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ABSTRACT

Early detection and modeling of a contagious epidemic can pro-
vide important guidance about quelling the contagion, controlling
its spread, or the effective design of countermeasures. A topic of
recent interest has been the design of social network sensors, i.e.,
identifying a small set of people who can be monitored to provide
insight into the emergence of an epidemic in a larger population.
We formally pose the problem of designing social network sensors
for flu epidemics and identify two different objectives that could
be targeted in such sensor design problems. Using the graph the-
oretic notion of dominators we develop an efficient and effective
heuristic for forecasting epidemics at lead time. Using six city-scale
datasets generated by extensive microscopic epidemiological simu-
lations involving millions of individuals, we illustrate the practical
applicability of our methods and show significant benefits (up to
twenty-two days more lead time) compared to other competitors.
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1 INTRODUCTION

Motivated by complicated public health concerns during the initial
stages of a pandemic (other than just detecting if there is an epi-
demic at all) [11], public health officials are usually interested in
the questions: Will there be a large disease outbreak? Or, has the
epidemic reached its peak? These are important questions from a
public health perspective [3]; the answers can help determine if
costly interventions are needed (e.g., school closures), the strategies
to organize vaccination campaigns and distributions, locations to
prioritize efforts to minimize new infections, the time to issue advi-
sories, and in general how to better engineer health care responses.

Given a graph and a contagion spreading on it, can we answer
such questions by monitoring some nodes to get ahead of the over-
all epidemic? A social sensor is a set of individuals selected from
the population which could indicate the outbreak of the disease
under consideration, thus giving an early warning. Many exist-
ing methods for such detection problems typically give indicators
which lag behind the epidemic. Recent work by Christakis and
Fowler [5] has made some advances. They first proposed the notion
of social network sensors for monitoring flu based on the friend-
ship paradox: your friends have more friends than you do. They
proposed a so-called ‘Friend-of-Friend” approach to use the set of
friends nominated by the individuals randomly sampled from the
population as the social sensor. After implementing it among stu-
dents at Harvard, Christakis and Fowler found that the peak of the
daily incidence curve (the number of new infections per day) in the
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set of students.

Figures 1 and 2 depict the results of experiments we did on
two large contact networks—Oregon and Miami (see Table 1 for
details)—using the SEIR model. We formed the sensor set using
the approach given in [5] and measured the average lead time of
the peaks for 100 runs (hence the results are robust to stochastic
fluctuations). For the Oregon dataset, Fig. 1 shows that there is a
lead time of 11 days on average for the peak in the sensor set with
respect to the random set (see Fig. 1(c)). In contrast, for the Miami
dataset, no lead time for the sensor set is observed (see Fig. 2(c)).

There may be several possible reasons for these inconsistencies.
First, the ‘Friend-of-Friend’ approach implicitly assumes that the
lead time always increases as we add more sensors into the set.
Second, the lead time observation is assumed to be independent of
the underlying network topology structures, which is clearly not
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Figure 1: Illustration of the Friend-of-Friend approach [5] on the Oregon dataset. (a) True daily incidence curve (left), (b) fitted
daily incidence curve with logistic function (middle), and (c) distribution of lead time over 100 experiments (right). Note that
there is a non-zero lead time observed, i.e., the peak of the sensor curve occurs earlier than the peak of the curve for the

random group.
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Figure 2: Illustration of the Friend-of-Friend approach on the Miami dataset. (a) True daily incidence curve (left), (b) fitted
daily incidence curve with logistic function (middle), and (c) distribution of lead time over 100 experiments (right). Note that

this experiment does not reveal any lead time.

the case. Finally, and most importantly, the work in [5] does not
formally define the problem it is trying to solve, i.e., what objective
does the sensor set optimize?

In this paper, we systematically formalize the problem of pick-
ing appropriate individuals to monitor and forecast the disease
spreading over a social contact network. Our contributions are:

(1) We formally pose and study three variants of the sensor set
selection problem.

(2) We provide an efficient heuristic based on the notion of
graph dominators which solves one variant of the social
sensor selection problem.

(3) We conduct extensive experiments on city-scale datasets
based on detailed microscopic simulations, demonstrating
improved lead time over competitors (including the Friend-
of-Friend approach of [5]).

(4) We design surrogate/proxy social sensors using demographic
information so that it is easy to deploy our approach in
practice without knowledge of the full contact network.

2 EPIDEMIOLOGY FUNDAMENTALS

The most fundamental computational disease model is the so-called
‘Susceptible-Infected’ (SI) model where each individual (e.g. node in
the disease propagation network) is considered to be in one of two
states: Susceptible (healthy) or Infected. Any infected individual
may infect each of its neighbors independently with probability f.
Also, the SI model assumes every infected individual stays infected
forever. For a clique of N nodes, the SI model can be characterized
as:

dI

yri BX(N-T)xI
where [ is the number of infected nodes at time ¢. It is easy to
prove that the solution for I is the logistic or sigmoid function, and
its derivative (or the number of new infections per unit time) is
symmetric around the peak.

The disease model that we use in this paper is the so-called SEIR

model where a node in the disease propagation network is in one
of four states: Susceptible, Exposed, Infected, and Recovered.The
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dynamics of the SEIR model can be described as:

Z—f = —pSI %:aE—yI fl—}f = BSI - aE % =vyl,
where S, E, I, and R denote the number of individuals in the corre-
sponding states at time t,and S+ E+ I+ R = N.Here f,  and y
represent the transition rates between the different states. Notice
that since we are considering disease epidemics during a short pe-
riod of time in this paper, we ignore the birth and death rates in
the standard SEIR model here.

3 PROBLEM FORMULATION

Using the SEIR process, let G = (V, E) be a social contact network
where V and E represent the vertex set and edge set respectively.
We use f(S) to denote the probability that at least one vertex in the
sensor set S gets infected, starting the disease spread from a random
initial vertex. The most basic problem in such a setting is the early
detection problem, in which the goal is to select the smallest sensor
set S so that some vertices in S get infected within the first d days
of the disease outbreak in the network G with probability at least €
(here, d and € are given parameters)—this can be used to detect if
there is an epidemic at all. This problem can be viewed as a special
case of the detection problem in [10], and can be solved within
a constant factor by a greedy submodular function maximization
algorithm. As we show later, our optimization goal is non-linear
and not submodular, and hence the approach in [10] can not be
directly applied. Importantly, the early detection problem does not
capture the more important issues about the disease characteristics
of relevance to public health officials, and therefore we do not
explore this further. For example, just detecting an infection in
the population is generally not sufficient justification for doing
an expensive intervention by public health officials (as the disease
might not spread and may disappear soon). But knowing that the
infection will still grow further and peak gives justification for
robust infection control measures.

In our formulation, we use the term epicurve I(t) to refer to
the time series of number of infections by day. The peak of an
epicurve is its maximum value, i.e., max; I(¢). Note that it is possible
for an epicurve to have multiple peaks, but for most epidemic
models in practice, the corresponding epicurves usually have a
single peak. The derivative of the I(t) with respect to t is called the
daily incidence curve (number of new infections per day). The “time
of peak” of the epicurve corresponding to the entire population is
the time when the epicurve first reaches its peak, and is denoted by
tpr = argmax, I(t). Similarly, we use ¢, (S) to denote the time-of-
peak of the epicurve restricted only to a set S. The lead time of the
epicurve peak for sensor set S compared to the entire population is
then simply t,x — 2,4 (S). The problem we study in this paper is:

(e, k)-Peak Lead Time Maximization (PLTM)
Given: Parameters € and k, network G, and the epi-
demic model

Find: A set of nodes S from G such that

Smax =argmaxE[fpk - tpk(s)]
S

st. f(S)>2e, |S|=k
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Here, k is the budget, i.e. the required size of sensor set. Notice
that we need the f(S) constraint so that we only choose sets which
have a minimum probability of capturing the epidemic—intuitively,
there may be some nodes which only get infected infrequently, but
the time they get infected during the disease propagation might be
quite early. Such nodes are clearly not good ‘sensors’

4 PROPOSED APPROACH

Unfortunately, the peak of an epicurve is a high variance measure,
making it challenging to address directly. Further, the expected
lead time, E[t,x — t,x(S)] is not non-decreasing (w.r.t. |S[) and non-
submodular, in general. Hence we consider a different but related
problem as an intermediate step. Let ¢;,7(v) denote the expected
infection time for node v, given that the epidemic starts at a random
initial node. Then:

(e, k)-Minimum Average Infection Time (MAIT)
Given: Parameters ¢ and k, network G, and the epi-
demic model

Find: A set S of nodes such that

Smin =argmin )"ty (v)/|S|
S VES

st. f(S) =€, |S| =k

Justification: In contrast to the peak, note that the integral of
the epicurve restricted to S, normalized by |S|, corresponds to the
average infection time of nodes in S, which is another useful metric
for characterizing the epidemic. Further, if the epicurve has a sharp
peak, which happens in most real networks and for most disease
parameters, the average infection time is likely to be close to 1.
Approximating MAIT: The MAIT problem involves f(S), which

can be seen to be submodular, following the same arguments as
in [7], and can be maximized using a greedy approach. However,
the objective function — average infection time 3, cg tmf(v) /S| is
non-linear as we keep adding nodes to S, which makes this problem
challenging, and the standard greedy approaches for maximizing
submodular functions and their extensions [8] do not work directly.
In particular, we note that selecting a sensor set S which minimizes
2oes tinf(v) (With f(S) > €) might not be a good solution, since
it might have a high average infection time ., s tinf(v)/|S|. We
discuss below an approximation algorithm for this problem. For
graph G = (V,E), letm = |E|,n = |V].

LEMMA 1. It is possible to obtain a bi-criteria approximation S C 'V
for any instance of the (e, k)-MAIT problem on a graph G = (V,E),
given theti¢(-) values for all nodes as input, such that 3., ¢ tinf(v) is
within a factor of two of the optimum, and f(S) > c- €, for a constant
c. The algorithm involves O(n? log n) evaluations of the function f(-).

Proor. (Sketch) Let t;,¢(v) denote the expected infection time
of v € V, assuming the disease starts at a random initial node. Let
Bopt be the average infection time value for the optimum; we can
“guess” an estimate B’ for this quantity within a factor of 1 + &, by
trying out powers of (1 + 8)¢, for i < logn, for any § > 0, since
Bopt < n. We run O(log n) “phases” for each choice of B’.

Within each phase, we now consider the submodular function
maximization problem to maximize f(S), with two linear con-
straints: the first is J tjpr(v)x(v) < B’k and X, x(v) < k, where
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x(-) denotes the characteristic vector of S. Using the result of Azar
etal. [1], we get a set S such that f(S) > cu(B’), for a constant ¢, and
Yoes tinf(v) < B’k and |S| < k, where p(B’) denotes the optimum
solution corresponding to the choice of B’ for this problem. If we
have |S| < k, we add to it k — |S| nodes with the minimum tinf(')
values, which are not already in S, so that its size becomes k. Note
that for the new set S, we have ¥, s tinf(v) < 2Bk, since the sum
of the infection times of the nodes added to S is at most B’k.

Note that the resulting set S corresponds to one ‘guess’ of B’. We
take the smallest value of B’, which ensures f(S) > ce. It follows
that for this solution S, we have X, s tinf(v)/|S| < 2Bop: and
|S| = k. The algorithm of Azar et al. [1] involves a greedy choice
of a node each time; each such choice involves the evaluation of
£(S’) for some set S’, leading to O(n?) evaluations of the function
f(-); since there are O(log n) phases, the lemma follows. O

Heuristics. Though Lemma 1 runs in polynomial time, it is quite
impractical for the kinds of large graphs we study in this paper
because of the need for a super-quadratic number of evaluations of
f(-). Therefore, we consider faster heuristics for selecting sensor
sets. The analysis of Lemma 1 suggests the following significantly
faster greedy approach: pick nodes in non-decreasing t;,f(-) order
till the resulting set S has f(S) > €. In general, this approach might
not give good approximation guarantees. However, when the net-
work has “hubs”, it seems quite likely that the greedy approach
will work well. However, even this approach requires repeated
evaluation of f(S), and can be quite slow. The class of social net-
works we study has the following property: nodes v which have
low t;ur(v) are usually hubs and have relatively high probability of
becoming infected. This motivates the following simpler and much
faster heuristic, referred to as the Transmission tree (TT) based
sensors heuristic:

(1) generate aset 7 = {Ti,...,Tn} of dendrograms; a dendro-
gram T; = (V;, E;) is a subgraph of G = (V, E), where V; is
the set of infected nodes and an edge (u,v) € E is in E; iff
the disease is transmitted via (u, v);

(2) for each node v, compute d’, which is its depth in T;, for all
i, if v gets infected in Tj;

(3) compute t;,¢(v) as the average of the di, over all the dendo-
grams T;, in which it gets infected;

(4) discard nodes v with t;,r(v) < €, where € is a parameter
for the algorithm;

(5) order the remaining nodes v1,..., v, in non-decreasing
tinf () order (Le., tinf(v1) < tinp(v2) < ... < tipp(op))

(6) Let S = {vy,..., v}

We also use a faster approach based on dominator trees, which
is motivated by the same greedy idea. We referred to it as the
Dominator tree (DT) based sensors heuristic:

(1) generate dominator trees corresponding to each dendro-
gram;

(2) compute the average depth of each node v in the dominator
trees (as in the transmission tree heuristic);

(3) discard nodes whose average depth is smaller than €;

(4) order nodes based on their average depth in the dominator
tree, and pick S to be the set of the first k nodes.

H. Shao et al.
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Figure 3: (i) An example graph and (ii) its dominator tree.
In practice, the dominator will have a significantly reduced
number of edges than the original graph.

Formally, the dominator relationship is defined as follows. A node x
dominates a node y in a directed graph iff all paths from a designated
start node to node y must pass through node x. In our case, the start
node indicates the source of the infection or disease. Consider Fig. 3
(left), a schematic of a social contact network. All paths from node
A (the designated start node) to node H must pass through node B,
therefore B dominates H. Note that a person can be dominated by
many other people. For instance, both C and F dominate J, and C
dominates F. A node x is said to be the unique immediate dominator
of y iff x dominates y and there does not exist a node z such that x
dominates z and z dominates y. Note that a node can have at most
one immediate dominator, but may be the immediate dominator
of any number of nodes. The dominator tree D = (VP EP) is a
tree induced from the original directed graph G = (VY, EG), where
vD = VG, but an edge (u — v) € ED iff u is the immediate
dominator of v in G. Fig. 3 (right) shows an example dominator
tree.

The computation of dominators is a well studied topic and we
adopt the Lengauer-Tarjan algorithm [9] from the Boost graph li-
brary implementation. This algorithm runs in O((|V|+|E|) log(|V |+
|E])) time, where |V| is the number of vertices and |E| is the number
of edges.

5 EXPERIMENTAL RESULTS

Our experimental investigations focus on addressing the following
questions:

(1) How do the proposed approaches perform when forecasting
the epidemic in terms of the lead time?

(2) How large should our sensor set size be?

(3) How many days are necessary to observe a stable lead time?

(4) What is the predictive power of the sensor set in estimating
the epidemic curve over the full population?

(5) Is it possible to employ surrogates for sensors?

Table 1 shows some basic network statistics of the datasets we used
in our experiments. The Oregon AS (Autonomous System) router
graph is an AS-level connectivity network inferred from Oregon
route-views [4]. Although this dataset does not relate to epidemio-
logical modeling, we use it primarily as a testbed to understand how
(and if) graph topology affects our results due to the relatively small
size and neat graph structure. The rest of the datasets are synthetic
but realistic social contact networks (see [2, 6]) for six large cities
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Table 1: Characteristics of datasets used in the experiments.

Dataset Nodes Avg. deg | Max deg
Oregon 10,670 4.12 2,312
Miami 2,092,147 50.38 425
Boston 4,149,279 108.32 437
Dallas 5,098,598 113.10 477
Chicago 9,047,574 118.83 507
Los Angeles | 16,244,426 113.08 463
New York 20,618,488 93.14 464

in the United States. These six US city datasets are generated with
specific aim at modeling epidemics in human populations.

In our experimental study, we evaluated our two proposed ap-
proaches: the transmission tree based heuristic and the dominator
tree based heuristic. For comparison, we also implemented two
strategies as baseline methods: (i) a Top-K high degree sensors
heuristic used in [5] where a set P C V is first sampled and for each
v € P its K neighbors with largest degree are selected, and (ii) a
Weighted degree (WD) sensors heuristic, which is similar to the
previous heuristic except that the K neighbors are chosen based on
largest weighted degree. The weight we use here is the durations
of the activities indicated by edges of the graphs in the datasets
mentioned in Table 1. However, since we don’t have these weights
for the Oregon dataset, we will omit the results of the WD sensor
heuristic on the Oregon dataset.

Our primary figure of merit is the lead time, calculated as follows.
For each run of the disease model in a social contact network, we
fit a logistic function curve to the cumulative incidence of the
chosen sensor set and a random sampled set from V. Here, we
use the random sampled set to represent the entire population
for the large city-level datasets we used in our experiments. (It is
usually impossible to track the entire population in practice.) We
then derive daily incidence curves for both the sensor set and the
random set (we will refer to this set as random set in the rest of this
paper). Let ts and t, represent the peak times of the daily incidence
curves for the sensor and random sets respectively, and the lead
time is defined as At = t, — ts.

For all the experiments in this section, the parameters for the
epidemic simulations are set as follows unless specified. We set
€ = 0.8 (see the definitions of the PLTM and MAIT problems) and
flu transmission rate to be 4.2 x 107 for the SEIR disease model.
The size for the sensor set and random set (k) is 5% of the entire
population, and the epidemic simulations start with five randomly
infected vertices in the networks. All the results were obtained by
averaging across 1, 000 independent runs.

5.1 Performance of predicted epidemic lead
time

In this experimental study, we set the flu transmission rate to 0.05
for the SEIR model in the Oregon dataset due to its relatively small
size compared to the Miami dataset. Fig. 4 depicts the daily incidence
curves of the four sensor selection heuristics and the random set on
Oregon and Miami datasets, and Fig. 5 describes the corresponding
peak time of the daily incidence curves shown in Fig. 4. As we can
see from these figures, on the Oregon dataset, the performance of
the proposed heuristics and baseline heuristics is comparable where
they both predict the peak of the epicurves about five days earlier
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when compared to the ground truth. However, on the Miami dataset,
the proposed TT and DT heuristic approaches give a much larger
lead time, around 10 days, compared to the about two-day and
almost zero day lead time in the WD and Top-K baseline heuristics.
This is because, as described earlier, our approaches are precisely
designed to try to pick vertices with early expected infection time
from the disease propagation network as social sensors. We also
study whether the number of the initial infected vertices will affect
the predicted lead time. Table 2 shows the predicted lead time of
the two proposed and the two baseline heuristics for 1, 5, and 10
initial infected vertices in the epidemic simulations. As the results
in this table show, the number of initial infected vertices would not
have too much impact on the predicted lead time.

5.2 How many sensors to choose?

Since we have already demonstrated the influences of the network
topology on social sensor selection strategies, we will put the Ore-
gon dataset aside, and focus on the social contact network datasets
for US cities in the rest of the experiments. An interesting conun-
drum is the number of sensors to select in a design. Fig. 6 depicts
the mean lead time and the inverse of variance-to-mean ratio of
the lead time v.s. the sensor size for the Miami datasets. The results
show that the variance of the lead time estimate is high for small
size of sensor sets and decreases as the sensor set size increases.
This suggests a natural strategy of scaling the lead time against the
variance, thus helps establish a sweet spot in the trade-off. This
variance-to-mean ratio is also known as the Fano factor, which
is widely used as an index of dispersion. In the result for the Mi-
ami dataset, there is a clear peak in the figure of the inverse of
variance-to-mean ratio, which suggests a suitable size of sensors to
pick.

5.3 Empirical study on stability of lead time

In this experiment, we study the stability of the estimated lead time
as we observe more data on the sensor group when the number
of monitoring days increases. As is well known, the cumulative
incidence curve of flu epidemics can be modeled by a logistic func-
tion where the dependent and independent variables are the flu
cumulative incidence and the time of the epidemic (days in our
context). Here, we vary our flu epidemic simulation time from 2
days to 300 days on the Miami dataset, estimate cumulative inci-
dence curves (with logistic function) for both the sensor and the
random set based on the simulated cumulative flu incidence data,
and then compute the lead time. Fig. 7 shows the lead time vs. the
flu epidemic simulation time. As we can see from this figure, the
estimated lead time fluctuates a lot when the simulation time is
short and stabilizes at around 12 days when the epidemic simula-
tion time is more than around 80 days. Such results provide some
insights for public health officials on how much epidemic data they
should collect in order to make an accurate estimation of the flu
outbreak from the time domain perspective.

5.4 Predicting population epidemic curve from
sensor group epidemic curve

In this experiment, we study the relationship between the flu cu-
mulative incidence curve of sensor and that of random group. As
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Table 2: Comparison of the lead time across four different social sensor selection heuristics when the number of initial infected

vertices vary.

Dataset | Seed Lead time
Top-K degree | Weight degree | Transmission tree | Dominator tree
1 13.13 n/a 10.10 9.91
Oregon 5 8.85 n/a 7.93 7.75
10 11.00 n/a 8.63 8.55
1 0.29 3.38 10.46 10.08
Miami 0.39 3.41 10.15 10.19
10 0.62 3.41 10.13 10.13
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Figure 6: Mean lead time (left) and inverse of variance-to-
mean ratio (right) v.s. the sensor size for the Miami dataset.
When sensor set size is less than 1.0% of the entire population
we observe higher (good) lead time, but also with high vari-
ances. Scaling the mean lead time by the variance, i.e., the re-
ciprocal of the Fano factor, shows a clear peak with the sensor
set size at approximately 20% of the population, the position
where we can obtain substantial gains in lead time with corre-
spondingly low variances.

we mentioned before, we use random set to represent the entire
population since it is usually quite difficult to characterize the entire
population in practice when the dataset is quite large. We try to
estimate a polynomial regression model with degree of three where
the observed cumulative incidence of the sensor group serves as
predictor and that of the random group serves as responses. Here,
the sensor group is selected by the dominator tree heuristic from
the Miami dataset. Over the 300 simulated days, we use the data of
the first 150 days to estimate our polynomial regression model, and

Monitoring Days Sensor Group Cumulative Incidence
Figure 7: Stability of the lead Figure 8: Predicting cumu-
time estimation. The esti- lative incidence of random
mated the lead time fluctuates group with sensor group for
initially. As the number of the Miami dataset.
monitoring days increases, it

stabilizes quickly.

make predictions of the cumulative incidence of random group for
the rest of the 150 days. Fig. 8 shows the fitted polynomial regres-
sion model compared to the true relation curve of the flu cumulative
incidences between sensor group and random group. As we can
see from this figure, the polynomial regression model with degree
of three could capture the relationship between the cumulative
incidences of random group and sensor group quite well, which
can help us predict the epidemic curve of entire population with
epidemic data collected from the sensor group.
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Figure 9: Mean lead times estimated with
surrogate sensor set S’ and dominator
tree based social sensors for various flu
transmission rates.

5.5 Surrogates for social sensors

In reality, the structures of large scale social contact networks are
usually unknown or difficult to obtain, which makes it difficult
to directly apply our proposed methods as we have done thus far.
In order to make the proposed approaches deployable and solve
realistic public health problems, we now relax this key assumption,
and develop a surrogate approach to select social sensors. In this
case, the policy makers can implement their strategies without
detailed (and intrusive) knowledge of people and their activities.
Surrogates are thus an approach to implement privacy-preserving
social network sensors.

The key idea of our surrogate approach is to utilize the demo-
graphic information. Here, we use the Miami dataset as an example
to explain our surrogate approach. We extracted the following 16
demographic features from the Miami dataset: age, gender, and
income; number of meetings with neighbor nodes; total meeting
duration with neighbor nodes; number of meetings whose dura-
tions are longer than 20000 seconds; number of meetings of types
1-5; and percent of meetings of types 1-5. The meeting types of
1-5 refer to home, work, shop, visit, and school, respectively. To
select surrogate sensors using demographic information, we use
classification and regression trees (CART); any other supervised
classification algorithm can also be substituted here. The 16 at-
tributes mentioned above are used as independent variables in
our CART model, and the response variable is binary to indicate
whether a person should be selected as a sensor or not. In order
to learn the CART model, we create the training data as follows.
We choose 0.1% of the entire population (=~ 2000) from the US city
dataset with our proposed heuristics as the training data with posi-
tive responses (social sensors), and choose another 0.1% randomly
as the training data with negative responses (not social sensors).
Then, separate CART models were learned to select the surrogate
sensor set S’ for each transmission rate ranging from 3.0 X 107 to
5.5 x 107> with a step size of 5 x 107°. Such transmission rates are
the typical values used in various flu epidemic studies. Among all
the surrogate sensors chosen by each of these CART models, we
choose the common individuals across all the CART models as the
final surrogate sensor set S”’.
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Figure 10: The lead time of transmission tree based (left) and dominator tree
based (right) sensor selection strategies using different combinations of individ-
ual demographic and interaction information on Miami, Boston, Dallas, Chicago,
Los Angeles and New York City datasets.

Fig. 9 compares the estimated lead time between the surrogate
sensor set S”” and the sensor set selected by the dominator tree
heuristic for various flu transmission rates. As we can see from
this figure, although the surrogate sensor set S’ does not perform
as well as the proposed dominator tree based sensor set, it still
provides a significant lead time, which is good enough to give
early warning to public health officials for the potential incoming
flu outbreak. Most important, since the CART based surrogate
sensor approach does not require the information of the social
contact network structures, it is easy to implement and deploy
in reality compared to the transmission tree and dominator tree
based heuristic approaches. This makes it a promising candidate
for predicting flu outbreaks for public health officials.

5.6 What information should be used to select
surrogate sensors?

Notice that in the last section, when we select the surrogate sen-
sors, both demographic (e.g. age of individuals) and interaction (e.g.
total meeting duration and meeting types with neighboring indi-
viduals) information is taken into account. However, which kind
of information is more important in terms of estimating the lead
time of flu epidemics? In this experiment, we focus on all our social
contact network datasets for large US cities, i.e., Miami, Boston, Dal-
las, Chicago, Los Angeles, and New York. For each city, we selected
the surrogate sensor set and the random set with the fixed size of
10, 000. The sensor set was selected with the following six strategies:
1) using empirical distributions of demographic information (distr
demo); 2) using empirical distributions of interaction information
(distr inter); 3) using CART with demographic information (CART
demo); 4) using CART with interaction information (CART inter);
5) using CART with both demographic and interaction informa-
tion (CART demo-+inter); 6) using transmission tree or dominator
tree based heuristic (trans or dom). We computed the lead time
for each of the six surrogate sensor selection strategies mentioned
above, and the results were averaged across 100 independent runs.
Fig. 10 shows the lead time of the different approaches over the
six US city datasets. As we can see from the figure, our proposed
approaches (CART based approaches and transmission/dominator
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tree based approaches) outperform the two baseline methods (distr
demo/inter), and in general, as more information is taken into ac-
count, the larger estimated lead time could be achieved (since the
transmission/dominator tree based heuristics assume known social
contact network structures, they could be thought of possessing
the most information about epidemics). Furthermore, the individ-
ual interaction information seems to be more important than the
demographic information from the perspective of obtaining larger
lead time.

6 DISCUSSION

The most closely related work to ours is Christakis and Fowler [5],
where a simple heuristic that monitors the friends of randomly
chosen individuals from a social network as sensors was adopted
to achieve early detection of epidemics. However, they only demon-
strated their proposed approach on a relatively small social network,
e.g. a student network from Harvard College. As we have shown
earlier, their friend heuristic fails on large social contact networks
of US cities. We have also demonstrated that although the Chris-
takis and Fowler’s approach works well over small networks like
the Oregon dataset, it provides almost no lead time over large scale
social contact networks like the Miami dataset. To explain why the
proposed social sensor selection heuristics work better, we start
from analyzing the structures of the disease propagation networks.
Comparing the graph statistics of the Oregon dataset with the Mi-
ami dataset shown in Table 1, we can observe that the graph in the
Oregon dataset has a quite different topology structure from the
graphs in the Miami datasets. The graph in the Oregon dataset has
relatively small average degree but very large maximum degree,
which indicates this graph has a star-like topology where few of the
central vertices have very large degrees. On the other hand, many
vertices in the graphs of the Miami datasets have large degrees, and
they spread all over the entire graph. Thus, for the top-K degree
based sensor selection approach, it is relatively easy to include the
central vertices with high degrees into the sensor set in the Ore-
gon dataset, but for the transmission tree and dominator tree based
approaches, whether the high degree vertices are included into the
sensor set will heavily depend on the choices of initial seeds of the
epidemics in the Oregon network. Such central vertices with high
degree are usually very important for the epidemics in such star-like
networks, which explains why the top-K degree approach works
better than the transmission tree and dominator tree approaches.
On the contrary, in the Miami dataset, the total number of vertices
is large, and it is quite difficult for the top-K degree approach to
select sensors that could represent the entire graph only based on
local friend-friend information. However, the transmission tree and
dominator tree based sensor selection strategies take the global epi-
demic spread information into account, which chooses the sensor
set that could represent the entire graph. That’s why they perform
better in terms of the lead time than the top-K degree based ap-
proach on the large simulated US city networks. The interesting
insight revealed by such results is that the network topology must
be considered when designing social sensor selection strategies.
The results also demonstrate that the proposed TT and DT based
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sensor selection heuristics are more robust to the underlying net-
work topologies, and thus more suitable to be deployed in practice,
such as monitoring and forecasting epidemics in large cities.

7 CONCLUSION

In this paper, we studied the problem of predicting flu outbreaks
with social network sensors. Compared to previous works, we are
the first to systematically formalize and study this problem. By
leveraging the graph theoretic notion of dominators, we developed
an efficient heuristic to select good social sensors to forecast the flu
epidemics when the structure of flu propagation network is known.
Redescription of the dominator property in terms of demographic
information enables us to develop a truly implementable and de-
ployable strategy to select surrogate social sensors to monitor and
forecast flu epidemics, which will benefit public health officials and
government policy makers.
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