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ABSTRACT. The authors proved that a Weyl module for a simple algebraic group is ir-
reducible over every field if and only if the module is isomorphic to the adjoint repre-
sentation for E8 or its highest weight is minuscule. In this paper, we prove an analogous
criteria for irreducibility of Weyl modules over the quantum group Uζ(g) where g is a
complex simple Lie algebra and ζ ranges over roots of unity.

1. INTRODUCTION

Let G be a simple algebraic group over an algebraically closed field k. It is well known
that Weyl modules of minuscule highest weight are irreducible over every field k. Gross
observed that this is also true for the adjoint module for E8 and conjectured these are the
only cases of Weyl modules that are globally irreducible. The authors recently proved
Gross’ Conjecture in [GGN]; see [J 17] for another argument.

Let g be a complex simple Lie algebra and Uζ(g) be the quantum group obtained by
taking Lusztig’s A-form and specializing to a root unity. The algebra Uζ(g) plays a role
analogous to that of the distribution algebra of a simple algebraic group. Weyl modules
can be defined at the A-form level and one can ask when they remain irreducible upon
specialization for all roots of unity; when that occurs we say that the Weyl module is
globally irreducible. The main purpose of our paper is to determine which Weyl modules
are globally irreducible for quantum groups.

Theorem 1.1. Let g be a complex simple Lie algebra. The quantum Weyl module ∆ζ(λ)
is irreducible over Uζ(g) for every root of unity ζ ∈ C× if and only if

(a) λ is a minuscule dominant weight1, or
(b) g is of type E8 and λ is the highest root α0.

Many of the ideas from [GGN] will be used to reduce the proof of Theorem 1.1 to
finitely many cases. Several of the proofs for these cases in the algebraic group case
do not carry over to the quantum group situation. These include the proof of the global
irreducibility of the adjoint module for E8 and also the conditions for the reducibility of
Weyl module with highest weight ω1 + ωn in type Bn. We provide suitable replacement
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proofs involving the use of matrices with quantum entries and translation functors which
are of independent interest.

Even though the statements of the Theorem 1.1 for the algebraic group and quantum
group situation are analogous, the underlying result is not identical. For example, in
the quantum group case there is no lower bound on ` for reducibility of quantum Weyl
modules as in the algebraic group case, see §3. We also remark that it is not known how to
directly pass information about decomposition numbers from C unless the characteristic
of the field is very large, in which case the Lusztig Character Formula holds in both
settings.

Acknowledgements. The authors thank Henning Andersen and George Lusztig for their
suggestion to extend our prior work [GGN] to the quantum case.

2. DEFINITIONS AND NOTATION

2.1. Roots and Weights: Let Φ be a finite root system [H], and let ∆ = {α1, · · · , αn} be
a base of simple roots (labeled in the standard Bourbaki way, as in Table 1). Moreover, let
Φ+ (respectively, Φ−) be the corresponding set of positive (respectively, negative) roots.
The R-spans of the roots is a Euclidean space E with positive definite inner product 〈u, v〉,
u, v ∈ E, adjusted so that 〈α, α〉 = 2 if α ∈ Φ is a short root.

For α ∈ Φ, set α∨ = 2
〈α,α〉α be the corresponding coroot. Denote the short root of

maximal height in Φ by α0; thus, α∨0 is the unique long root of maximal length in the dual
root system Φ∨. The Coxeter number of Φ is defined to be h = 〈ρ, α∨0 〉+ 1 = ht(α∨0 ) + 1
where ρ is the half sum of positive roots. Note that h−1 is the height of the maximal root
in Φ. Let W be the Weyl group corresponding to Φ, and for l a fixed positive integer, let
W`
∼= W n `ZΦ be the affine Weyl group.

Define the fundamental dominant weights ω1, · · · , ωn by the condition that 〈ωi, α∨j 〉 =
δi,j , for 1 ≤ i, j ≤ n. Let X := Zω1 ⊕ · · · ⊕ Zωn be the weight lattice, and X+ :=
Nω1 ⊕ · · · ⊕ Nωn. The weight lattice X is partially ordered by putting λ ≥ µ if and
only if λ − µ =

∑
ciαi where ci is a nonnegative integer for all i. The weights in X+

that are minimal with respect to the partial ordering are minuscule weights. Note that the
zero weight is minuscule by this definition (in some references this is not the case). Every
nonzero minuscule weight is a fundamental dominant weight (one of the ωis). These are
indicated in Table 1.

2.2. Quantum Groups: Let g be a complex simple Lie algebra with associated irre-
ducible root system Φ. The goal of this section is to define the quantum enveloping
algebra Uq(g) and an A-form involving divided powers which is contained in Uq(g) that
can be specialized to any primitive `-th root of unity. Sawin provides a uniform treatment
in [S].

Let A = Q[q, q−1] be the Q-algebra of Laurent polynomials in an indeterminate q
with fraction field Q(q). The quantum enveloping algebra Uq(g) is the Q(q)-algebra with
generators Eα, Kα, K−1α , and Fα for α ∈ ∆, subject to the relation

KαK
−1
α = 1 and KαKβ = KβKα. (R1)
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TABLE 1. Dynkin diagrams of simple root systems, with simple roots
numbered. A circle around vertex i indicates that the fundamental weight
ωi is minuscule. A ? indicates that ωi is the highest short root α0. The
highest short root of An is ω1 + ωn.

We further set dα = 〈α, α〉/2 for α ∈ Φ and qα = qdα and impose the relations

KαEβK
−1
α = q〈β,α

∨〉
α Eβ = q〈β,α〉Eβ; (R2)

KαFβK
−1
α = q−〈β,α

∨〉
α Fβ = q−〈β,α〉Fβ (R3)

and further relations (R4), (R5), (R6) for which we refer to [J 96, 4.3]. We remark that
the algebra Uq(g) is a Hopf algebra (cf. [BNPP])

The quantum enveloping algebra Uq(g) has a natural A-form, UAq (g) due to Lusztig.
That is, UAq (g) is an A-subalgebra of Uq(g) that is free as an A-module with

UAq (g)⊗A Q(q) ∼= Uq(g).

The construction of this A-form is described below.
For an integer i, put

[i]q =
qi − q−i

q − q−1
, (1)

and set, for i > 0, [i]!q = [i]q[i − 1]q · · · [1]q. By convention, [0]!q = 1. For any integer n
and positive integer m, write[

n
m

]
q

=
[n]q[n− 1]q · · · [n−m+ 1]q

[1]q[2]q · · · [m]q
.

Set [ n0 ]q = 1, by definition. The expressions [i]q and [ nm ]q all belong to A (in fact, they
belong to Z[q, q−1]). In case the root system has two root lengths, some scaling of the
variable q is required. Thus, given any Laurent polynomial f ∈ A and α ∈ ∆, let fα ∈ A
be obtained by replacing q throughout by qα.
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For α ∈ ∆ and m ≥ 0, let {
E

(m)
α = Emα

[m]!α
∈ Uq(g)

F
(m)
α = Fmα

[m]!α
∈ Uq(g).

be the m-th “divided powers.” Let

UAq (g) :=
〈
E(m)
α , F (m)

α , K±1α |α ∈ ∆,m ∈ N
〉
⊂ Uq(g),

where 〈· · · 〉 means “A-subalgebra generated by.”
For any ε ∈ C×, set

[i]ε = lim
q→ε

[i]q = lim
q→ε

q2i − 1

q2 − 1
· qi−1.

The other definitions defined above that involve [i]q can also be specialized to ε.
Suppose that ζ ∈ C× has (finite) order ` ≥ 2. Throughout this paper, we will use the

following properties:

• If ` > 2 and ` | i then [i]ζ = 0.
• If ζ is a primitive 4th root of unity then [2]ζ = 0.
• If ζ = ±1 then [i]ζ 6= 0.

(2)

Set k = Q(ζ) ⊂ C which will be regarded as an A-algebra via the homomorphism
Q[q, q−1]→ k defined by q 7→ ζ . Set

Uζ(g) := UAq (g)⊗A C,

where ` is the order of ζ in C×. Here C is regarded as an A-algebra via the algebra
homomorphism A → C defined by q 7→ ζ . The Hopf algebra structure on Uq(g) induces
a Hopf algebra structure on UAq (g). From the passage to the field C, one obtains a Hopf
algebra structure on the algebra Uζ(g).

In this paper we will consider only Uζ(g)-modules which are integrable and type 1. In
particular, any such M decomposes into a direct sum

⊕
λ∈XMλ of Mλ weight spaces for

λ ∈ X , and each Eα, Fβ acts locally nilpotently on M . On the weight spaces, one has for
v ∈Mλ,

Kαv = ζ〈λ,α〉v; (3)

[Kα;mn ] v = [ 〈λ,α〉+mn ]
q=ζdα

v (4)

for all α ∈ ∆,m ∈ Z, n ∈ N. For the definition of [Kα;mn ], see [BNPP, §2.2].

2.3. Induced and Weyl modules: For λ ∈ X+, let

∇(λ) := ∇ζ(λ) = indUζ(g)Uζ(b)
λ

be the (quantum) induced module whose character is given by Weyl’s character formula,
and ∆(λ) = ∆ζ(λ) = ∇ζ(−w0λ)∗ be the quantum Weyl module, compare [L, §6]. These
are the modules considered in Theorem 1.1.

In the special case where ζ = 1, the definition (1) becomes [i]ζd = i and we find
[m]!α = m! and [ nm ]α =

(
n
m

)
, so Uζ(g) is the usual universal enveloping algebra of g over
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C. In that case, we find that the Weyl module ∆ζ(λ) is the irreducible module of g of
highest weight λ.

3. EXAMPLE: WEYL MODULES OF Uζ(sl2)

Consider Uζ(sl2) for ζ ∈ C× of order `. We may identify the dominant weights with
the set Z+ of non-negative integers. For j ≥ 0 define

sj :=

{
j if j is odd;
j/2 if j even.

Proposition 3.1. The quantum Weyl module ∆(λ) for Uζ(sl2) is irreducible if and only if
one of the following holds:

(a) 0 ≤ λ < s`.
(b) λ ≡ −1 (mod s`).

Proof. For odd ` ≥ 3, the result can be deduced by Steinberg’s tensor product theorem
for quantum groups, see [L, Prop. 9.2]. In the trivial case when ` = 1, ∆(λ) is irreducible
for all λ, which confirms the claim.

For even `, one can use the explicit generators and relations of the dual of ∆(λ) from
[J 96, 5A.7]. The dual has basis {v0, v1, . . . , vλ} with

E(m)
α .vj = [ j+mm ]ζ vj+m.

The conditions (a) and (b) are equivalent to showing that there are no non-trivial maximal
vectors which can be deduced by analyzing the aforementioned formula, compare [C].

�

Example 3.2. ∆(0) and ∆(1) are irreducible for Uζ(sl2) for all roots of unity ζ . Compare
this to ∆(2), which is reducible if and only if ζ has order 4. More generally, for each
λ ≥ 2, there is some ` with s` = λ, and ∆(λ) is reducible for Uζ(sl2) where ζ has order
`.

Example 3.3. Pick some t ≥ 4 and set λ := s1s2 · · · st − 1. For each ` = 1, . . . , t, we
have λ > s` and s1s2 · · · s`−1s`+1 · · · st ≥ 1, whence 3.1(b) holds and ∆(λ) is irreducible
for Uζ(sl2) where ζ ∈ C× has order `.

In the analogue of Theorem 1.1 for a simple algebraic group G, [GGN, Th. 1.1], it
was shown that for a dominant weight λ of G not corresponding to a globally irreducible
Weyl module, there is a prime ` ≤ 2(rankG) + 1 such that the Weyl module ∆(λ)⊗F` is
reducible. In particular, in case G = SL2, ∆(λ)⊗F` is reducible for ` = 2 or 3. Example
3.3 above shows that no such bound exists in the setting of quantum groups. One might
view the reason for this difference as being that one can only iterate the Frobenius once
in the quantum case.
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4. LEVI SUBALGEBRAS

4.1. Levi subalgebra and Parabolics: Lusztig has defined an algebra automorphism
Tα : Uq(g) → Uq(g). By using this automorphism, one can construct a PBW type basis
for quantum groups by defining root vectors for general α ∈ Φ (cf. [J 96, Ch. 8]).

If s = sα ∈ W is the simple reflection defined by α, set Ts := Tα. Given any w ∈ W ,
let w = sβ1sβ2 · · · sβn be a reduced expression. Define Tw := Tβ1 · · ·Tβn ∈ Aut(Uq(g)).

Now let J ⊆ ∆ and fix a reduced expression w0 = sβ1 · · · sβN that begins with a
reduced expression for the long element w0,J of the Weyl group for the Levi subgroup
LJ . If w0,J = sβ1 · · · sβM , then sβM+1

· · · sβN is a reduced expression for wJ = w0,Jw0.
Now there exists a linear ordering γ1 ≺ γ2 ≺ · · · ≺ γN of the positive roots, where
γi = sβ1 · · · sβi−1

(βi). For γ = γi ∈ Φ+, the “root vector” Eγ ∈ Uq(g) is defined by

Eγ = Eγi := Tsβ1 ···sβi−1
(Eβi) = Tβ1 · · ·Tβi−1

(Eβi).

Furthermore, Eγ has weight γ. Similarly,

Fγ = Fγi := Tsβ1 ···sβi−1
(Fβi) = Tβ1 · · ·Tβi−1

(Fβi),

a root vector of weight −γ. If γ ∈ ∆ then Eγ coincides with the original generator.
Let J ⊆ ∆ and consider the Levi and parabolic Lie subalgebras lJ and pJ = lJ ⊕ uJ

of g. We can define corresponding quantum enveloping algebras Uq(lJ) and Uq(pJ). As
Hopf subalgebras of Uq(g),

Uq(lJ) = 〈{Eα, Fα : α ∈ J} ∪ {K±1α : α ∈ ∆}〉

and
Uq(pJ) = 〈{Eα : α ∈ J} ∪ {Fα, K±1α : α ∈ ∆}〉.

In the case when J = ∅, then lJ = h, pJ = b, Upon specialization we obtain the
subalgebras Uζ(lJ), Uζ(pJ), Uζ(h), and Uζ(b).

4.2. Restriction to Levi subalgebras: For J ⊆ ∆, set

X+
J := {λ ∈ X : 0 ≤ 〈λ, α∨〉 for all α ∈ J}.

If λ ∈ X+
J , one can define the induced module ∇J(λ) with simple Uζ(lJ)-socle LJ(λ)

and dually a Weyl module ∆J(λ) with head LJ(λ).

Theorem 4.1. Let g be a simple complex Lie algebra and ζ ∈ C× be a root of unity. If
∆(λ) is an irreducible Uζ(g)-module then ∆J(λ) is an irreducible Uζ(lJ)-module for any
J ⊆ ∆.

Proof. The argument will follow the line of reasoning given in [GGN] with some modifi-
cations. By using the argument in [J 03, II 5.21], there exists a weight space decomposi-
tion for ∇(λ) given by

∇(λ) =

(⊕
ν∈ZJ

∇(λ)λ−ν

)
⊕M.
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where M is the direct sum of all weight spaces ∇(λ)σ with σ 6= λ − ν for any ν ∈ ZJ .
Moreover,∇J(λ) = ⊕ν∈ZJ∇(λ)λ−ν with the aforementioned decomposition being stable
under the action of Uζ(lJ). Consequently, as Uζ(lJ)-modules:

∇(λ) ∼= ∇J(λ)⊕M. (5)

One can also apply a dual argument for Weyl modules to get a decomposition as Uζ(lJ)-
modules:

∆(λ) ∼= ∆J(λ)⊕M ′. (6)

for some Uζ(lJ)-module M ′.
One has L(λ) = socUζ(g)(∇(λ)), thus socUζ(lJ )L(λ) ⊆ socUζ(lJ )(∇(λ)). Observe that

LJ(λ) = socUζ(lJ )(∇J(λ)) ⊆ socUζ(lJ )(∇(λ)). (7)

The irreducible representation LJ(λ) appears as an Uζ(lJ)-composition factor of L(λ) and
∇(λ) with multiplicity one. One can conclude that LJ(λ) must occur in socUζ(lJ )L(λ).
One can use a similar argument to deduce that LJ(λ) appears in the head of L(λ) as a
Uζ(lJ)-module. Since LJ(λ) has multiplicity one in L(λ), this now shows that there is an
Uζ(lJ)-decomposition:

L(λ) ∼= LJ(λ)⊕M ′′. (8)

Now suppose that ∆(λ) = L(λ) is irreducible as Uζ(g)-module. Now one can compare
the Uζ(lJ)-decompositions (6) and (8) with the facts that LJ(λ) has multiplicity one in
L(λ) and the indecomposability of ∆J(λ) to conclude that ∆J(λ) = LJ(λ). �

5. ANALYSIS OF ∆ζ(α0)

5.1. In this section we will analyze ∆(α0) where α0 is the highest short root. This
module is obtained by base change of the Weyl module ∆̄(α0) that is defined over Uq(g).
A basis for ∆̄(α0) is given in [J 96, 5.A.2]. Let Φs denote the short roots of Φ and ∆s be
the simple short roots in ∆. The set

{xγ : γ ∈ Φs} ∪ {hβ : β ∈ ∆s}

is a basis for ∆(α0). From the module relations, one can see that this is anA-lattice that is
stable under the action of UAq (b), and coincides with UAq (b).xα0 . In order to obtain ∆(α0)
we take this A-lattice then specialize q to ζ .

Using the relations given in [J 96, 5A.2],

E(m)
α .hβ = 0, F (m)

α .hβ = 0

for all α, β ∈ ∆s with m ≥ 2. In the case where m = 1, α, β ∈ ∆s:

E(1)
α .hβ =


[2]ζ .xα α = β

xα α 6= β, 〈β, α∨〉 = −1

0 else.

A similar relation holds when E(1)
α is replaced by F (1)

α .
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Let ∆s = {β1, β2, . . . , βm}. Consider a1hβ1 + a2hβ2 + · · · + amhβm ∈ ∆(α0)0. This
will be invariant under E(n)

βi
and F (n)

βi
for n ≥ 1, i = 1, 2, . . . ,m if and only if the matrix

D = (di,j) has determinant equal to zero where

di,j =


[2]ζ i = j

1 〈βi, β∨j 〉 = −1

0 else.

The module ∆(α0) has two dominant weights: α0 and 0. Therefore, the analysis above
shows the following statements are equivalent: (i) ∆(α0) is reducible, (ii) ∆(α0) contains
a trivial module in its socle and (iii) the determinant of D equals zero. We can now use
this fact to prove reducibility and irreducibility statements for Weyl modules for each Φ.

Theorem 5.1. Let ∆(α0) be the quantum Weyl module of highest weight α0 over Uζ(g)
for ζ ∈ C× of order `. Then

(a) When Φ = An and ` > 2. Then ` | n+ 1 if and only if ∆(α0) is reducible.
(b) If Φ = Bn and ` = 4 then ∆(α0) is reducible.
(c) If Φ = Cn, n ≥ 3 and ` | n then ∆(α0) is reducible.
(d) If Φ = Dn and ` = 4 then ∆(α0) is reducible.
(e) If Φ = F4 and ` = 3 then ∆(α0) is reducible.
(f) If Φ = G2 and ` = 4 then ∆(α0) is reducible.
(g) If Φ = E6 and ` = 3 then ∆(α0) is reducible.
(h) If Φ = E7 and ` = 4 then ∆(α0) is reducible.
(i) If Φ = E8 then ∆(α0) is irreducible for all `.

Proof. We will rely on the facts stated in Section 2.2, especially (2). Let Φ = An. The
first statement will hold by showing that det(D) = [n + 1]ζ by using induction on n.
This is clear for n = 1. Assume that this holds for n − 1, and consider Φ = An. Let
∆s = {α1, α2, . . . , αn} be the standard ordering of simple roots. Then by expanding
along the first row, one has

det(D) = [2]ζ [n]ζ + (−1)[n− 2]ζ = [n+ 1]ζ .

Consequently, if ` > 2 and ` | n+ 1 then ∆(α0) is reducible.
For Φ = Bn and G2 there is only one short root and in this case det(D) = [2]ζ . In the

case of Φ = Cn, ∆s = {α1, α2, . . . , αn−1}. So we are reduced to typeAn−1 and det(D) =
[n]ζ . For Φ = F4, there are two short roots and one has det(D) = [2]ζ [2]ζ− (1)(1) = [3]ζ .

In the case when Φ = Dn n ≥ 4, one first considers the case Φ = D4 where det(D) =
([2]ζ)

2([2]2ζ − 3), which is zero when ` = 4. Now by expansion along the first row, one
can demonstrate in the general case for Φ = Dn,

det(D) = [2]ζ(det(D′))− det(D′′)

where D′ (resp. D′′) is the matrix for ∆(α0) in the case when Φ = Dn−1 (resp. Dn−2).
This shows that in general by using the equation above and induction that D is zero for
` = 4.
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For Φ = En, one can expand along the second row of the matrix D (with rows and
columns under the Bourbaki ordering) and use the computation for type An−1 to see that

det(D) =


[2]ζ [6]ζ − [3]2ζ if Φ = E6;
[2]ζ [7]ζ − [3]ζ [4]ζ if Φ = E7;
[2]ζ [8]ζ − [3]ζ [5]ζ if Φ = E8.

From these equations one can see that ∆(α0) contains a trivial module (and is reducible)
for Φ = E6 (resp. Φ = E7) when ` = 3 (resp. ` = 4).

Finally, we want to show that ∆(α0) is irreducible when Φ = E8 for all `. One has
det(D) = [2]ζ [8]ζ − [3]ζ [5]ζ . By direct calculation,

det(D) = lim
q→ζ

([2]q[8]q − [3]q[5]q) = lim
q→ζ

f(q)

q8(q2 − 1)

where
f(q) = q20 − q18 − q16 + q12 + q8 − q4 − q2 + 1.

One can show directly from the equation above, if ` = 2 (i.e., ζ = −1), then det(D) 6= 0.
Furthermore, det(D) 6= 0 if and only if the `-th cyclotomic polynomial Φ`(q) does not
divide the polynomial f(q).

Now, f(q) = (q−1)2(q+ 1)2f16(q), where f16(q) := q16 + q14− q10− q8− q6 + q2 + 1
is irreducible in Q[q]. Since Φ`(q) is monic irreducible of degree ϕ(`) (where ϕ denotes
the Euler ϕ-function), and ϕ(`) = 16 only for ` = 17, checking that Φ17(q) 6= f16(q) in
Q[q] shows that det(D) 6= 0. �

6. VERIFICATION OF THE MAIN THEOREM

6.1. The fundamental weight case. We can now analyze the question of global irrre-
ducibility for ∆(ωi) for every fundamental weight ωi.

Type An (n ≥ 1). All the fundamental weights ωi, i = 1, 2, . . . , n are minuscule. There-
fore, ∆(ωi) = L(ωi) for all i = 1, 2, . . . , n, and ` ≥ 2.

Type Bn (n ≥ 2). The fundamental weight ωn is minuscule. We will verify that ∆(ωi)
is reducible for i = 1, 2, . . . , n − 1 when ` = 4. For Bn, ω1 = α0, so ∆(ω1) is reducible
when ` = 4. Now suppose that the statement above holds for Bn−1. For 2 ≤ i < n,
restrict to the Levi subgroup of type Bn−i+1 corresponding to J = {αi, αi+1, . . . , αn}.
Since ∆J(ωi) is reducible for ` = 4, it follows that the same holds for ∆(ωi) by Theorem
4.1.

Type Cn (n ≥ 3). The fundamental weight ω1 is minuscule. Since ω2 = α0, ∆(ω2) is
reducible when ` | n. For ωi with 2 < i < n, one can restrict to the Levi of type Cn−i+2

corresponding to J = {αi−1, αi, . . . , αn} and apply Theorem 4.1 to verify that ∆(ωi) is
reducible when ` | n − i + 2. Now when i = n, restrict to the Levi subgroup of type
C2 = B2 corresponding to J = {αn−1, αn}. One can apply the results for type B2 to see
that ∆J(ωn), and thus ∆(ωn) is reducible when ` = 4.
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Type Dn (n ≥ 4). The minuscule fundamental weights are ω1, ωn−1, and ωn. For Dn,
ω2 = α0, so one can use the same argument as in the case for type Bn by restricting to the
Levi subgroup of type Dn−i+2 corresponding to J = {αi−1, αi, . . . , αn} to show that that
∆J(ωi) is reducible, and consequently ∆(ωi) is reducible when 2 ≤ i ≤ n− 2 and ` = 4.

Type E6. By using Theorem 4.1 with J1 = ∆−{α1}, J2 = ∆−{α6} (D5 root systems),
one can show that the Weyl modules of highest weights ω3, ω4 and ω5 are not globally
irreducible. The fundamental weights ω1 and ω6 are minuscule. Furthemore, ω2 = α0,
and the Weyl module ∆(ω2) is not irreducible for ` = 3.

TypeE7. Set J1 = ∆−{α7} (E6 root system), J2 = ∆−{α1} (D6 root system). Then by
applying Theorem 4.1, the quantum Weyl module with highest weight ωj is not globally
irreducible for j 6= 1, 7. For the other cases, ω7 is minuscule and ω1 = α0.

Type E8. One can argue as in the prior case, set J1 = ∆ − {α8} (E7 root system),
J2 = ∆− {α1} (D7 root system). Then one can conclude that the quantum Weyl module
of highest weight ωj for j 6= 8 is not globally irreducible. The case of ω8 is handled in
Theorem 5.1(i).

Type F4. Let J1 = {α1, α2, α3} and J2 = {α2, α3, α4}. By using Theorem 4.1, the
quantum Weyl module with highest weight ωj is not globally irreducible for j 6= 4. The
case when ω4 = α0 is handled in Theorem 5.1(e).

Type G2. The fundamental weight ω1 = α0 so ∆(ω1) is reducible when ` = 4. Further-
more, ∆(ω2) is 14-dimensional and not irreducible when ` = 3. In order to see this one
can use a similar analysis as in Theorem 5.1 with the generators and relations for the 14-
dimensional module given in [J 96, 5.A.4]. The module ∆(ω2) contains a trivial module
if and only if the determinant obtained from these relations is zero, i.e., [6]2ζ − [3]ζ = 0.
This occurs when ` = 3.

6.2. Let CZ be the bottom alcove, i.e., CZ = {λ ∈ X : 〈λ + ρ, α∨0 〉 ≤ `}. If ` ≥ h
then 0 ∈ CZ. For any λ, µ ∈ CZ one can define a translation functor T µλ (−). For the
basic properties of the translation functor, in the case for algebraic groups, we refer the
reader to [J 03, II Ch. 7]. These properties with their proofs directly translate over to the
quantum group case.

Theorem 6.1. Let ∆ζ(λ) be the quantum Weyl module for Uζ(g).
(a) If Φ = An, n ≥ 2 and ` = n+ 1 then ∆ζ(ω1 + ωn) is reducible.
(b) If Φ = Bn, n ≥ 2 and ` = 2n+ 1 then ∆ζ(ω1 + ωn) is reducible.
(c) If Φ = Cn, n ≥ 2 and ` = 4 then ∆ζ(ω1 + ωn) is reducible.
(d) If Φ = F4 and ` = 4 then ∆ζ(ω1 + ω4) is reducible.
(e) If Φ = G2 and ` = 4 then ∆ζ(ω1 + ω2) is reducible.

Proof. For part (a), if Φ = An then α0 = ω1 + ωn and the statement follows from Theo-
rem 5.1(a). An alternative argument in the case when ` is odd can be given using transla-
tion functors. Let ` = n+ 1. Then h = 〈ρ, α∨0 〉+ 1 = n+ 1. Therefore, 0 ∈ CZ.
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Let sα0,` be the affine reflection (see [J 03, II 6.1]). Then under the dot action,

sα0,` · 0 = sα0(ρ)− ρ+ `α0 = −〈ρ, α∨0 〉α0 + `α0 = (−n+ `)α0 = α0.

Consider the hyperplane H fixed by the affine reflection sα0,` and choose µ ∈ H ∩ CZ.
For this particular µ, one has L(µ) = ∆(µ) = ∇(µ) = T (µ) (where T (µ) is the tilting
module of highest weight µ). The translated module T 0

µ(L(µ)) (i) is a tilting module
of highest weight α0, (ii) has a Weyl filtration with factors C and ∆(α0), and (iii) has
socle and head C with heart (radical/socle) isomorphic to L(α0) (cf. [J 03, II 7.19, 7.20]).
These facts imply that ∆(α0) has composition factors L(α0) and C, thus ∆(ω1 + ωn) is
reducible.

(b) The argument used in part (a) when ` is odd can be used to prove (b). Assume that
` = 2n+ 1 and λ = ω1 + ωn. One has h = 2n and

〈ωn + ρ, α∨0 〉 = 〈ρ, α∨0 〉+ 1 = h = 2n < `

Therefore, ωn ∈ CZ. Moreover, by direct calculation,

sα0,` · ωn = ω1 + ωn.

One can apply the same argument as in part (a) to show that ∆(ω1 +ωn) has composition
factors L(ω1 + ωn) and L(ωn), thus ∆ζ(ω1 + ωn) is reducible.

For part (c), let J = ∆− {α1} (type Cn−1) and ` = 4. The Weyl module ∆J(ω1 + ωn)
for LJ is identified with the fundamental Weyl module ∆J(ωn) on [LJ , LJ ] and so is
reducible as in Section 6.1. Part (c) now follows by Theorem 4.1.

Part (d) follows by the same reasoning as in part (c), by using J = {α1, α2, α3} (type
B3), and part (e) follows by using J = {α1}. �

6.3. End of the proof of Theorem 1.1. We can now finish the proof of Theorem 1.1.
The case where rank Φ = 1 was handled in Example 3.2. Suppose rank Φ ≥ 2 and
Theorem 1.1 holds for all groups of lower rank, and let λ =

∑
ciωi with every ci ≥ 0.

If some ci > 1 then one can use the case of Uζ(sl2) from §3 and Theorem 4.1 with
J = {αi} to conclude that ∆(λ) is not globally irreducible. Therefore, we are reduced to
the situation where ci ∈ {0, 1} for all i.

Now if there is a connected and proper subset J of ∆ such that ci 6= 0 for at least
two indexes i with αi ∈ J , then we are done by induction and Theorem 4.1. If there are
exactly two indices such that ci = 1 occurring at the end of the Dynkin diagram such
that these nodes are not containing in any connected proper subset J of ∆, then we are in
one of the cases handled by Theorem 6.1. Thus we are reduced to the case when λ is a
fundamental weight, which was handled in Section 6.1.
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