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ABSTRACT. The authors proved that a Weyl module for a simple algebraic group is ir-
reducible over every field if and only if the module is isomorphic to the adjoint repre-
sentation for Eg or its highest weight is minuscule. In this paper, we prove an analogous
criteria for irreducibility of Weyl modules over the quantum group U¢(g) where g is a
complex simple Lie algebra and ¢ ranges over roots of unity.

1. INTRODUCTION

Let GG be a simple algebraic group over an algebraically closed field k. It is well known
that Weyl modules of minuscule highest weight are irreducible over every field k. Gross
observed that this is also true for the adjoint module for Eg and conjectured these are the
only cases of Weyl modules that are globally irreducible. The authors recently proved
Gross’ Conjecture in [ ]; see [J 17] for another argument.

Let g be a complex simple Lie algebra and U¢(g) be the quantum group obtained by
taking Lusztig’s A-form and specializing to a root unity. The algebra U.(g) plays a role
analogous to that of the distribution algebra of a simple algebraic group. Weyl modules
can be defined at the .4-form level and one can ask when they remain irreducible upon
specialization for all roots of unity; when that occurs we say that the Weyl module is
globally irreducible. The main purpose of our paper is to determine which Weyl modules
are globally irreducible for quantum groups.

Theorem 1.1. Let g be a complex simple Lie algebra. The quantum Weyl module A¢(\)
is irreducible over U¢(g) for every root of unity ( € C* if and only if

(@) \ is a minuscule dominant weight', or
(b) g is of type Eg and ) is the highest root «.

Many of the ideas from [ ] will be used to reduce the proof of Theorem 1.1 to
finitely many cases. Several of the proofs for these cases in the algebraic group case
do not carry over to the quantum group situation. These include the proof of the global
irreducibility of the adjoint module for Eg and also the conditions for the reducibility of
Weyl module with highest weight w; + w,, in type B,,. We provide suitable replacement
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proofs involving the use of matrices with quantum entries and translation functors which
are of independent interest.

Even though the statements of the Theorem 1.1 for the algebraic group and quantum
group situation are analogous, the underlying result is not identical. For example, in
the quantum group case there is no lower bound on ¢ for reducibility of quantum Weyl
modules as in the algebraic group case, see §3. We also remark that it is not known how to
directly pass information about decomposition numbers from C unless the characteristic
of the field is very large, in which case the Lusztig Character Formula holds in both
settings.

Acknowledgements. The authors thank Henning Andersen and George Lusztig for their
suggestion to extend our prior work [ ] to the quantum case.

2. DEFINITIONS AND NOTATION

2.1. Roots and Weights: Let ® be a finite root system [H], and let A = {a, -+, v, } be
a base of simple roots (labeled in the standard Bourbaki way, as in Table 1). Moreover, let
O (respectively, @) be the corresponding set of positive (respectively, negative) roots.
The R-spans of the roots is a Euclidean space E with positive definite inner product (u, v),
u,v € E, adjusted so that (a, a) = 2 if & € P is a short root.

For a € ®, set " = ﬁ& be the corresponding coroot. Denote the short root of
maximal height in ® by «; thus, ay is the unique long root of maximal length in the dual
root system ®V. The Coxeter number of ® is defined to be h = (p, o)) + 1 = ht(ey) + 1
where p is the half sum of positive roots. Note that i — 1 is the height of the maximal root
in . Let IV be the Weyl group corresponding to ®, and for [ a fixed positive integer, let
W, = W x (ZP be the affine Weyl group.

Define the fundamental dominant weights wy, - - - , w, by the condition that (w;, ) =
0;ij, for 1 < 4,7 < n. Let X := Zw; @ --- ® Zw, be the weight lattice, and Xt =
Nw; & --- & Nw,. The weight lattice X is partially ordered by putting A > p if and
only if A — 1 = > ¢;y; where ¢; is a nonnegative integer for all <. The weights in X T
that are minimal with respect to the partial ordering are minuscule weights. Note that the
zero weight is minuscule by this definition (in some references this is not the case). Every
nonzero minuscule weight is a fundamental dominant weight (one of the w;s). These are

indicated in Table 1.

2.2. Quantum Groups: Let g be a complex simple Lie algebra with associated irre-
ducible root system ®. The goal of this section is to define the quantum enveloping
algebra U,(g) and an A-form involving divided powers which is contained in U,(g) that
can be specialized to any primitive ¢-th root of unity. Sawin provides a uniform treatment
in [S].

Let A = Q[q,q '] be the Q-algebra of Laurent polynomials in an indeterminate ¢
with fraction field Q(¢). The quantum enveloping algebra U,(g) is the Q(¢)-algebra with
generators £, K, K 1 and F, fora € A, subject to the relation

K,K,;' =1and K,Kp = KzgK,. (R1)
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TABLE 1. Dynkin diagrams of simple root systems, with simple roots
numbered. A circle around vertex 7 indicates that the fundamental weight
w; 1s minuscule. A * indicates that w; is the highest short root oy. The
highest short root of A,, is wy + w,,.

We further set d,, = {«, o) /2 for @ € ® and ¢, = ¢% and impose the relations
K EsK;' = ¢ By = ¢% Bp; (R2)
K F3K ' = ¢ 00 Fy = g0 Fy (R3)
and further relations (R4), (RS), (R6) for which we refer to [J 96, 4.3]. We remark that

the algebra U,(g) is a Hopf algebra (cf. [ )
The quantum enveloping algebra U,(g) has a natural A-form, U{I“(g) due to Lusztig.

That is, U;!(g) is an A-subalgebra of U,(g) that is free as an .A-module with

Uz (g) ®.4 Q(q) = Uy(g).

The construction of this A-form is described below.
For an integer 7, put

.4 =g

[ilq = PR (1)
and set, for i > 0, [i], = [i],[i — 1]4--- [1],. By convention, [0], = 1. For any integer n
and positive integer m, write

{:@L =

Set [3], = 1, by definition. The expressions [i], and [;,], all belong to A (in fact, they
belong to Z[q, ¢~ ']). In case the root system has two root lengths, some scaling of the
variable ¢ is required. Thus, given any Laurent polynomial f € Aand o € A, let f, € A
be obtained by replacing ¢ throughout by g,,.
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For o € A and m > 0, let

{Eém) = i € Uy(9)

m Fr
F{™W = B e Uy(g).

be the m-th “divided powers.” Let
U () = (B, B, K3t |la e A;m € N) € Uy(g),

where (- --) means “.A-subalgebra generated by.”
For any € € C*, set

21 1 i1

[i]e = }1121 [ty = (lllgi @2 —1 '
The other definitions defined above that involve [i], can also be specialized to e.
Suppose that ( € C* has (finite) order ¢ > 2. Throughout this paper, we will use the
following properties:

e If / > 2and (| ithen [i], = 0.
e If ( is a primitive 4th root of unity then [2], = 0. (2)
e If ( = £1 then [z]; # 0.

Set £ = Q(¢) C C which will be regarded as an .4-algebra via the homomorphism
Qlg,q7'] — k defined by ¢ — C. Set

Uc(g) :== U () ®4 C,

where / is the order of ( in C*. Here C is regarded as an A-algebra via the algebra
homomorphism A — C defined by ¢ — (. The Hopf algebra structure on U,(g) induces
a Hopf algebra structure on U;]“(g). From the passage to the field C, one obtains a Hopf
algebra structure on the algebra U (g).

In this paper we will consider only U, (g)-modules which are integrable and type 1. In
particular, any such A/ decomposes into a direct sum ),y M of M), weight spaces for
A € X, and each E,, Fj acts locally nilpotently on M. On the weight spaces, one has for
v E M,,

Kov = (M, (3)
[Faim]o = [Ratm] _aa v 4)
forall « € A, m € Z,n € N. For the definition of [ Xai™], see [ , §2.2].

2.3. Induced and Weyl modules: For A € X, let
. Uc(g)
V(A) == V() = indp ) A
be the (quantum) induced module whose character is given by Weyl’s character formula,
and A(A) = A¢(X) = V(—wp)* be the quantum Weyl module, compare [L, §6]. These
are the modules considered in Theorem 1.1.

In the special case where ¢ = 1, the definition (1) becomes [i].« = ¢ and we find
[m]!, =m!and [].], = ("), so Uc(g) is the usual universal enveloping algebra of g over
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C. In that case, we find that the Weyl module A.()) is the irreducible module of g of
highest weight \.

3. EXAMPLE: WEYL MODULES OF Ug(sls)

Consider U (sly) for ¢ € C* of order £. We may identify the dominant weights with
the set Z of non-negative integers. For j > 0 define

j if 5 is odd;
Sj =
! j/2 if j even.

Proposition 3.1. The quantum Weyl module A(X) for U (sly) is irreducible if and only if
one of the following holds:

(@ 0< A< sy
(b) A= —1 (mod sy).

Proof. For odd ¢ > 3, the result can be deduced by Steinberg’s tensor product theorem
for quantum groups, see [L, Prop. 9.2]. In the trivial case when ¢ = 1, A(\) is irreducible
for all A\, which confirms the claim.

For even /, one can use the explicit generators and relations of the dual of A()) from
[J 96, 5A.7]. The dual has basis {vg, v1, ..., vy} with

B 05 = [957] vym.

The conditions (a) and (b) are equivalent to showing that there are no non-trivial maximal
vectors which can be deduced by analyzing the aforementioned formula, compare [C].
O

Example 3.2. A(0) and A(1) are irreducible for U, (sl;) for all roots of unity . Compare
this to A(2), which is reducible if and only if ¢ has order 4. More generally, for each
A > 2, there is some ¢ with s, = A, and A()\) is reducible for U (sl) where ¢ has order
l.

Example 3.3. Pick some ¢ > 4 and set \ := sy85---s; — 1. Foreach ¢ = 1,...,t, we
have A > sy and $1S9 -+ Sp_1S¢41 - - - s¢ > 1, whence 3.1(b) holds and A()) is irreducible
for U (sly) where ¢ € C* has order /.

In the analogue of Theorem 1.1 for a simple algebraic group G, [ , Th. 1.1], it
was shown that for a dominant weight A of GG not corresponding to a globally irreducible
Weyl module, there is a prime ¢ < 2(rank GG) + 1 such that the Weyl module A(\) @ Fy is
reducible. In particular, in case G = SLy, A(X) ® Fy is reducible for ¢ = 2 or 3. Example
3.3 above shows that no such bound exists in the setting of quantum groups. One might
view the reason for this difference as being that one can only iterate the Frobenius once
in the quantum case.
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4. LEVI SUBALGEBRAS

4.1. Levi subalgebra and Parabolics: Lusztig has defined an algebra automorphism
T, : Uy(g) — U,(g). By using this automorphism, one can construct a PBW type basis
for quantum groups by defining root vectors for general @ € ® (cf. [J 96, Ch. 8]).

If s = s, € W is the simple reflection defined by «, set T := T,,. Given any w € W,
let w = sg, s, - - - 53, be areduced expression. Define T, := T, - - - T3, € Aut(U,(g)).

Now let J C A and fix a reduced expression wy = sg, - - - Sg, that begins with a
reduced expression for the long element wy ; of the Weyl group for the Levi subgroup
Ly. If wo; = sg, -+ 5p,,, then sg,, ---sg, 18 a reduced expression for w; = wy jwo.

Now there exists a linear ordering ;1 < 72 < --- < 7y of the positive roots, where
Y = Sp, - Sp_, (Bi). Fory =~; € &%, the “root vector” E, € U,(g) is defined by
EV = E%‘ = T8ﬁ1"'5/37;_1 (Eﬁz) =Tp, --- Tﬁiﬂ(Eﬁi)'

Furthermore, E, has weight ~. Similarly,
FW = F%‘ = Tsﬁl"'S,Bi_l (F/BL) = Tﬁl T 'Tﬁifl(Fﬁi)7

a root vector of weight —v. If v € A then E, coincides with the original generator.

Let J C A and consider the Levi and parabolic Lie subalgebras [; and p; = [; ® u,
of g. We can define corresponding quantum enveloping algebras U,([;) and U,(p,). As
Hopf subalgebras of U,(g),

U,(l)) = {Ey, Fy:a € JYU{KT' :a € A})
and
U,(ps) = {Es:a € J}U{F,,KI':a € A}).
In the case when J = &, then [; = b, p; = b, Upon specialization we obtain the
subalgebras U (1), Us(p), Uc(h), and U, (b).
4.2. Restriction to Levi subalgebras: For J C A, set
XF={ eX:0<(\a")foralla € J}.

If \ € X/, one can define the induced module V ;()\) with simple U¢([;)-socle L;()\)
and dually a Weyl module A ;(\) with head L;()\).

Theorem 4.1. Let g be a simple complex Lie algebra and ( € C* be a root of unity. If
A(X) is an irreducible U.(g)-module then A ;(X\) is an irreducible U¢ (1 ;)-module for any
J C A

Proof. The argument will follow the line of reasoning given in [ ] with some modifi-
cations. By using the argument in [J 03, II 5.21], there exists a weight space decomposi-
tion for V() given by

V(A = <@ V(A)“> oM.

veZJ
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where M is the direct sum of all weight spaces V(\), with o # A — v for any v € ZJ.
Moreover, V ;(A) = @,ezsV (A) -, with the aforementioned decomposition being stable
under the action of U¢([;). Consequently, as U,(l;)-modules:

V() VN & M. (5)

One can also apply a dual argument for Weyl modules to get a decomposition as U¢(l)-
modules:

AN = A;N) @ M. (6)
for some U ([;)-module M.
One has L(\) = socy, ) (V(A)), thus socy, 1,y L(A) € socy, (i,)(V(A)). Observe that

Ly (N) = soeu) (V5 (A) € soeu,) (V(N)). )

The irreducible representation L ;(\) appears as an U ([ ;)-composition factor of L(\) and
V(A) with multiplicity one. One can conclude that L;(\) must occur in socy, ) L(A).
One can use a similar argument to deduce that L;(\) appears in the head of L(\) as a
U¢(ly)-module. Since L ;(\) has multiplicity one in L(\), this now shows that there is an
U¢(1y)-decomposition:
L) = Ly;(A\) o M". (8)
Now suppose that A(\) = L(A) is irreducible as U¢(g)-module. Now one can compare
the U,(l;)-decompositions (6) and (8) with the facts that L;(\) has multiplicity one in
L(\) and the indecomposability of A ;(A) to conclude that A ;(A) = L;()). O

5. ANALYSIS OF A (o)

5.1. In this section we will analyze A(ag) where « is the highest short root. This
module is obtained by base change of the Weyl module A(«y) that is defined over U,(g).
A basis for A(ao) is given in [J 96, 5.A.2]. Let ®, denote the short roots of & and A, be
the simple short roots in A. The set

{zy: ve® U{hs: €Ay}
is a basis for A(«y). From the module relations, one can see that this is an .4-lattice that is
stable under the action of U;!(b), and coincides with U;}(b).24,. In order to obtain A(ay)
we take this A-lattice then specialize ¢ to (.
Using the relations given in [J 96, SA.2],
EM™ hs =0, F™.hg=0

for all a, 5 € Ag with m > 2. In the case where m = 1, o, 8 € Ag:

[Q]Q’-wa o = 5
ED hg =< x, a# B, (B,a) =—1
0 else.

A similar relation holds when E{” is replaced by v,
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Let Ay = {01, 02,...,Bm}. Consider ajhg, + ashg, + --- + anhs,, € A(ag)o. This

will be invariant under E/(;) and F’ B(:L) forn > 1,7 =1,2,...,m if and only if the matrix

D = (d; ;) has determinant equal to zero where

2l i=
0 else.

The module A(cay) has two dominant weights: o and 0. Therefore, the analysis above
shows the following statements are equivalent: (i) A(«p) is reducible, (ii) A(cy) contains
a trivial module in its socle and (iii) the determinant of D equals zero. We can now use
this fact to prove reducibility and irreducibility statements for Weyl modules for each .

Theorem 5.1. Let A(wy) be the quantum Weyl module of highest weight o over U¢(g)
for ¢ € C* of order (. Then

(a) When ® = A, and { > 2. Then { | n+ 1 if and only if A(ay) is reducible.
(b) If ® = B,, and ¢ = 4 then A(«y) is reducible.

©) Ifo=C,,n>3and !l | nthen A(ay) is reducible.

(d) If ® = D,, and ¢ = 4 then A(«wy) is reducible.

(e) If = Fy and { = 3 then A(wy) is reducible.

(f) If & = Gy and ¢ = 4 then A(wy) is reducible.

() If ® = Eg and { = 3 then A(wy) is reducible.

(h) If & = E; and { = 4 then A(«ay) is reducible.

(i) If ® = Eg then A(wy) is irreducible for all (.

Proof. We will rely on the facts stated in Section 2.2, especially (2). Let ® = A,,. The
first statement will hold by showing that det(D) = [n + 1], by using induction on n.
This is clear for n = 1. Assume that this holds for n — 1, and consider ® = A,,. Let
Ay = {aq,q9,...,a,} be the standard ordering of simple roots. Then by expanding
along the first row, one has

det(D) = [2¢c[n]c + (=1)[n = 2]¢ = [n + 1.

Consequently, if ¢ > 2 and ¢ | n + 1 then A(qy) is reducible.

For ® = B,, and G, there is only one short root and in this case det(D) = [2];. In the
caseof ® = C),, Ay = {aq, g, ..., a,_1}. So we are reduced to type A,,_1 and det(D) =
[n]¢. For ® = F}, there are two short roots and one has det(D) = [2][2]. — (1)(1) = [3]¢.

In the case when ® = D,, n > 4, one first considers the case ® = D, where det(D) =
([21¢)?([2]Z — 3), which is zero when ¢ = 4. Now by expansion along the first row, one
can demonstrate in the general case for ® = D,

det(D) = [2]¢(det(D')) — det(D")

where D’ (resp. D”) is the matrix for A(ayp) in the case when ® = D, (resp. D,,_»).
This shows that in general by using the equation above and induction that D is zero for
(=4,
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For ® = F,,, one can expand along the second row of the matrix D (with rows and
columns under the Bourbaki ordering) and use the computation for type A, _; to see that

26l — B¢ if P = g
det(D) = < [2]¢[7]c — [3]c[4); if @ = Ep;
2]c[8]c = Bleble if & = Bs.

From these equations one can see that A(cy) contains a trivial module (and is reducible)
for ® = Fg (resp. & = E;) when ¢ = 3 (resp. { = 4).

Finally, we want to show that A(«y) is irreducible when & = Eg for all /. One has
det(D) = [2]¢[8]¢ — [3]¢[5]¢. By direct calculation,

det(D) = égﬂé([z]q[g]q — [38l4[5]) = (11132 m

where

F) = =% — % 4 g2 4 — ' — 1.
One can show directly from the equation above, if / = 2 (i.e., ( = —1), then det(D) # 0.
Furthermore, det(D) # 0 if and only if the ¢-th cyclotomic polynomial ®,(q) does not
divide the polynomial f(q).

Now, f(q) = (¢—1)*(q+1)* fi6(q), where fis(q) == ¢"*+¢" — ¢ —¢* —* +¢°+1
is irreducible in Q[q]. Since ®,(q) is monic irreducible of degree ¢(¢) (where ¢ denotes
the Euler ¢-function), and ¢(¢) = 16 only for ¢ = 17, checking that ®17(¢) # fi6(¢) in
Q[g| shows that det(D) # 0. O

6. VERIFICATION OF THE MAIN THEOREM

6.1. The fundamental weight case. We can now analyze the question of global irrre-
ducibility for A(w;) for every fundamental weight w;.

Type A, (n > 1). All the fundamental weights w;, ¢ = 1,2, ..., n are minuscule. There-
fore, A(w;) = L(w;) foralli =1,2,...,n,and £ > 2.

Type B,, (n > 2). The fundamental weight w,, is minuscule. We will verify that A(w;)
is reducible fori = 1,2,...,n — 1 when ¢ = 4. For B,,, w1 = ag, s0 A(wy) is reducible
when ¢ = 4. Now suppose that the statement above holds for B, ;. For 2 < i < n,
restrict to the Levi subgroup of type B,,_;;1 corresponding to J = {a;, ®it1,...,a,}.
Since A ;(w;) is reducible for ¢ = 4, it follows that the same holds for A(w;) by Theorem
4.1.

Type C,, (n > 3). The fundamental weight w; is minuscule. Since wy = ag, A(ws) is
reducible when ¢ | n. For w; with 2 < i < n, one can restrict to the Levi of type C}, ;.2
corresponding to J = {a;_1,q;,...,a,} and apply Theorem 4.1 to verify that A(w;) is
reducible when ¢ | n — i + 2. Now when i = n, restrict to the Levi subgroup of type
Cy = By corresponding to J = {«,_1, @, }. One can apply the results for type Bs to see
that A j(w,,), and thus A(w,) is reducible when ¢ = 4.
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Type D,, (n > 4). The minuscule fundamental weights are w;, w,_1, and w,,. For D,,
wy = (g, SO one can use the same argument as in the case for type B,, by restricting to the
Levi subgroup of type D,,_; o corresponding to J = {c;_1, ;, ..., a, } to show that that
A j(w;) is reducible, and consequently A(w;) is reducible when 2 < ¢ <n —2and ¢ = 4.

Type Es. By using Theorem 4.1 with J; = A —{a1}, Jo = A—{ag} (D5 root systems),
one can show that the Weyl modules of highest weights w3, w, and w; are not globally
irreducible. The fundamental weights w; and wg are minuscule. Furthemore, ws = vy,
and the Weyl module A(w,) is not irreducible for ¢ = 3.

Type E;. Set J; = A—{az} (Egroot system), Jo = A—{a;} (Dg root system). Then by
applying Theorem 4.1, the quantum Weyl module with highest weight w; is not globally
irreducible for j # 1, 7. For the other cases, w; is minuscule and w; = ay.

Type Eg. One can argue as in the prior case, set J; = A — {ag} (F; root system),
Jo = A — {1} (D7 root system). Then one can conclude that the quantum Weyl module
of highest weight w; for 7 # 8 is not globally irreducible. The case of wg is handled in
Theorem 5.1(1).

Type F,. Let J; = {1, a2,a3} and J = {9, a3, a4}. By using Theorem 4.1, the
quantum Weyl module with highest weight w; is not globally irreducible for j # 4. The
case when wy = g is handled in Theorem 5.1(e).

Type GG5. The fundamental weight w; = « so A(w;) is reducible when ¢ = 4. Further-
more, A(ws) is 14-dimensional and not irreducible when ¢ = 3. In order to see this one
can use a similar analysis as in Theorem 5.1 with the generators and relations for the 14-
dimensional module given in [J 96, 5.A.4]. The module A(ws) contains a trivial module
if and only if the determinant obtained from these relations is zero, i.e., [6]7 — [3]¢ = 0.
This occurs when ¢ = 3.

6.2. Let C7 be the bottom alcove, i.e., Cz = {A\ € X : (A +p,af) <} If0 > h
then 0 € Cz. For any A,z € C7 one can define a translation functor 7§'(—). For the
basic properties of the translation functor, in the case for algebraic groups, we refer the
reader to [J 03, II Ch. 7]. These properties with their proofs directly translate over to the
quantum group case.

Theorem 6.1. Let A () be the quantum Weyl module for U (g).

(@ If® = A, n>2and { =n—+1then A;(w; + w,) is reducible.
() If ® = B,, n>2and { = 2n+ 1 then A;(wy + w,,) is reducible.
() If o =Cp,,n>2and { = 4 then A:(wy + wy,) is reducible.

(d) If & = Fy and { = 4 then A¢(wy + wy) is reducible.

(e) If ® = Gy and { = 4 then A (w1 + wy) is reducible.

Proof. For part (a), if ® = A, then oy = w; + w,, and the statement follows from Theo-
rem 5.1(a). An alternative argument in the case when ¢ is odd can be given using transla-
tion functors. Let £ = n + 1. Then h = (p, oyf) + 1 = n + 1. Therefore, 0 € C7.
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Let s, ¢ be the affine reflection (see [J 03, I 6.1]). Then under the dot action,
Saot * 0= Sao(p) — p+Lag = —{p,a Yy + lag = (—n + £)ag = .

Consider the hyperplane # fixed by the affine reflection s,, ¢ and choose 1 € H N C7.
For this particular y, one has L(p) = A(u) = V() = T'(1) (where T'(p) is the tilting
module of highest weight 1). The translated module T)(L(u)) (i) is a tilting module
of highest weight ay, (ii) has a Weyl filtration with factors C and A(«y), and (iii) has
socle and head C with heart (radical/socle) isomorphic to L(cy) (cf. [J 03, 11 7.19, 7.20]).
These facts imply that A(ag) has composition factors L(cy) and C, thus A(w; + wy,) is
reducible.

(b) The argument used in part (a) when ¢ is odd can be used to prove (b). Assume that
{=2n+1and A\ = w; + w,. One has h = 2n and

(wn +p,ag) = (p,ag)+1=h=2n<{
Therefore, w,, € C'z. Moreover, by direct calculation,
Sag,l * Wp = W1 + Wy

One can apply the same argument as in part (a) to show that A(w; + w, ) has composition
factors L(w; + wy,) and L(w,), thus A¢(w; + wy,) is reducible.

For part (c), let J = A — {1} (type C,,_1) and ¢ = 4. The Weyl module A ;(w; + wy,)
for L; is identified with the fundamental Weyl module A ;(w,) on [L;, L;] and so is
reducible as in Section 6.1. Part (c) now follows by Theorem 4.1.

Part (d) follows by the same reasoning as in part (c), by using J = {1, as, a3} (type
Bs), and part (e) follows by using J = {a; }. O

6.3. End of the proof of Theorem 1.1. We can now finish the proof of Theorem 1.1.
The case where rank ® = 1 was handled in Example 3.2. Suppose rank ® > 2 and
Theorem 1.1 holds for all groups of lower rank, and let A\ = > c;w; with every ¢; > 0.
If some ¢; > 1 then one can use the case of U(sly) from §3 and Theorem 4.1 with
J = {a;} to conclude that A(\) is not globally irreducible. Therefore, we are reduced to
the situation where ¢; € {0, 1} for all 4.

Now if there is a connected and proper subset J of A such that ¢; # 0 for at least
two indexes ¢ with o; € J, then we are done by induction and Theorem 4.1. If there are
exactly two indices such that ¢; = 1 occurring at the end of the Dynkin diagram such
that these nodes are not containing in any connected proper subset .JJ of A, then we are in
one of the cases handled by Theorem 6.1. Thus we are reduced to the case when A is a
fundamental weight, which was handled in Section 6.1.
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