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Abstract

We present a fast learning-based algorithm for de-

formable, pairwise 3D medical image registration. Cur-

rent registration methods optimize an objective function in-

dependently for each pair of images, which can be time-

consuming for large data. We define registration as a

parametric function, and optimize its parameters given

a set of images from a collection of interest. Given a

new pair of scans, we can quickly compute a registration

field by directly evaluating the function using the learned

parameters. We model this function using a CNN, and

use a spatial transform layer to reconstruct one image

from another while imposing smoothness constraints on

the registration field. The proposed method does not re-

quire supervised information such as ground truth regis-

tration fields or anatomical landmarks. We demonstrate

registration accuracy comparable to state-of-the-art 3D

image registration, while operating orders of magnitude

faster in practice. Our method promises to significantly

speed up medical image analysis and processing pipelines,

while facilitating novel directions in learning-based reg-

istration and its applications. Our code is available at

https://github.com/balakg/voxelmorph.

1. Introduction

Deformable registration is a fundamental task in a va-

riety of medical imaging studies, and has been a topic of

active research for decades. In deformable registration, a

dense, non-linear correspondence is established between a

pair of n-D image volumes, such as 3D MR brain scans, de-

picting similar structures. Most registration methods solve

an optimization problem for each volume pair that aligns

voxels with similar appearance while enforcing smoothness

constraints on the registration mapping. Solving this op-

timization is computationally intensive, and therefore ex-

tremely slow in practice.

In contrast, we propose a novel registration method that

learns a parametrized registration function from a collec-

tion of volumes. We implement the function using a con-

volutional neural network (CNN), that takes two n-D input

volumes and outputs a mapping of all voxels of one volume

to another volume. The parameters of the network, i.e., the

convolutional kernel weights, are optimized using a training

set of volume pairs from the dataset of interest. By sharing

the same parameters for a collection of volumes, the proce-

dure learns a common representation which can align any

new pair of volumes from the same distribution. In essence,

we replace a costly optimization of traditional registration

algorithms for each test image pair with one global function

optimization during a training phase. Registration between

a new test scan pair is achieved by simply evaluating the

learned function on the given volumes, resulting in rapid

registration.

The novelty of this work is that:

• we present a learning-based solution requiring no su-

pervised information such as ground truth correspon-

dences or anatomical landmarks during training,

• we propose a CNN function with parameters shared

across a population, enabling registration to be

achieved through a function evaluation, and

• our method enables parameter optimization for a vari-

ety of cost functions, which can be adapted to various

tasks.

Throughout this paper, we use the example of register-

ing 3D MR brain scans. However, our method is broadly

applicable to registration tasks, both within and beyond the
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medical imaging domain. We evaluate our method on a

multi-study dataset of over 7,000 scans containing images

of healthy and diseased brains from a variety of age groups.

Results show that our method achieves comparable accu-

racy to a state-of-the-art registration package, while taking

orders of magnitude less time. Scans that used to take two

hours to register can now be registered within one or two

minutes using a CPU, and under a second with a GPU. This

is of significant practical importance for many medical im-

age analysis tasks.

2. Background

In the typical volume registration formulation, one (mov-

ing or source) volume is warped to align with a second

(fixed or target) volume. Deformable registration strategies

separate an initial affine transformation for global alignment

from a typically much slower deformable transformation

with higher degrees of freedom. We concentrate on the lat-

ter step, in which we compute a dense, nonlinear correspon-

dence for all voxels. Fig. 1 shows sample 2D coronal slices

taken from 3D MRI volumes, with boundaries of several

anatomical structures outlined. There is significant variabil-

ity across subjects, caused by differences in health state and

natural anatomical variations in healthy brains. Deformable

registration enables comparison of structures across scans

and population analyses. Such analyses are useful for un-

derstanding variability across populations or the evolution

of brain anatomy over time for individuals with disease.

Most existing registration algorithms iteratively optimize

a transformation based on an energy function. Let F,M de-

note the fixed and moving images, respectively, and let φ be

the registration field. The optimization problem is typically

written as:

φ̂ = argmin
φ

L(F,M, φ), (1)

where

L(F,M, φ) = Lsim(F,M(φ)) + λLsmooth(φ), (2)

M(φ) is M warped by φ, function Lsim(·, ·) measures im-

age similarity between M(φ) and F , Lsmooth(·) imposes

regularization on φ, and λ is the regularization parameter.

There are several common formulations for φ, Lsim and

Lsmooth. Often, φ is a displacement vector field, specify-

ing the vector offset from F to M for each voxel. Diffeo-

morphic transforms are a popular alternative that model φ
as the integral of a velocity vector field. As a result, they

are able to preserve topology and enforce invertibility on φ.

Common metrics used for Lsim include mean squared voxel

difference, mutual information, and cross-correlation. The

latter two are particularly useful when volumes have vary-

ing intensity distributions and contrasts. Lsmooth enforces
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Figure 1: Example coronal slices from the 3D MRI brain

dataset, after affine alignment. Each column is a different

scan (subject) and each row is a different coronal slice. Sev-

eral significant anatomical regions are outlined using differ-

ent colors: L/R white matter in light/dark blue, L/R ven-

tricles in yellow/red, and L/R hippocampi in purple/green.

There are significant structural differences across scans, ne-

cessitating a deformable registration step to analyze inter-

scan variations.

a spatially smooth deformation, often modeled as a linear

operator on spatial gradients of φ. In our work, we optimize

function parameters to minimize the expected energy of the

form of (1) using a dataset of volume pairs, instead of doing

it for each pair independently.

3. Related Work

3.1. Medical Image Registration (Nonlearning
based)

There is extensive work in 3D medical image regis-

tration [2, 4, 6, 7, 13, 18, 42].1 Several studies opti-

mize within the space of displacement vector fields. These

include elastic-type models [6, 38], statistical parametric

mapping [3], free-form deformations with b-splines, [37]

and Demons [42]. Our model also assumes displace-

ment vector fields. Diffeomorphic transforms, which are

topology-preserving, have shown remarkable success in

various computational anatomy studies. Popular formula-

tions include Large Diffeomorphic Distance Metric Map-

ping (LDDMM) [7], DARTEL [2] and standard symmetric

1in medical imaging literature, the volumes produced by 3D imaging

techniques are often referred to as images
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normalization (SyN) [4].

3.2. Medical Image Registration (Learningbased)

There are several recent papers proposing neural net-

works to learn a function for medical image registration.

Most of these rely on ground truth warp fields or segmen-

tations [26, 35, 39, 45], a significant drawback compared

to our method, which does not require either. Two recent

works [14, 27] present unsupervised methods that are closer

to our approach. Both propose a neural network consist-

ing of a CNN and spatial transformation function [23] that

warps images to one another. Unfortunately, these methods

are preliminary and have significant drawbacks: they are

only demonstrated on limited subsets of volumes, such as

3D subregions or 2D slices, and support only small trans-

formations. Others [14] employ regularization only implic-

itly determined by interpolation methods. In contrast, our

generalizable method is applicable to entire 3D volumes,

handles large deformations, and enables any differentiable

cost function. We present a rigorous analysis of our method,

and demonstrate results on full MR volumes.

3.3. 2D Image Alignment

Optical flow estimation is an analogous problem to 3D

volume registration for 2D images. Optical flow algorithms

return a dense displacement vector field depicting small

displacements between a 2D image pair. Traditional opti-

cal flow approaches typically solve an optimization prob-

lem similar to (1) using variational methods [8, 21, 41].

Extensions that better handle large displacements or dra-

matic changes in appearance include feature-based match-

ing [9, 28] and nearest neighbor fields [10].

Several learning-based approaches to dense 2D image

alignment have been proposed. One study learns a low-

dimensional basis for optical flow in natural images using

PCA [44]. Other recent studies in optical flow learn a para-

metric function using convolutional neural networks [16,

43]. Unfortunately, these methods require ground truth reg-

istrations during training. The spatial transform layer en-

ables neural networks to perform global parametric 2D im-

age alignment without requiring supervised labels [23]. The

layer has since been used for dense spatial transformations

as well [34, 46]. We extend the spatial transformer to the

3D setting in our work.

4. Method

Let F,M be two image volumes defined over a n-D spa-

tial domain Ω ⊂ Rn. For the rest of this paper, we focus

on the case n = 3. For simplicity we assume that F and M
contain single-channel, grayscale data. We also assume that

F and M are affinely aligned as a preprocessing step, so

that the only source of misalignment between the volumes

is nonlinear. Many packages are available for rapid affine

alignment.

We model a function gθ(F,M) = φ using a convolu-

tional neural network (CNN), where φ is a registration field

and θ are learnable parameters of g. For each voxel p ∈ Ω,

φ(p) is a location such that F (p) and M(φ(p)) define simi-

lar anatomical locations.

Fig. 2 presents an overview of our method. Our network

takes M and F as input, and computes φ based on a set

of parameters θ, the kernels of the convolutional layers. We

warp M(p) to M(φ(p)) using a spatial transformation func-

tion, enabling the model to evaluate the similarity of M(φ)
and F and update θ.

We use stochastic gradient descent to find optimal

parameters θ̂ by minimizing an expected loss function

L(·, ·, ·), similar to (2), using a training dataset:

θ̂ = argmin
θ

[

E(F,M)∼D [L (F,M, gθ(F,M))]
]

, (3)

where D is the dataset distribution. We learn θ̂ by align-

ing volume pairs sampled from D. Importantly, we do not

require supervised information such as ground truth regis-

tration fields or anatomical landmarks. Given an unseen M
and F during test time, we obtain a registration field by

evaluating g. We describe our model, which we call Voxel-

Morph, in the next sections.

4.1. VoxelMorph CNN Architecture

The parametrization of g is based on a convolutional neu-

ral network architecture similar to UNet [22, 36]. The net-

work consists of an encoder-decoder with skip connections

that is responsible for generating φ given M and F .

Fig. 3 depicts two variants of the proposed architectures

that tradeoff between registration accuracy and computation

time. Both take a single input formed by concatenating M
and F into a 2-channel 3D image. In our experiments, the

input is of size 160 × 192 × 224 × 2. We apply 3D con-

volutions followed by Leaky ReLU activations in both the

encoder and decoder stages, with a convolutional kernel size

of 3× 3× 3. The convolutional layers capture hierarchical

features of the input image pair necessary to estimate the

correspondence φ. In the encoder, we use strided convolu-

tions to reduce the spatial dimensions in half until the small-

est layer is reached. Successive layers of the encoder oper-

ate over coarser representations of the input, similar to the

image pyramid used in traditional image registration work.

The receptive fields of the convolutional kernels of the

smallest layer should be at least as large as the maximum

expected displacement between corresponding voxels in M
and F . The smallest layer applies convolutions over a vol-

ume (1/16)3 the size of the input images. In the decoding

stage, we alternate between upsampling, convolutions (fol-

lowed by Leaky ReLU activations) and concatenating skip
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Figure 2: Overview of our method. We learn parameters for a function g that registers one 3D volume (M ) to a second, fixed

volume (F ). During training, we warp M with φ using a spatial transformer function. Our loss compares Mφ and F and

enforces smoothness of φ.
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Figure 3: Proposed convolutional architectures implement-

ing gθ(F,M). Each rectangle represents a 3D volume. The

number of channels is shown inside the rectangle, and the

spatial resolution with respect to the input volume is printed

underneath. VoxelMorph-2 uses a larger architecture, using

one extra convolutional layer at the output resolution, and

more channels for later layers.

connections. Skip connections propagate features learned

during the encoding stages directly to layers generating

the registration. The output of the decoder, φ, is of size

160× 192× 224× 3 in our experiments.

Successive layers of the decoder operate on finer spa-

tial scales, enabling precise anatomical alignment. How-

ever, these convolutions are applied to the largest image

volumes, which is computationally expensive. We explore

this tradeoff using two architectures, VoxelMorph-1 and

VoxelMorph-2, that differ in size at the end of the decoder

(see Fig. 3). VoxelMorph-1 uses one less layer at the final

resolution and fewer channels over its last three layers.

4.2. Spatial Transformation Function

The proposed method learns optimal parameter values in

part by minimizing differences between M(φ) and F . In

order to use standard gradient-based methods, we construct

a differentiable operation based on spatial transformer net-

works to compute M(φ) [23].

For each voxel p, we compute a (subpixel) voxel location

φ(p) in M . Because image values are only defined at inte-

ger locations, we linearly interpolate the values at the eight

neighboring voxels. That is, we perform:

M(φ(p)) =
∑

q∈Z(φ(p))

M(q)
∏

d∈{x,y,z}

(1− |φd(p)− qd|), (4)

where Z(φ(p)) are the voxel neighbors of φ(p). Because

the operations are differentiable almost everywhere, we can

backpropagate errors during optimization.

4.3. Loss Function

The proposed method works with any differentiable loss.

In this section, we formulate an example of a popular loss
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function L of the form (2), consisting of two components:

Lsim that penalizes differences in appearance, and Lsmooth

that penalizes local spatial variations in φ. In our experi-

ments, we set Lsim to the negative local cross-correlation

of M(φ) and F , a popular metric that is robust to intensity

variations often found across scans and datasets.

Let F̂ (p) and M̂(φ(p)) denote images with local mean

intensities subtracted out. We compute local means over a

n3 volume, with n = 9 in our experiments. We write the

local cross-correlation of F and M(φ), as:

CC(F,M(φ)) =

∑

p∈Ω

(

∑

pi

(F (pi)− F̂ (p))(M(φ(pi))− M̂(φ(p)))

)2

(

∑

pi

(F (pi)− F̂ (p))

)(

∑

pi

(M(φ(pi))− M̂(φ(p)))

) , (5)

where pi iterates over a n3 volume around p. A higher

CC indicates a better alignment, yielding the loss function:

Lsim(F,M, φ) = −CC(F,M(φ)). We compute CC ef-

ficiently using only convolutional operations over M(φ)
and F .

Minimizing Lsim will encourage M(φ) to approxi-

mate F , but may generate a discontinuous φ. We encour-

age a smooth φ using a diffusion regularizer on its spatial

gradients:

Lsmooth(φ) =
∑

p∈Ω

‖∇φ(p)‖2. (6)

We approximate spatial gradients using differences between

neighboring voxels. The complete loss is therefore:

L(F,M, φ) = −CC(F,M(φ)) + λ
∑

p∈Ω

‖∇φ(p)‖2, (7)

where λ is a regularization parameter.

5. Experiments

5.1. Dataset

We demonstrate our method on the task of brain MRI

registration. We use a large-scale, multi-site, multi-study

dataset of 7829 T1weighted brain MRI scans from eight

publicly available datasets: ADNI [33], OASIS [29],

ABIDE [31], ADHD200 [32], MCIC [19], PPMI [30],

HABS [12], and Harvard GSP [20]. Acquisition details,

subject age ranges and health conditions are different for

each dataset. All scans were resampled to a 256×256×256
grid with 1mm isotropic voxels. We carry out standard

preprocessing steps, including affine spatial normalization

and brain extraction for each scan using FreeSurfer [17],

and crop the resulting images to 160 × 192 × 224. All

MRIs were also anatomically segmented with FreeSurfer,

and we applied quality control (QC) using visual inspection

to catch gross errors in segmentation results. We use the re-

sulting segmentation maps in evaluating our registration as

described below. We split our dataset into 7329, 250, and

250 volumes for train, validation, and test sets respectively,

although we highlight that we do not use any supervised

information at any stage.

We focus on atlas-based registration, in which we com-

pute a registration field between an atlas, or reference vol-

ume, and each volume in our dataset. Atlas-based registra-

tion is a common formulation in population analysis, where

inter-subject registration is a core problem. The atlas rep-

resents a reference, or average volume, and is usually con-

structed by jointly and repeatedly aligning a dataset of brain

MR volumes and averaging them together. We use an atlas

computed using an external dataset [17, 40]. Each input

volume pair consists of the atlas (image F ) and a random

volume from the dataset (image M ). Columns 1-2 of Fig. 4

show example image pairs from the dataset using the same

fixed atlas for all examples. All figures that depict brains in

this paper show 2D coronal slices for visualization purposes

only. All registration is done in 3D.

5.2. Dice Score

Obtaining dense ground truth registration for these data

is not well-defined since many registration fields can yield

similar looking warped images. We evaluate our method

using volume overlap of anatomical segmentations. We in-

clude any anatomical structures that are at least 100 voxels

in volume for all test subjects, resulting in 29 structures. If

a registration field φ represents accurate anatomical corre-

spondences, we expect the regions in F and M(φ) corre-

sponding to the same anatomical structure to overlap well

(see Fig. 4 for examples). Let Sk
F , S

k
M(φ) be the set of vox-

els of structure k for F and M(φ), respectively. We mea-

sure the accuracy of our method using the Dice score [15],

which quantifies the volume overlap between two struc-

tures:

Dice(Sk
M(φ), S

k
F ) = 2 ∗

Sk
M(φ) ∩ Sk

F

|Sk
M(φ)|+ |Sk

F |
. (8)

A Dice score of 1 indicates that the structures are identical,

and a score of 0 indicates that there is no overlap.

5.3. Baseline Methods

We compare our approach to Symmetric Normalization

(SyN) [4], the top-performing registration algorithm in a

comparative study [25]. We use the SyN implementation

in the publicly available ANTs software package [5], with a

cross-correlation similarity measure. Throughout our work
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Figure 4: Example MR coronal slices extracted from input

pairs (columns 1-2), and resulting M(φ) for VoxelMorph-1

and VoxelMorph-2, with overlaid boundaries of the ventri-

cles (yellow, orange) and hippocampi (red, green). A good

registration will cause structures in M(φ) to look similar

to structures in F . Our networks handle large changes in

shapes, such as the ventricles in row 2 and the left hip-

pocampi in rows 3-4.

with medical images, we found the default ANTs smooth-

ness parameters to be sub-optimal for our purposes. We ob-

tained improved parameters using a wide parameter sweep

across a multiple of datasets, and use those in these experi-

ments.

5.4. Implementation

We implement our networks using Keras [11] with a Ten-

sorflow backend [1]. We use the ADAM optimizer [24]

with a learning rate of 1e−4. To reduce memory usage,

each training batch consists of one pair of volumes. We

train separate networks with different λ values until con-

vergence. We select the network that optimizes Dice score

on our validation set, and report results on our held-out test

set. Our code and model parameters are available online at

https://github.com/balakg/voxelmorph.

Table 1: Average Dice scores and runtime results for affine

alignment, ANTs, VoxelMorph-1, VoxelMorph-2. Standard

deviations are in parentheses. The average Dice score is

computed over all structures and subjects. Timing is com-

puted after preprocessing. Our networks yield comparable

results to ANTs in Dice score, while operating orders of

magnitude faster during testing. To our knowledge, ANTs

does not have a GPU implementation.

Method Avg. Dice GPU sec CPU sec

Affine only 0.567 (0.157) 0 0

ANTs 0.749 (0.135) - 9059 (2023)

VoxelMorph-1 0.742 (0.139) 0.365 (0.012) 57(1)

VoxelMorph-2 0.750 (0.137) 0.554 (0.017) 144 (1)

5.5. Results

5.5.1 Accuracy

Table 1 shows average Dice scores over all subjects and

structures for ANTs, the proposed VoxelMorph architec-

tures, and a baseline of only global affine alignment.

VoxelMorph models perform comparably to ANTs, and

VoxelMorph-2 performs slightly better than VoxelMorph-

1. All three improve significantly on affine alignment. We

visualize the distribution of Dice scores for each structure as

boxplots in Fig. 5. For visualization purposes, we combine

same structures from the two hemispheres, such as the left

and right white matter. The VoxelMorph models achieve

comparable Dice measures to ANTs for all structures, per-

forming slightly better than ANTs on some structures such

as cerebral white matter, and worse on others such as the

hippocampi.

5.5.2 Runtime

Table 1 presents runtime results using an Intel Xeon (E5-

2680) CPU, and a NVIDIA TitanX GPU. We report the

elapsed time for computations following the affine align-

ment preprocessing step, which all of the presented meth-

ods share, and requires just a few minutes on a CPU.

ANTs requires roughly two or more hours of CPU time.

VoxelMorph-1 and VoxelMorph-2 are 60+ and 150+ times

faster on average using the CPU. ANTs runtimes vary

widely, because its convergence depends on the difficulty

of the alignment task. When using the GPU, our networks

compute a registration in under a second. To our knowl-

edge, there is no publicly available ANTs implementation

for GPUs.

5.5.3 Training and Testing on a Sub-population

The results in the previous sections combine multiple

datasets consisting of different population types, resulting
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Figure 5: Boxplots of Dice scores for anatomical structures for VoxelMorph-1, VoxelMorph-2 and ANTs. We combine

structures with separate left and right brain hemispheres into one structure for this visualization. Structures are ordered by

average ANTs Dice score.

in a trained model that generalizes well to a range of sub-

jects. In this section, we model parameters specific to a

subpopulation, demonstrating the ability of tailoring our

approach to particular tasks. We train using ABIDE sub-

ject scans, and evaluate test performance on unseen ABIDE

scans. ABIDE contains scans of subjects with autism and

controls, and includes a wide age range, with a median age

of 15 years. In Table 2 we compare the results to those of

the models trained on all datasets, presented in the previous

section. The dataset-specific networks achieve a 1.5% Dice

score improvement.

5.5.4 Regularization Analysis

Fig. 6a presents average Dice scores for the validation set

for different values of the smoothing parameter λ. As

a baseline, we display Dice score of the affinely aligned

scans. The optimal Dice scores occur when λ = 1 for

VoxelMorph-1 and λ = 1.5 for VoxelMorph-2. However,

the results vary slowly over a large range of λ values, show-

ing that our model is robust to choice of λ. Interestingly,

Table 2: Average Dice scores on ABIDE scans, when

trained on all datasets (column 2) and ABIDE scans only

(column 3). We achieve roughly 1.5% better scores when

training on ABIDE only.

Avg. Dice Avg. Dice

Method (Train on All) (Train on ABIDE)

VoxelMorph-1 0.715(0.140) 0.729(0.142)

VoxelMorph-2 0.718(0.141) 0.734(0.140)

even setting λ = 0, which enforces no regularization, re-

sults in a significant improvement over affine registration.

This is likely due to the fact that the optimal network pa-

rameters θ̂ need to register all pairs in the training set well,

giving an implicit regularization. Fig. 6b shows example

registration fields at a coronal slice with different regular-

ization values. For low λ, the field can change dramatically

across edges and structural boundaries.

6. Discussion

Our model is able to perform on par with the state-of-

the-art ANTs registration package while requiring far less

computation time to register test volume pairs. While our

method learns general features about the data necessary for

registration, it can adapt these parameters to specific sub-

populations. When training on the ABIDE dataset only,

we obtain improved Dice scores on test ABIDE scans com-

pared to training on a dataset from several sources exhibit-

ing different health conditions and variations in acquisition.

This result shows that some of our model’s parameters are

learning properties specific to the training images.

We present two models which trade off in accuracy and

computation time. The smaller architecture, VoxelMorph-

1, runs significantly faster on the CPU and is less than

1 Dice point worse than VoxelMorph-2. This enables an

application-specific decision. An advantage of our model

is that it is easy to explore this tradeoff by changing the

number of convolutional layers and channels of the net-

work, which can be considered as hyperparameters. We

selected these hyperparameters by experimenting on train-

ing and validation data, and they could be adapted to other
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Figure 6: (a) Effect of varying the regularization parame-

ter λ on Dice score. The best results occur when λ = 1
for VoxelMorph-1 and λ = 1.5 for VoxelMorph-2. Also

shown are Dice scores when applying only affine registra-

tion. (b) Examples of VoxelMorph-2 registration fields for a

2D coronal slice, for different values of λ. Each row is a dif-

ferent scan. We clip the x, y, z displacements to [−10, 10],
rescale them to [0, 1], and place them in RGB channels. As

λ increases, the registration field becomes smoother across

structural boundaries.

tasks.

We quantify accuracy in this study using Dice score,

which acts as a proxy measure of registration accuracy.

While our models achieve comparable Dice scores, ANTs

produces diffeomorphic registrations, which are not guar-

anteed by our models. Diffeomorphic fields have attractive

properties like invertibility and topology-preservation that

are useful in some analyses. This presents an exciting area

of future work for learning-based registration.

Our method replaces a costly optimization problem for

each test image pair, with one function optimization aggre-

gated over a dataset during a training phase. This idea is ap-

plicable to a wide variety of problems traditionally relying

on complex, non-learning-based optimization algorithms

for each input. Our network implementations needed a one-

time training period of a few days on a single NVIDIA TI-

TANX GPU, but less than a second to register a test pair of

images. Given the growing availability of image data, our

solution is preferable to a non-learning-based approach, and

sorely-needed to facilitate fast medical image analyses.

7. Conclusion

This paper presents an unsupervised learning-based ap-

proach to medical image registration, that requires no super-

vised information such as ground truth registration fields or

anatomical landmarks. The approach obtains similar regis-

tration accuracy to state-of-the-art 3D image registration on

a large-scale, multi-study MR brain dataset, while operat-

ing orders of magnitude faster. Model analysis shows that

our model is robust to regularization parameter, can be tai-

lored to different data populations, and can be easily modi-

fied to explore accuracy and runtime tradeoffs. Our method

promises to significantly speed up medical image analysis

and processing pipelines, while facilitating novel directions

in learning-based registration.
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