if the initial state is in the set. It is also possible
to stop as soon as the initial state is added to the set, since at
this point we already know that the system can win from the
initial state. When using a partitioned DFA as described in
Section 3.1, Wi can be defined recursively as follows:

W0 = F1 × . . . × Fk

Wj+1 = Wj ∪ {(s1, . . . , sk) ∈ S1 × . . .× Sk |
∀X ∈ 2X .∃Y ∈ 2Y .∃s′1, . . . , s′k.
k∧

i=1

((si, X, Y, s
′
i) ∈ ∆i) ∧ (s′1, . . . , s

′
k) ∈Wj}

Note that every iteration adds to Wj+1 those states of the
form (s1, . . . , sk) from which, for every input X , the system
can choose an output Y that moves the game into a state inWj

(which is already known to be winning). When Wj+1 = Wj ,
we know that no more winning states exist.

Just as the DFA is represented symbolically, so can the sets
W0,W1, . . ., as formulas w0, w1, . . . over the state variables
Z . The fixpoint algorithm above can then be implemented
symbolically as follows, where for a formula α and a variable
set V ∈ {Z,X ,Y,Z ′} the notation α(V) defines formula α
over the variables in V:

w0(Z) = f1(Z) ∧ . . . ∧ fk(Z)

wj+1(Z) = wj(Z) ∨ ∀X .∃Y.∃Z ′.
k∧

i=1

δi(Z,X ,Y,Z ′) ∧ wj(Z ′)

As mentioned in Section 3.1, each fi and δi can be rep-
resented as a BDD, and similarly for wj . BDDs implement
all the common boolean operations used in the computation,
such as ∧, ∨, universal and existential quantification, and
variable substitution. Furthermore, they are canonical repre-
sentations of boolean functions, allowing logical equivalence
to be performed in constant time. This is useful to perform
the test wj+1 ≡ wj of whether the fixpoint has been reached.

To compute the intermediate BDD for the formula
∃Y.∃Z ′.

∧k
i=1 δi(Z,X ,Y,Z ′)∧wj(Z ′), the straightforward

option would be to simply take the conjunction of all the



individual BDDs of each δi and wj , and then existentially
quantify the Y and Z ′ variables. This approach, how-
ever, would fail to take full advantage of the partitioned
representation. When existentially quantifying a variable
v over a conjunction of formulas, the quantifier need not
be applied to those conjuncts where v does not appear.
This allows some variables to be quantified early, before
conjoining all the subformulas. For example, consider
a variable z′ ∈ Z ′k. Then, z′ only appears in δk and
wj . Therefore, ∃z′.

∧k
i=1 δi(Z,X ,Y,Z ′) ∧ wj(Z ′) ≡∧k−1

i=1 δi(Z,X ,Y,Z ′) ∧ (∃z′.δk(Z,X ,Y,Z ′) ∧ wj(Z ′)).
Quantification of output variables that only appear in some
of the conjuncts can be pushed inside in a similar way.
Although the final BDD is the same, when using early
quantification the intermediate BDDs can be significantly
smaller, as the existential quantification tends to reduce their
size before their conjunction becomes too large. Several
heuristics can be used to decide in which order to perform
conjunctions and quantification [Geist and Beer, 1994;
Pan and Vardi, 2005]. In Section 4, however, we show that
using better heuristics does not improve the performance of
partitioning in LTLf synthesis.

3.3 Computing a Winning Strategy
When existentially quantifying a variable v from a Boolean
formula ψ, it is also possible to compute, as a side prod-
uct, a function from an assignment of the free variables
of ψ to an assignment of v that satisfies ψ whenever pos-
sible. This process is known, among other names, as
Boolean synthesis [Fried et al., 2016]. Then, when comput-
ing ∃Y.∃Z ′.

∧k
i=1 δi(Z,X ,Y,Z ′)∧wj(Z ′) at iteration j+1,

we can also construct a Boolean function gj+1 : 2Z × 2X →
2Y × 2Z

′
representing the choice for output variables and

next state at that iteration. If the game is solved in m iter-
ations, then the collection of functions g1, . . . , gm encodes
a winning strategy. If the first move is chosen according
to gm, the second according to gm−1, and so on, then the
move chosen according to g1 is guaranteed to reach an ac-
cepting state of the DFA. As can be seen in [Tabajara and
Vardi, 2017], Boolean synthesis can be performed even if
∃Y.∃Z ′.

∧k
i=1 δi(Z,X, Y, Z

′) ∧ wj(Z
′) is computed using

early quantification, as we propose in Section 3.2. There-
fore, we can compute a winning strategy while still taking
advantage of the benefits of a partitioned transition relation.

4 Experimental Evaluation
After describing how partitioning can be integrated into sym-
bolic LTLf synthesis, we proceed to perform an experimental
evaluation to point out the limitations of partitioning in this
context1. We compare the performance of the partitioned ap-
proach with the original monolithic approach and show that
partitioning introduces a significant overhead into the compu-
tation of the winning strategy. We follow these results with a
thorough analysis that identifies the source of the overhead to
be an enlargement of the DFA game’s state space, and explain
the reason for this phenomenon.

1Supplemental data in https://bitbucket.org/ijcai2816/ijcai-2816/

Following standard practice in LTLf -synthesis litera-
ture [Zhu et al., 2017; Camacho et al., 2018], we convert
LTLf to first-order logic and use the tool MONA [Henrik-
sen et al., 1995] to translate FOL formulas to DFAs. For the
partitioned version of the algorithm, we decompose the LTLf

specification into its top-level conjuncts and convert them in-
dividually to FOL, and then to DFAs using MONA. All mea-
sured times are end-to-end, including translation to FOL, con-
struction of the DFA and computation of the winning strategy.

It is important to note that MONA produces canonical
DFAs, meaning that they are the DFAs of minimum size for
their formulas. In the monolithic approach, the monolithic
DFA is minimized, while in the partitioned approach each
component DFA is minimized. Because of this, even though
the partitioned representation makes the size of the transition
relation smaller, the number of state variables in the parti-
tioned approach will be larger. As will be seen later in this
section, this fact turns out to have a large impact on the per-
formance of the partitioned approach.

All experiments were performed on a cluster consisting of
2304 processor cores in 192 Westmere nodes (12 processor
cores per node) at 2.83 GHz with 48 GB of RAM per node (4
GB per core). Although we partition the DFA game, the par-
titioned algorithm is not easily parallelizable because every
iteration of the fixpoint consists of sequentially combining
components into a monolithic BDD. Therefore, the different
cores were used only for running multiple experiments in par-
allel. Every instance had a timeout of 8 hours.

4.1 Evaluation on LTLf Benchmarks
As a fairly recent problem, LTLf synthesis lacks the extensive
sets of benchmarks that exist for LTL synthesis. This forces
us to construct our own set of benchmarks to use in our ex-
perimental evaluation. We initially considered benchmarks
in the style of the ones used in [Zhu et al., 2017] and [Cama-
cho et al., 2018], formed by random conjunctions of smaller
base cases taken from the lilydemo LTL benchmark suite
from [Jobstmann and Bloem, 2006] interpreted with LTLf

semantics. In these benchmarks, the partitioned approach did
outperform the monolithic one. The DFA games produced
by these benchmarks, however, were very easy to solve, hav-
ing very shallow winning strategies. All realizable instances
could be won in at most 2 moves by the system. This is likely
due partly to their random nature and partly to the fact that the
base cases were formulas designed for infinite-horizon LTL,
which can often become trivial when interpreted with finite-
horizon semantics. We therefore conclude that these bench-
marks are not an appropriate basis of comparison for LTLf

synthesis, and proceed to construct more suitable benchmark
families by encoding finite-horizon games in LTLf .

Each of the three families below can be scaled based on one
or more parameters which, unlike the case of random con-
junctions, also increase the number of moves to win the game.
The first two families deal with counters, which are important
non-trivial components of many synthesis problems. Coun-
ters can model, for example, the spatial position of robots in
a grid, or the amount of resources available to complete a
task. The third family is based on a real game that has been
extensively studied and requires complex strategic reasoning.

https://bitbucket.org/ijcai2816/ijcai-2816/
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Figure 1: Running time of Single-Counter benchmarks. Plots are
in log scale. Missing points mean that the instance either timed out
or ran out of memory. The results show that running time increases
significantly when partitioning is used.

Single Counter The first benchmark family is a simple ex-
ample where the behavior of the system is completely deter-
mined by the actions of the environment. Therefore, the chal-
lenge in this family lies mostly in proving that the specifica-
tion is realizable. The system stores an n-bit counter (where
n is the scaling parameter) which it must increment upon a
signal by the environment. The system wins if the counter
eventually overflows to 0. To guarantee that the game is win-
ning for the system, the specification assumes that the envi-
ronment will send the increment signal at least once every
two timesteps.

Double Counters This family of benchmarks is similar to
the previous one, except that in this case there are two n-bit
counters, one incremented by the environment and another by
the system. The goal of the system is for its counter to even-
tually catch up with the environment’s counter. To guarantee
that this is achievable, the specification assumes that the en-
vironment cannot increment its counter twice in a row.

Nim This family of benchmarks describes a generalized
version of the game of Nim [Bouton, 1901] with n heaps of
m tokens each. The environment and the system take turns
removing any number of tokens from one of the heaps, and
the player who removes the last token loses.

The LTLf encoding of the benchmarks above take the form
of conjunctions of several subformulas describing the possi-
ble actions and goal of the system. These formulas were given
as specifications, with increasing values of n and m, to the
monolithic and partitioned versions of the algorithm.

We tried numerous different combinations of early-
quantification heuristics, as well as variable ordering heuris-
tics for the BDDs. For all of them, the same general re-
sults were obtained, showing a stark contrast with previous
applications of partitioning. The best performance for both
the partitioned and monolithic versions was achieved by us-
ing dynamic variable reordering for the BDDs. Figure 1
shows these results for the Single-Counter benchmarks when
n varies from 1 to 10, using the Bucket-Elimination heuris-
tic [McMahan et al., 2004] for early quantification. Results

Monolithic Partitioned
n = 1,m = 1 0.09 30.7
n = 1,m = 2 0.16 31.9
n = 1,m = 3 0.32 326.37
n = 1,m = 4 0.06 -
n = 2,m = 1 0.1 -
n = 2,m = 2 0.15 -
n = 2,m = 3 0.32 -
n = 2,m = 4 0.63 -
n = 3,m = 1 0.1 -
n = 3,m = 2 0.59 -
n = 3,m = 3 2.51 -
n = 3,m = 4 6.62 -

Table 1: Running time, in seconds, of the Nim benchmarks for dif-
ferent values of n and m. Missing values for the partitioned version
indicate that the instance either timed out or ran out of memory.

Monolithic Partitioned
n = 1,m = 1 4 67
n = 1,m = 2 7 107
n = 1,m = 3 10 176
n = 1,m = 4 10 445
n = 2,m = 1 10 200
n = 2,m = 2 14 3047
n = 2,m = 3 20 3782
n = 2,m = 4 16 15457
n = 3,m = 1 6 423
n = 3,m = 2 14 2394
n = 3,m = 3 15 42175
n = 3,m = 4 17 472323

Table 2: Number of nodes of the BDD for the winning states of the
Nim benchmarks for different values of n and m. For easier visual-
ization, we show only the initial size of the BDD. In the monolithic
version BDD sizes remain relatively constant during the computa-
tion, reaching around 60 nodes at most, while in the partitioned ver-
sion most instances fail after one or two iterations.

for the Double-Counter benchmarks, as well as for other
heuristics, follow a similar trend. Table 1 shows the same
comparison for the Nim benchmarks.

In our experiments, unlike the case for model checking and
other problems, symbolic LTLf synthesis was not able to ben-
efit from partitioning. In fact, despite making DFA construc-
tion more feasible as expected (construction of the partitioned
DFA always finished in under a second), partitioning created
a massive overhead during computation of the winning strat-
egy that lead to an orders-of-magnitude increase in running
time. This overhead was large enough to nullify all benefits
from the partitioned DFA construction, as in all cases where
the monolithic version failed during construction, the parti-
tioned version failed during the fixpoint computation. In the
next section we provide an analysis of this phenomenon.

4.2 Analysis of the Results
Explaining the disparity between the above results and pre-
vious applications of partitioning requires a more in-depth
look into the behavior of the fixpoint algorithm in the mono-
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Figure 2: Node count of the BDD for the winning states per iteration
of the fixpoint algorithm on the Single-Counter benchmarks, using
the (a) Monolithic or (b) Partitioned approach. For better visualiza-
tion, one or both axes are in log scale in each of the plots.

lithic and partitioned cases. For this purpose, we proceeded
to monitor the size of the BDD wj representing the set of
winning states across iterations of the fixpoint. Figure 2 dis-
plays these measurements for the Single-Counter benchmark
family, again using dynamic variable reordering and Bucket
Elimination, with every line representing a different value for
the number of bits n. Figure 3 and Table 2 show analogous
results for the Double-Counters and Nim families.

It is clear from the plots that there is a notable difference
between the behavior of the monolithic and partitioned ap-
proaches. In the monolithic version, the BDD sizes change
very little during the fixpoint computation (the changes are
even smaller when dynamic variable reordering is not used).
In the partitioned version, however, although the BDD sizes
are initially small, they increase rapidly in the first few itera-
tions of the fixpoint computation. By the time it becomes rel-
atively constant, BDD size is already several orders of mag-
nitude larger than in the monolithic version.

Interestingly, in the case of the Single-Counter bench-
marks, even though the state space is exponential, the initial
BDD sizes of the monolithic version increase linearly with n,
indicating that a good symbolic encoding is achieved. This
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Figure 3: Node count of the BDD for the winning states per iteration
of the fixpoint algorithm on the Double-Counters benchmarks, using
the (a) Monolithic or (b) Partitioned approach. Plots are in log-log
scale. The monolithic DFA could not be constructed for n > 6.

is not the case, for example, in the Double-Counter bench-
marks, where the initial BDD sizes are exponential in n for
the monolithic version, while being linear for the partitioned
version. Even in the Double-Counter case, however, the
BDDs in the partitioned version quickly grow exponentially
to surpass the ones in the monolithic version.

These measurements of BDD growth allow us to conclude
that the issue is not caused by inefficiencies in processing the
partitioned transition relation during each iteration, but rather
by a massive increase in BDD sizes during the course of the
fixpoint computation. An important conclusion that can be
drawn from this observation is that better early-quantification
schemes are not enough to solve this problem: since BDDs
are canonical data structures, the BDD computed at each it-
eration will be the same regardless of the order in which
conjunctions and quantification are performed. At the same
time, this observation also helps explain why the partitioned
approach performed well on the random conjunctions men-
tioned in the beginning of Section 4.1, since those bench-
marks can be solved in only one or two iterations. If the
game can be solved in a single iteration, for example, then
it is essentially equivalent to an instance of Boolean synthe-



sis, where partitioning is already known to work [Tabajara
and Vardi, 2017].

The blowup in BDD sizes for the partitioned version can be
explained by the fact that, although the partitioned transition
relation provides a more compact representation of a DFA
game, the underlying state space can be significantly larger
than for the monolithic version, leading to a major increase in
the representation of the set of winning states. For example,
in the Single-Counter benchmarks the number of state vari-
ables is in the order of n for the monolithic DFA, and 7n for
the partitioned DFA. The large difference in size of the state
spaces is due to the fact that MONA constructs canonical
DFAs, and therefore the state space of the monolithic DFA
is as small as possible. In the partitioned version, while the
individual DFAs are minimized, the full state space of their
product can be much larger than the canonical DFA, to the
point that not even the symbolic representation can handle.

A reasonable question to ask is if it would be possible to
find a balance between minimization and partitioning by con-
structing each DFA from the conjunction of multiple subfor-
mulas, rather than a single subformula. In this case, the in-
dividual DFAs might be more complex, but MONA would
be able to perform more aggressive minimization. We tried
both selecting which formulas to combine manually and us-
ing clustering heuristics from previous applications of parti-
tioning such as [Pan and Vardi, 2005]. In either case, the
running time and BDD sizes were smaller than in the fully-
partitioned version, but still larger than the monolithic ver-
sion, suggesting that performance decreases proportionally to
the degree of partitioning.

The results of our experiments reveal critical issues that
prevent the effective application of classic partitioned ap-
proaches to LTLf synthesis. Although such approaches might
seem to be a promising solution to the current bottleneck of
synthesis algorithms, i.e. DFA construction, this benefit is in-
validated by the increased complexity of the resulting game.

5 Discussion
Ultimately, our results show that, despite having seen
widespread use in related problems, partitioning has crucial
weaknesses when it comes to LTLf synthesis. Partitioning
does not interact effectively with DFA construction and min-
imization, giving rise to a compact representation of the tran-
sition relation but an enlarged representation of state sets.

Although our evaluation encompasses only a few bench-
mark families, these families illustrate common elements of
synthesis problems, such as counters and strategic reasoning.
Therefore it is not unreasonable to believe that our results ex-
tend to other interesting cases. At the very least, we have
shown that partitioning is not a simple general solution, as
one might have expected. Its applicability, if any, is likely to
be limited to specific cases and might require domain knowl-
edge to partition the problem in a way that still allows some
degree of minimization.

The role that minimization plays in LTLf synthesis ac-
counts for the crucial difference with partitioning in model
checking. In the latter we have no access to a canonical tran-
sition system in the same sense as in the former. Instead, the

model is already provided with a fixed state space, and the
transition relation is partitioned along the already-existing set
of state variables. Therefore, unlike in LTLf synthesis, parti-
tioning in model checking produces no overhead on the state-
space representation.

Our evaluation focused on LTLf due to the attention that
this variant has recently attracted in the field of AI, and we
cannot answer conclusively yet whether similar approaches
would be effective or not in synthesis algorithms for the stan-
dard, infinite-horizon LTL. LTLf does have the distinction,
however, that DFAs can be fully minimized. This favors the
monolithic approach, that can benefit more from minimiza-
tion than the partitioned approach. Nevertheless, it would not
be surprising if a similar state-space explosion occurred also
in the infinite-horizon case, even if to a lesser degree due to
the smaller role of minimization. Therefore, the results of
our evaluation should be considered if one intends to apply
similar partitioning techniques to LTL synthesis.

Note that the LTL-synthesis tool STRIX [Meyer et al.,
2018] mentioned in the introduction also uses a similar
type of decomposition, with successful results. The main
difference is that rather than using symbolic techniques,
STRIX maintains an explicit representation of the state space
throughout, allowing the algorithm to compute states of the
product on-the-fly as they are needed. This means that the
explored state space needs to grow only as much as necessary
to compute the winning strategy, and therefore the full size
of the state space matters less than in symbolic approaches.
We cannot rely solely on explicit-state approaches for synthe-
sis, however, since they will necessarily need to use exponen-
tial space when the winning strategy requires an exponential
number of states, while symbolic techniques might be able to
compute the same strategy in polynomial space.

Yet, our results indicate that to improve current symbolic
LTLf synthesis approaches, it might be necessary to look be-
yond classic partitioning towards more sophisticated decom-
position techniques. Alternative decomposition approaches
to partitioning have been proposed for Boolean relations
in the context of Boolean synthesis [Akshay et al., 2017;
Chakraborty et al., 2018], and it is possible that some of these
ideas can be leveraged to LTLf synthesis as well, although
further research is necessary to determine exactly how. The
work of [Fried et al., 2018] has also explored several novel
notions of decomposition, both of relations and of DFAs.
Given that minimization has shown itself to have a crucial
effect on the performance of LTLf synthesis, finding a de-
composition approach that will display good results for this
problem will require carefully considering how the decom-
position can exploit minimization as much as possible, and
the ultimate effect that it has on the explored state space.
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