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ABSTRACT

The ability to understand, model and predict human mobility in
high-occupancy buildings like corporate offices and campuses can
fundamentally change the way buildings are managed. For exam-
ple, energy efficiency can be improved using more accurate models
of the temporal and spatial aspects of building occupancy. Simi-
larly, responding to emergency situations is more effective and less
intrusive if the building system has better knowledge not just of
where occupants are, but also of their likely next locations and
when they will get there. We propose a novel approach to learn a
spatiotemporal model of human mobility from observed trajecto-
ries. Our approach posits the existence of different mobility profiles
that reflect the heterogeneity in the way people move between
locations. Our proposed latent allocation model describes the prob-
abilistic relationships between the observed trajectory data and
the latent (unobserved) mobility profiles and their parameters. To
tackle the problem of inferring these parameters efficiently, we
frame the model as a neural network. We engineer the layers of the
network to enforce appropriate constraints on the learned spatial
and temporal parameters of each profile to best explain the data.
We demonstrate our model and learning approach on synthetic
data and give initial results from a subset of real data collected from
our corporate building.
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1 INTRODUCTION

The study of human mobility has found new sources of data with
the proliferation of smart phones, Call Detail Records and wireless
devices that can be used to track users [2, 12, 14]. Complementing
this broader set of data sources is an increasingly broader set of
needs in various domains that can benefit from mobility models.
For outdoor city- or campus-scale mobility, approaches for smarter
transportation and urban planning efforts can use mobility models
to design more streamlined cities. Data from from taxi rides and
GPS data can also be useful for next location prediction, which can
inform resource management policies on the part of taxi companies
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and municipalities [28]. In commercial spaces, taxi ride data and
Point of Interest data can be combined to infer ride purpose, which
can help match supply and demand for different types of commercial
spaces and services [34].

For indoor settings, better understanding and models of human
mobility can enable a range of improvements in the energy effi-
ciency of buildings, their ease of use and their safety in emergency
situations. Predictive models can help a building management sys-
tem plan HVAC settings and perhaps shape the building’s energy
load to improve the efficiency and cost of the the building opera-
tion [16].

Researchers interested in better understanding human mobility
include civil engineers and urban planners trying to understand
mobility in cities, social scientists trying to understand interactions
among people in public places and how it relates to their interac-
tions in virtual environments, wireless network researchers using
mobility and wireless usage data to design better wireless commu-
nication protocols, and HVAC engineers trying to design systems
with higher energy efficiency and user comfort. These disciplines
study and model human mobility at different granularities. For ex-
ample, occupancy models for buildings are usually aggregated at
the level of a room or an HVAC zone. Taxi ride and vehicular GPS
data capture occupancy at the level of regions in a city.

In this paper, we start exploring the use of data from card readers
in an office building to learn spatio-temporal models of human
mobility. Our setting exhibits considerable heterogeneity in the
way people move in a building. For example, consider the following

mobility profiles:

(1) Anemployee who spends most of his time in his office, except
for a few hours spent in meeting rooms each week week and
daily visits to the cafeteria.

(2) A high-level manager who is almost always attending meet-
ings, which tend to last about an hour (his time is valuable)
and be in various parts of the building (his responsibilities
are broad and involve multiple departments).

(3) A janitorial staff member who is responsible for a given
building and makes the rounds of this building, visiting each
room, but spending little time there.

We view human mobility as a flow-conserving diffusion over the
graph whose nodes are the zones of the building accessible through
card readers. While various approaches have been proposed to
model diffusion over graphs in general and human mobility in
particular [2, 18, 25, 28, 31, 33], the state of the art has 3 main
shortcomings in the context of our setting:

(1) Existing approaches do not specifically cater to the hetero-
geneity in mobility profiles in our setting. They typically
characterize a homogeneous population of moving objects,
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but allow for variations in mobility by time of day and other
features.

(2) Much of the existing spatio-temporal models assume the
spatial and temporal aspects are two sides of the same coin
where the time and location of an entity’s next moves are
interdependent [31, 33]. This is a direct consequence of using
the exponential distribution for the duration of stay, which
essentially ties the spatial and the temporal aspects of mo-
bility.

(3) When using features, existing approaches attach features to
nodes and assume high mobility between similar nodes [33],
which is not necessarily true in our setting. For example,
people do not necessarily move to a conference room after
being in one.

To address these shortcomings, we propose a spatiotemporal
human mobility model that:

(1) Uses latent variables to posit the existence of multiple mo-
bility profiles and the parameters of each.

(2) Separately models the spatial and temporal aspects of mobil-
ity for each profile.

(3) Attaches features to transitions, rather than individual nodes,
for a richer model.

(4) Uses a neural network formulation to learn the latent param-
eters.

Our work is inspired by machine learning for natural language
processing where latent (hidden) variables represent underlying
topic models and each topic gives rise to a distribution over the ob-
served data (words in a corpus). Similarly, we posit the existence of
mobility profiles, with each profile responsible for spatio-temporal
patterns in mobility.

We present an inference approach to learn the parameters of
our model from observed timestamped trajectories. We presents
preliminary results on synthetic data, as well as data obtained from
access control devices (card readers) in our office building.

This paper is organized as follows: Section 2 reviews related work
in the areas of human mobility modeling and diffusion modeling.
In Section 3, we give background of specific the works that we base
this paper on, present our latent allocation model and explain the
inference algorithm we propose to learn it. Section 4 shows our
initial experimental results. We conclude and outline the remaining
work we will do in Section 5.

2 RELATED WORK

2.1 Human mobility

2.1.1  Settings and goals. The body of work devoted to studying
human mobility is larger than can be summarized in this section,
so we will present a sample thereof and focus on works that are
closer to ours in their goals or approaches.

A large portion of studies of human mobility addresses mobility
in cities using data from taxi rides and GPS data. Modeling human
mobility for next location prediction can inform resource manage-
ment policies on the part of taxi companies and municipalities [28].
Human mobility data can also be combined with POI data to infer
the purpose of a trip (e.g., shopping, dining, work) [34], which can
be useful in planning urban development and commercial space
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purpose and location. Call Detail Records and smart phone data
have also been used to construct mobility models [2, 12, 14]. The
insight obtained from these studies can be used to construct more
effective policies for crowd control in emergency situations, as well
as planning the timing and location of road work and detours.

With the advent of mobile devices, wireless communications are
providing increasingly large amounts of data that sheds light on
human mobility at sub-city levels like university campuses [18, 26].
In these kinds of studies, the improved understanding of human
mobility is a means towards an end; the studies are often conducted
by researchers from the wireless networks community who seek
to design better communication protocols and infrastructure. A
smaller number of papers focuses on human mobility indoors (e.g.,
in office buildings [5, 23]). One of the main motivations behind
studying indoor mobility is to improve energy efficiency of office
and residential buildings. Numerous occupancy models have been
proposed, but most of them operate at the aggregate level, where
they model total occupancy at the level of a room or region without
regard to modeling individual trajectories [15, 16, 20].

2.1.2  Approaches. Non-modeling studies: Many studies of
human mobility are descriptive in nature, especially work using
wireless network data. A dataset is analyzed and the salient fea-
tures therein are discussed, but without proposing a model that fits
the observed mobility patterns. One example is the work done on
understanding the persistence and prevalence of mobility in office
buildings [5]. Persistence reflects session durations whereas preva-
lence reflects the frequency with which users visit various locations.
The work finds that the probability distributions of both measures
follow power laws. Another example are works that describes dif-
ferent use loads and traffic categories of a campus wireless network
over time [18].

Another descriptive work explores the predictability of whether
two persons will interact by analyzing tracing data from academic
and office environments [26]. They collect ground truth of social
structures and use smart phone data to shed light on mobility by
consider which wireless access points were visible to a phone at
a given time. Using “virtual locations” derived from these access
points, they generate a sequence of locations per user. They discover
communities that resemble the communities they found in the social
structure data.

Modeling studies: For efforts that aim to construct predictive
mobility models, some only focus on the spatial aspect, where the
goal is to predict the next location of a user, while others focus on
temporal models that predict whether a user will remain in her
current location for the next ¢ minutes. More specific temporal
models attempt to predict the time at which the user will transition
to a new location.

One mobility model is the Trajectory Patterns Tree, a type of
decision tree that predicts the next location of a trajectory by finding
the path in the tree that best matches the locations on the trajectory
so far [28]. Learning depends on the movement of all available
objects in a certain area instead of on the individual history of
the owner of the trajectory only. This way, data is leveraged for
learning across moving objects, but without attempting to only
leverage data from objects closet in behavior to the current object.
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Prediction of a user’s next location has also been cast as a clas-
sification problem where the covariates include location, time of
arrival, previous location and previous duration of stay. Even the
temporal aspect of mobility was cast as a classification problem,
where a binary classifier learns a mapping from the predictive fea-
tures to 0 or 1 indicating whether the person will move in next n
minutes [23].

Another work that tries to build a model of next location uses
dynamic Bayesian networks (DBNs) [12]. The random variables in
the DBNs include location, day of the week, and time of day. The
work uses two mobility data sets; a Call Detail Records data and
a Nokia mobile data which is based on GPS. The authors address
the shortcomings of having a single mobility model by proposing
three models and using different approaches to combine them.

The idea of increasing prediction accuracy by leveraging mobility
data of a person’s social acquaintances was demonstrated on the
Nokia Data Challenge [13]. The assumption is that especially on
university campuses, people in the same social circle will tend
to visit the same locations at the same times (e.g., having meals
together, or studying in the library at the same time).

This idea was further explored in order to leverage data from
people who are not necessarily within the social circle of the user
we are modeling. The authors use spatial and temporal similarity
measures to find those users, which they call similar strangers [2]. A
Dynamic Bayesian Network is proposed to capture the dependency
of the next location on a number of features, which incorporates
aspects of the mobility patterns of similar strangers. They demon-
strate their approach on CDR data.

In pedestrian movement prediction [4], individuals are clustered
into groups based on their mobility traces. The approach learns a
Markov model for each group. To predict a person’s next location,
the approach identifies the group they belong to and infers the next
location based on this group’s model.

Like our approach, prior work has looked into both the spatial
and temporal modeling of mobility, but using smart phone data.
The authors propose a model that attempts to find relevant contex-
tual features that help in predicting the next location and duration
of stay [14]. They use ensemble methods to combine models that
use different contexts, where these models describe different con-
ditional distributions over the location/duration given contextual
variables.

In summary, surveying the state of the art in approaches to
modeling human mobility, we find the following alternatives:

e Dynamic Bayesian networks based on individual features
[12].

e Dynamic Bayesian networks with locations of similar strangers
[2].

o Classifiers for predicting whether a person will move in the
next ¢ time steps, and which if n locations they will move to
(SVN, KNN, DT) [23]

e Association rules + matching function to find a matching
rule [29]. All the matching functions are based on support
and confidence and do not consider spatial and temporal
distance.
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o Clustering trajectories using some notion of trajectory simi-
larity (like a matching function), which is typically distance-
based.

e Decision tree for mining trajectory patterns [28].

2.2 Diffusion models

Studying the progress made in learning diffusion models is very
relevant to human mobility, since the movement of humans can
be seen as diffusion over a graph whose nodes are the different
locations. As with human mobility, learning a diffusion model in-
volves learning a model of the spatial and temporal behavior of the
spreading phenomenon.

Learning the diffusion process or the structure of the graph on
which a phenomenon spreads has many applications in informa-
tion diffusion [17, 31], epidemiology [11, 24] and social networks
analysis [10, 35]. Again as in human mobility, learning is based on
(possibly partial) observations of trajectories; sequences of where
the phenomenon has been and when.

Approaches for diffusion learning often do not fully exploit the
rich features associated with each transition in a trajectory. In
human mobility, these features can include the type of the edge
(road or corridor), features of the source and destination locations,
and features of the person making the transition (e.g., department
and title of the employee in an office building). Works on feature-
based diffusion do consider features of the source and destination,
but only in terms of the difference between their feature vectors,
assuming that the smaller the distance, the more likely an entity is
to make the transition [33]. While this approach reflects the high
probability of memes and retweets spreading among people with
similar interests in social networks, this assumption does not make
sense for human mobility, since humans move among locations with
different functions and features to fulfill their needs. For example, in
an office building, people are not necessarily likely to go to another
conference room after being in one.

2.3 The spatial and the temporal

Much of the earlier work studying how phenomena spread or phys-
ical objects move were restricted to using discrete time, where the
object or phenomenon moves from one location to the next in unit
time and immediately moves on. As such, these models are oblivious
to the notion of duration of stay and only model the spatial aspect
of the spread. Examples of these models include Markov chains
and a line of diffusion modeling work using independent cascade
(IC) models [17]. Data used to learn these spatial models consists of
trajectories or sequences of cascades which list the locations visited
by the phenomenon in the order they were visited.

These earlier models were extended to capture and account for
time spent at a location and travel time. These spatiotemporal models
include continuous time Markov chains (CTMC) and spatiotemporal
IC models [31]. They learn from data consisting of time-stamped
trajectories or sequences of cascades which list the locations visited
and the time at which the visits happened.

The above models focus on the propagation of natural phenom-
ena and phenomena taking place in social networks, like the spread
of memes or news. They typically uses an exponential distribution
to model the duration of stay at a given location [3, 33]. In these
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domains, there are two main assumptions or characteristics that
make the exponential distribution very suitable:

o The remaining amount of time an object spends at a location
is independent of the amount of time already spent. In other
words, the distribution of the duration stay is memoryless.

e The higher the propagation between two locations i and
J, the shorter the duration of stay of an object at i before
spreading to j.

When studying human mobility, the above assumptions are ques-
tionable because unlike the phenomena studied above, the traveling
entities here are humans that make active decisions where to go
next, unlike a contagion of viruses or the spread of a rumor. For
example, the amount of time a person spends in a meeting room is
typically very dependent on how much she has been there already;
people tend to meet for an hour and if 20 minutes have passed,
the distribution over the remaining time should peak around 40
minutes, or can even be bimodal with another peak at 100 minutes
to reflect 2-hour meetings.

Similarly, the second assumption is more appropriate in social
networks where the fact that person i forwards a lot of content
to her friend j, then i tends to do this fairly quickly after i herself
receives this content. In human mobility however, a person may be
in the habit of always heading for a coffee machine located near
a certain meeting room after a meeting, but that does not imply
that he moves to the coffee machine location soon after he reaches
the meeting room. The model of the expiring alarm clocks that is
inherent in exponential distributions of stay is thus broken.

3 LATENT ALLOCATION MOBILITY MODEL

3.1 Problem formulation

We propose a spatiotemporal model to learn human mobility in of-
fice buildings based on observed timestamped trajectories obtained
from access control devices like card readers.

We model the problem as movement on a graph G = (V,E).
We model the spatial aspect of mobility using the matrix A =
{ajkli.k € V,j # k}, where aji is the probability of moving to
k given that the person is in j. We model the temporal aspect of
mobility using the matrix £ = {oj|j,k € V,j # k}, where o}
is the parameter of the Rayleigh distribution which describes the
duration of stay of a person in room j before moving on to room k.
We give more details on how these 2 parameters interact later in
this section, but note the independence of the spatial and temporal
distributions describing mobility between two nodes.

The data we learn our model from is in the form of timestamped
trajectories, or cascades:

7 = O 1§ i W1 FO ) W 85 S50} (D)

where 7€ is the c-th cascade, tl.c is the time at which the entity
moved to location v, N is the length of cascade c and ff is the
feature vector associated the transition from vf at time tl.”. One
option for ff is the feature vector of the node v{, although a richer
feature vector can be used.
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Figure 1: Plate notation for the graphical model of transi-
tions from K mobility profiles. M is the number of transi-
tions per trajectory. Shaded nodes are observed while clear
nodes are latent (hidden).

Following the Independent Cascade assumption, the likelihood

of the observed data is
C
P(n|G;A,S) = n P(7°|G; A, 3). )
c=1

where C is the number of observed cascades.

To learn a mobility model most consistent with the data, we
solve the maximum likelihood estimation problem

C
A*,3¥ = arg max l_[ P(7€|G; A, %) (3)
c=1
We now write the specific form of P(7¢|G). Assuming each tran-
sition is independent of other transitions given its own features

and parameters, we have:
Ne—1
P(n°|G;AZ) = 1_[ P(y{1G; Aiiv1, Ziiv1)
i=1
where P(y{|G) is the probability of transition y; which is a tuple
(©F s 17, 0f o 110 -

3.2 Latent allocation model for mobility
profiles

Our approach posits that the heterogeneity observed in how people
move in a building arises from the existence of multiple underlying
mobility profiles, each giving rise to a distribution over transitions
in a trajectory.

We propose a graphical model with latent variables that are
similar to the notion of topics in the well-known Latent Dirichlet
Allocation (LDA) model used extensively in natural language pro-
cessing [8]. In our setting, we assume that each of our K different
“topics” represents a mobility profile that has an associated set of
spatial and temporal parameters.

The generative process that generates transitions can be de-
scribed as a graphical model as shown in Figure 1. The process
initially generates distributions [A, 2] ~ N(0,T) where N(0,T) is
a normal distribution. 6 and I are hyper-parameters for the spatial
transition parameter A and temporal transition parameter .



Latent Allocation Spatiotemporal Models
For Indoor Human Mobility

Table 1: Elements of our latent allocation model.
Realizations of F and Y are observed.

0,T Hyperparameters for the spatial and
temporal distributions

Ag € RNXN | Matrix of transition probabilities of
mobility profile k (spatial)
% € RNXN | Matrix of Rayleigh parameters of
mobility profile k (temporal)
FeRd Feature space of dimension d
W e RKxd Weights per feature per topic
beRK Allocation vector (sums to 1)
z € [1.K] | Sampled topic/mobility profile
Y € V2 x R? | Realizations of transitions of the

form (vj, ti, vj, t})

K Number of mobility profiles

N Number of nodes/locations

M Number of transitions in a cascade

For each transition from location v; that was reached at time ¢;
with feature f;, the generative process is as follows:

TW‘
(1) Generate b ~ S(fTw), where bj = S;(fi) = —£ 7 j e
Y eli vk

[1..K] and S;(f;) is a softmax function. Notice that S(f;) can
be viewed as a neural embedding [21] for feature f; and
could be a deep neural network as long as the final layer is a
softmax function. b is thus the allocation vector describing
the probability of allocation of the transition to each topic
or mobility profile.

(2) Sample the topic/mobility profile z ~ multi(b) where multi(b)
is a single draw multinomial distribution parametrized by
vector b.

(3) Given topic z, matrices A; and X, are the generating param-
eters for the spatial and temporal aspects of the transition,
respectively.

(4) Sample the next node to visit v; ~ multi(Az o, ), where A; o,
is the v;-th row of A,.

(5) Sample d;j ~ Ray(Zz,v;,v;) where Ray(c) is the Rayleigh
distribution

2

X _x=
Ray(x;0) = —e 202
02
The arrival time at location vj is t; + dj;.
(6) The transition y; is then (v, t;, v}, t}), fi).

The likelihood of a trajectory 7€ according to the above genera-
tive process is therefore:

K
P(r°IG) = | | N(Ax. 2y 6.T)
k=1
M
[ $mlfi) multiGzm = klbm) multiComs1lAz,,.o,,)
m=1

Ray(tm+1 - tmlzzm,vm,vmﬂ) 4
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where S() is a softmax function, multi() is a multinomial function,
Tk, i,j is the ij entry of matrix X and Ray() is the Rayleigh distri-
bution.

3.3 The inference

We now outline the inference algorithm for learning the parameters
of the proposed model. We use variational inference, which origi-
nated in physics [6] and was first introduced by Michael Jordan [22]
to the machine learning field. Mean field variational inference is
widely applied in latent variable graphical models such as LDA [8].

Denote the unknown latent variables collectively by L = A, X, z, W
and the observation data by z. The Bayesian inference problem for
finding the parameters in Equation 4 is:

P(r|L)P(L)
J; P(xIL)P(L)

It is obvious that the integral in the denominator is intractable
for any reasonable sized problem, since the overall size of the latent
variable is 2 * N2 + M, where N is the number of nodes and M is
the number of observed transitions. Instead of computing P(L|x)
directly, variational inference aims to compute an alternative varia-
tional distribution q(L; ¢). The optimal parameter of the variational
distribution is the one that minimizes the KL-divergence between
the original posterior P(L|x) and the variational distribution q(L; ¢):

P(L|r) =

q (L;§) = arg m¢in KL(q(L; $)|[P(L|)) ®)

Note that in variational inference, instead of minimizing the
KL-divergence directly (which is still intractable), we minimize the
equivalent term:

Eq(log(q(L; $))) — Eq(log(p(L, 7)) (6)

since

KL(q(L; §)I|P(L]m)) = E(log(q(L; $))-E(log(p(L, 7)))+log(p(r))
2 E(log(q(L; ¢))) — E(log(p(L, r))) ~ (7)

which is the original KL-divergence minus a constant with re-
spect to q.
A transformation of Equation 6 shows that

Eq(log(q(L; $))) — Eq(log(p(L, 7)) =
KL(g(D)l|p(L)) - E[log(p(r|L))]  (8)

The first term indicates that the optimized variational distribu-
tion should be close to the prior, and the second term indicates
that it should put its mass on the configurations of latent variables
that explains the data. Thus variational inference encodes the trade-
off between likelihood and prior knowledge commonly seen in
Bayesian statistics.

Our Bayesian inference problem is therefore transformed to a
two step task:

(1) Specify a class of variational distributions g(L|®).
(2) Solve the optimization problem in Equation 6.
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3.4 Function approximation using neural
networks

Neural Networks have been successfully applied as universal func-
tion approximators [19] to various functions such as the classifi-
cation function in object detection [30], the regression function
in sequence-to-sequence translation [32], and probability density
functions [27] [7].

In this paper, we assume the variational distribution is approxi-
mated by a feed-forward neural network:

q(A, Z,b,W;¢) = Qa(A; ¢a,14)05(3; ¢, Is)Qp (b; ¢p, F, Zpp, W)

The details of the neural network are shown in Figure 2, where
the layers of the network are described as follows:

(1) Inputlayer: I and I4 are identity vectors, and F is a matrix of
training features. {Ix, I4, F} act as input for the feed-forward
neural network.

(2) Fully connected layers: The input {I5, I, F} goes through
three fully connected layers. Since the spatial transition pa-
rameter A and and temporal transition parameter X are inde-
pendent, using three distinct fully connected layers reduces
the parameter dimension and increases scalability.

(3) Intermediate output: hy, hy, by, are the unconstrained out-
puts of the fully connected layers.

(4) Variable-specific layers: these layers encode assumptions
or constraints on the variables X, A, b. For example, for the
constraint ¥ > 0, we use an exponential activation function,
and for the constraint that rows of A are in the interval [0, 1]
and sum to 1, we use a softmax activation function.

(5) Latent variable output: these are the parameters of latent
variables 2, A, b. If 3, A, b are assumed to be point-wise val-
ues with probability 1, these nodes can indicate these value
themselves. Or if X, A, b are assumed to be distributions,
these nodes can indicate the parameters of the distribution.

(6) Loss function: the loss function as defined in Equation 6.
In addition, in the implementation, we also use: (1) the Ly
regularization on the weights of the neural network; (2)
the cross entropy of the distribution on the parameters of
different mobility profiles, based on the assumption that the
mobility profiles should be distinctive.

Now the inference is reduced to finding the optimal parameters
in the above neural network to minimize Equation 6. This can be
done using first-order optimization schemes such as Stochastic
Gradient Descent [9] very effectively in Tensorflow at scale [1].

4 EXPERIMENTS
4.1 Simulated dataset

We now present experimental results using synthetic data generated
from a hypothetical office building with 5 zones as shown in Figure 3.
Node 0 is the building entrance and nodes 3 and 4 are exits. There
are two mobility profiles; one profile dominates in bad weather,
such as wind and rain, where people tend to heavily use the link
1 — 3 and 2 — 4. The other is a fair weather profile where people
tend to heavily use the link 1 — 4 and 2 — 3 to enjoy the sunshine.
Additionally, we assume that in good weather, people tend to stay in
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the office for shorter periods than in bad weather. For simplicity, we
assume that this binary weather is the only feature (i.e., F € {0, 1}).

Given a binary feature, the sizes of the latent variable are as
follows:

(1) For each of the 2 mobility profiles, the spatial transition
matrix Ay is 5 X 5

(2) For each of the 2 mobility profiles, the temporal transmission
matrix X is 5 X 5

(3) Number of latent variables z is M, where M is the total num-
ber of transitions in the data and each transition is allocated
1 of K mobility profiles.

(4) The softmax parameter W to map from F to b is 2 X 2

(5) The latent variable vector b is of size 2.

Figures 4 and 5 show the true and inferred A and ¥ for each
mobility profile. As the figures show, our inference algorithm is
able to recover the spatial transition parameters fairly accurately,
inferring the higher tendency to use edges 1 — 3 and 2 — 4 in one
mobility profile and edges 1 — 4 and 2 — 3 in the other.

4.2 Access control dataset

We now report on our work in progress in applying our approach
to a real dataset. We obtained an access control (AC) dataset con-
sisting of card swipe logs collected by card readers in our facility.
Employees have cards enabling them to access different areas of
the facility, with some areas not subject to access control (freely
accessible without needing to swipe). For each card swiped at a
reader, the reader logs the time of swipe, card ID and whether ac-
cess was granted. The card ID links to the owner’s information in
an employees database.

This type of access control dataset poses some interesting chal-
lenges and opportunities. One of the challenges is that a given card
reader can control access to locations with a mix of very different
uses like offices and conference rooms. This means that from a card
reader reflects usage patterns of different types of rooms and can
result in very heterogeneous spatial and temporal mobility patterns.

Another challenge is that in our setting, employees must swipe
into an AC areas, but they do not swipe out. So if a person transitions
from an AC area to a non-AC area, this move is not logged, and in
building the graph representation, the move appears as a self-loop.
This is equivalent to having partially observable data where the
exact time a person left the AC area is unknown.

That being said, access control data, when collected, is cleaner
and more accurate than location data inferred from wireless net-
work access points, as is common in indoor human mobility litera-
ture. [2, 18, 26].

To conduct experiment, we selected a small subset of 5 card read-
ers in our facility. Figure 6 shows preliminary results of inferring
Ap. from our AC dataset using the time of day as a binary feature
(morning vs. afternoon). As can be seen, this feature is not appro-
priate for uncovering mobility profiles and the inferred parameters
for both profiles are not very distinct.

Since the AC data is linked to the employee data that contains
information like the employee’s department, job title and office
location, we see a lot of potential for using a much richer feature
space that will allow the model to uncover and learn interesting
mobility profiles.
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Variable specific layers

Figure 2: Neural network structure for learning the constrained latent variables A, 2, b.

Figure 3: Synthetic building layout.

Mobility Mobility
Profile 1 Profile 2
L0 L0 )
Inferred A 0.5 0.5 05 0.5
.1 )os 08l 2) 1oz 022
0.2 . 0.2 08 ) 0.8
3y _ (a) (3) _ (a)
: o) } ‘o)
True A 0.51 0.49 0.52 0.48

1 b77 076l 2 ) .1 b1goz23l 2)
0.23 0.24 081 JO.??

* *
- - - -

(3 ) (4) (3) [a)

Figure 4: Inferred vs. true Ay for 2 mobility profiles using
synthetic data.
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Figure 5: Inferred vs. true X, for 2 mobility profiles using
synthetic data.

We also see room for improvement in the model itself. We can add
a diversity term to the objective function that encourages parameters
of the different mobility profiles to be different in order to yield
more distinct, and hopefully more interpretable profiles.

5 CONCLUSION

Being able to understand, model and predict human mobility in
large buildings like corporate offices can have fundamental effects
on the way these buildings are managed in terms of energy effi-
ciency, emergency response, and other aspects. We propose a novel
spatiotemporal model of human mobility from observed trajectories.
Our approach posits the existence of different mobility profiles that
reflect the heterogeneity in the way people move between locations
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Figure 6: Inferred A for 2 mobility profiles using real access
control data.

in a building. To learn the parameters of each mobility profile, we
frame the model as a neural network and leverage the powerful
existing machinery for neural networks. We demonstrate how our
model and learning approach recover spatial and temporal mobility
parameters from synthetic data. We also present our access control
dataset from our corporate building, give sample initial results and
outline the next steps of this work in progress.

6 ACKNOWLEDGMENT

This paper is based on work partially supported by the NSF (CA-
REER I1S-1750407), the NEH (HG-229283-15), ORNL (Task Order
4000143330) and a Facebook faculty gift.

REFERENCES

[1] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey
Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.

Yiming Gu, Hala Mostafa and B. Aditya Prakash

2016. TensorFlow: A System for Large-Scale Machine Learning.. In OSDI, Vol. 16.
265-283.

[2] Fahad Alhasoun, May Alhazzani, Faisal Aleissa, Riyadh Alnasser, and Marta
GonzAalez. 2017. City scale next place prediction from sparse data through
similar strangers. In Proceedings of Urban Computing Workshop.

[3] William J Anderson. 2012. Continuous-time Markov chains: An applications-
oriented approach. Springer Science & Business Media.

[4] Akinori Asahara, Kishiko Maruyama, Akiko Sato, and Kouichi Seto. 2011.
Pedestrian-movement prediction based on mixed Markov-chain model. In Pro-
ceedings of the 19th ACM SIGSPATIAL international conference on advances in
geographic information systems. ACM, 25-33.

[5] Magdalena Balazinska and Paul Castro. 2003. Characterizing mobility and net-

work usage in a corporate wireless local-area network. In Proceedings of the

1st international conference on Mobile systems, applications and services. ACM,

303-316.

Rodney J Baxter. 2016. Exactly solved models in statistical mechanics. Elsevier.

Christopher M Bishop. 1994. Mixture density networks. (1994).

David M Blei, Andrew Y Ng, and Michael I Jordan. 2003. Latent dirichlet allocation.

Journal of machine Learning research 3, Jan (2003), 993-1022.

Léon Bottou. 2010. Large-scale machine learning with stochastic gradient descent.

In Proceedings of COMPSTAT 2010. Springer, 177-186.

Simon Bourigault, Cedric Lagnier, Sylvain Lamprier, Ludovic Denoyer, and Patrick

Gallinari. 2014. Learning social network embeddings for predicting information

diffusion. In Proceedings of the 7th ACM international conference on Web search

and data mining. ACM, 393-402.

Edward Choi, Nan Du, Robert Chen, Le Song, and Jimeng Sun. 2015. Constructing

disease network and temporal progression model via context-sensitive hawkes

process. In Data Mining (ICDM), 2015 IEEE International Conference on. IEEE,

721-726.

Manoranjan Dash, Kee Kiat Koo, Joao Bartolo Gomes, Shonali Priyadarsini Kr-

ishnaswamy, Daniel Rugeles, and Amy Shi-Nash. 2015. Next place prediction by

understanding mobility patterns. In Pervasive Computing and Communication

Workshops (PerCom Workshops), 2015 IEEE International Conference on. IEEE,

469-474.

Manlio De Domenico, Antonio Lima, and Mirco Musolesi. 2013. Interdependence

and predictability of human mobility and social interactions. Pervasive and Mobile

Computing 9, 6 (2013), 798-807.

Trinh Minh Tri Do and Daniel Gatica-Perez. 2012. Contextual conditional models

for smartphone-based human mobility prediction. In Proceedings of the 2012 ACM

conference on ubiquitous computing. ACM, 163-172.

Carlos Duarte, Kevin Van Den Wymelenberg, and Craig Rieger. 2013. Revealing

occupancy patterns in an office building through the use of occupancy sensor

data. Energy and Buildings 67 (2013), 587-595.

Varick L Erickson, Yiqing Lin, Ankur Kamthe, Rohini Brahme, Amit Surana,

Alberto E Cerpa, Michael D Sohn, and Satish Narayanan. 2009. Energy efficient

building environment control strategies using real-time occupancy measure-

ments. In Proceedings of the First ACM Workshop on Embedded Sensing Systems

for Energy-Efficiency in Buildings. ACM, 19-24.

[17] Manuel Gomez Rodriguez, Jure Leskovec, and Andreas Krause. 2010. Inferring
networks of diffusion and influence. In Proceedings of the 16th ACM SIGKDD
international conference on Knowledge discovery and data mining. ACM, 1019—
1028.

[18] Tristan Henderson, David Kotz, and Ilya Abyzov. 2008. The changing usage
of a mature campus-wide wireless network. Computer Networks 52, 14 (2008),
2690-2712.

[19] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. 1989. Multilayer feed-
forward networks are universal approximators. Neural networks 2, 5 (1989),
359-366.

[20] Jon Hutchins, Alexander Ihler, and Padhraic Smyth. 2007. Modeling count data
from multiple sensors: a building occupancy model. In Computational Advances
in Multi-Sensor Adaptive Processing, 2007. CAMPSAP 2007. 2nd IEEE International
Workshop on. IEEE, 241-244.

[21] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long,

Ross Girshick, Sergio Guadarrama, and Trevor Darrell. 2014. Caffe: Convolu-

tional architecture for fast feature embedding. In Proceedings of the 22nd ACM

international conference on Multimedia. ACM, 675-678.

Michael I Jordan, Zoubin Ghahramani, Tommi S Jaakkola, and Lawrence K Saul.

1999. An introduction to variational methods for graphical models. Machine

learning 37, 2 (1999), 183-233.

Christian Koehler, Nikola Banovic, Ian Oakley, Jennifer Mankoff, and Anind K

Dey. 2014. Indoor-ALPS: an adaptive indoor location prediction system. In

Proceedings of the 2014 ACM International Joint Conference on Pervasive and

Ubiquitous Computing. ACM, 171-181.

[24] Theodoros Lappas, Evimaria Terzi, Dimitrios Gunopulos, and Heikki Mannila.
2010. Finding effectors in social networks. In Proceedings of the 16th ACM SIGKDD
international conference on Knowledge discovery and data mining. ACM, 1059—
1068.

CHSICN

S

[10

[11

(12

(13

(14

[15

[16

[22

[23



Latent Allocation Spatiotemporal Models
For Indoor Human Mobility

[25]

[26]

[27]

[28]

[29]

[30

[31

[32]

[33

[34]

[35]

Yanchi Liu, Chuanren Liu, Xinjiang Lu, Mingfei Teng, Hengshu Zhu, and Hui
Xiong. 2017. Point-of-Interest Demand Modeling with Human Mobility Patterns.
In KDD. ACM, 947-955.

Radu-Corneliu Marin, Ciprian Dobre, and Fatos Xhafa. 2012. Exploring pre-
dictability in mobile interaction. In Emerging Intelligent Data and Web Technolo-
gies (EIDWT). IEEE, 133-139.

Andriy Mnih and Karol Gregor. 2014. Neural variational inference and learning
in belief networks. arXiv preprint arXiv:1402.0030 (2014).

Anna Monreale, Fabio Pinelli, Roberto Trasarti, and Fosca Giannotti. 2009.
Wherenext: a location predictor on trajectory pattern mining. In KDD. ACM,
637-646.

Mikotaj Morzy. 2007. Mining frequent trajectories of moving objects for location
prediction. In International Workshop on Machine Learning and Data Mining in
Pattern Recognition. Springer, 667-680.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. 2015. Faster r-cnn:
Towards real-time object detection with region proposal networks. In Advances
in neural information processing systems. 91-99.

Manuel Gomez Rodriguez, David Balduzzi, and Bernhard Schélkopf. 2011. Uncov-
ering the temporal dynamics of diffusion networks. arXiv preprint arXiv:1105.0697
(2011).

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Sequence to sequence learning
with neural networks. In Advances in neural information processing systems. 3104—
3112.

Liaoruo Wang, Stefano Ermon, and John E Hopcroft. 2012. Feature-enhanced
probabilistic models for diffusion network inference. In Joint European Conference
on Machine Learning and Knowledge Discovery in Databases. Springer, 499-514.
Pengfei Wang, Yanjie Fu, Guannan Liu, Wenqing Hu, and Charu Aggarwal. 2017.
Human Mobility Synchronization and Trip Purpose Detection with Mixture of
Hawkes Processes. In KDD. ACM, 495-503.

Duncan ] Watts and Peter Sheridan Dodds. 2007. Influentials, networks, and
public opinion formation. Journal of consumer research 34, 4 (2007), 441-458.

UrbComp 2018, August 2018, London, United Kingdom



