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ABSTRACT

The ability to understand, model and predict human mobility in

high-occupancy buildings like corporate offices and campuses can

fundamentally change the way buildings are managed. For exam-

ple, energy efficiency can be improved using more accurate models

of the temporal and spatial aspects of building occupancy. Simi-

larly, responding to emergency situations is more effective and less

intrusive if the building system has better knowledge not just of

where occupants are, but also of their likely next locations and

when they will get there. We propose a novel approach to learn a

spatiotemporal model of human mobility from observed trajecto-

ries. Our approach posits the existence of different mobility profiles

that reflect the heterogeneity in the way people move between

locations. Our proposed latent allocation model describes the prob-

abilistic relationships between the observed trajectory data and

the latent (unobserved) mobility profiles and their parameters. To

tackle the problem of inferring these parameters efficiently, we

frame the model as a neural network. We engineer the layers of the

network to enforce appropriate constraints on the learned spatial

and temporal parameters of each profile to best explain the data.

We demonstrate our model and learning approach on synthetic

data and give initial results from a subset of real data collected from

our corporate building.
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1 INTRODUCTION

The study of human mobility has found new sources of data with

the proliferation of smart phones, Call Detail Records and wireless

devices that can be used to track users [2, 12, 14]. Complementing

this broader set of data sources is an increasingly broader set of

needs in various domains that can benefit from mobility models.

For outdoor city- or campus-scale mobility, approaches for smarter

transportation and urban planning efforts can use mobility models

to design more streamlined cities. Data from from taxi rides and

GPS data can also be useful for next location prediction, which can

inform resource management policies on the part of taxi companies
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and municipalities [28]. In commercial spaces, taxi ride data and

Point of Interest data can be combined to infer ride purpose, which

can helpmatch supply and demand for different types of commercial

spaces and services [34].

For indoor settings, better understanding and models of human

mobility can enable a range of improvements in the energy effi-

ciency of buildings, their ease of use and their safety in emergency

situations. Predictive models can help a building management sys-

tem plan HVAC settings and perhaps shape the building’s energy

load to improve the efficiency and cost of the the building opera-

tion [16].

Researchers interested in better understanding human mobility

include civil engineers and urban planners trying to understand

mobility in cities, social scientists trying to understand interactions

among people in public places and how it relates to their interac-

tions in virtual environments, wireless network researchers using

mobility and wireless usage data to design better wireless commu-

nication protocols, and HVAC engineers trying to design systems

with higher energy efficiency and user comfort. These disciplines

study and model human mobility at different granularities. For ex-

ample, occupancy models for buildings are usually aggregated at

the level of a room or an HVAC zone. Taxi ride and vehicular GPS

data capture occupancy at the level of regions in a city.

In this paper, we start exploring the use of data from card readers

in an office building to learn spatio-temporal models of human

mobility. Our setting exhibits considerable heterogeneity in the

way people move in a building. For example, consider the following

mobility profiles:

(1) An employeewho spendsmost of his time in his office, except

for a few hours spent in meeting rooms each week week and

daily visits to the cafeteria.

(2) A high-level manager who is almost always attending meet-

ings, which tend to last about an hour (his time is valuable)

and be in various parts of the building (his responsibilities

are broad and involve multiple departments).

(3) A janitorial staff member who is responsible for a given

building and makes the rounds of this building, visiting each

room, but spending little time there.

We view human mobility as a flow-conserving diffusion over the

graph whose nodes are the zones of the building accessible through

card readers. While various approaches have been proposed to

model diffusion over graphs in general and human mobility in

particular [2, 18, 25, 28, 31, 33], the state of the art has 3 main

shortcomings in the context of our setting:

(1) Existing approaches do not specifically cater to the hetero-

geneity in mobility profiles in our setting. They typically

characterize a homogeneous population of moving objects,
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but allow for variations in mobility by time of day and other

features.

(2) Much of the existing spatio-temporal models assume the

spatial and temporal aspects are two sides of the same coin

where the time and location of an entity’s next moves are

interdependent [31, 33]. This is a direct consequence of using

the exponential distribution for the duration of stay, which

essentially ties the spatial and the temporal aspects of mo-

bility.

(3) When using features, existing approaches attach features to

nodes and assume high mobility between similar nodes [33],

which is not necessarily true in our setting. For example,

people do not necessarily move to a conference room after

being in one.

To address these shortcomings, we propose a spatiotemporal

human mobility model that:

(1) Uses latent variables to posit the existence of multiple mo-

bility profiles and the parameters of each.

(2) Separately models the spatial and temporal aspects of mobil-

ity for each profile.

(3) Attaches features to transitions, rather than individual nodes,

for a richer model.

(4) Uses a neural network formulation to learn the latent param-

eters.

Our work is inspired by machine learning for natural language

processing where latent (hidden) variables represent underlying

topic models and each topic gives rise to a distribution over the ob-

served data (words in a corpus). Similarly, we posit the existence of

mobility profiles, with each profile responsible for spatio-temporal

patterns in mobility.

We present an inference approach to learn the parameters of

our model from observed timestamped trajectories. We presents

preliminary results on synthetic data, as well as data obtained from

access control devices (card readers) in our office building.

This paper is organized as follows: Section 2 reviews related work

in the areas of human mobility modeling and diffusion modeling.

In Section 3, we give background of specific the works that we base

this paper on, present our latent allocation model and explain the

inference algorithm we propose to learn it. Section 4 shows our

initial experimental results. We conclude and outline the remaining

work we will do in Section 5.

2 RELATED WORK

2.1 Human mobility

2.1.1 Settings and goals. The body of work devoted to studying

human mobility is larger than can be summarized in this section,

so we will present a sample thereof and focus on works that are

closer to ours in their goals or approaches.

A large portion of studies of human mobility addresses mobility

in cities using data from taxi rides and GPS data. Modeling human

mobility for next location prediction can inform resource manage-

ment policies on the part of taxi companies and municipalities [28].

Human mobility data can also be combined with POI data to infer

the purpose of a trip (e.g., shopping, dining, work) [34], which can

be useful in planning urban development and commercial space

purpose and location. Call Detail Records and smart phone data

have also been used to construct mobility models [2, 12, 14]. The

insight obtained from these studies can be used to construct more

effective policies for crowd control in emergency situations, as well

as planning the timing and location of road work and detours.

With the advent of mobile devices, wireless communications are

providing increasingly large amounts of data that sheds light on

human mobility at sub-city levels like university campuses [18, 26].

In these kinds of studies, the improved understanding of human

mobility is a means towards an end; the studies are often conducted

by researchers from the wireless networks community who seek

to design better communication protocols and infrastructure. A

smaller number of papers focuses on human mobility indoors (e.g.,

in office buildings [5, 23]). One of the main motivations behind

studying indoor mobility is to improve energy efficiency of office

and residential buildings. Numerous occupancy models have been

proposed, but most of them operate at the aggregate level, where

they model total occupancy at the level of a room or region without

regard to modeling individual trajectories [15, 16, 20].

2.1.2 Approaches. Non-modeling studies: Many studies of

human mobility are descriptive in nature, especially work using

wireless network data. A dataset is analyzed and the salient fea-

tures therein are discussed, but without proposing a model that fits

the observed mobility patterns. One example is the work done on

understanding the persistence and prevalence of mobility in office

buildings [5]. Persistence reflects session durations whereas preva-

lence reflects the frequency with which users visit various locations.

The work finds that the probability distributions of both measures

follow power laws. Another example are works that describes dif-

ferent use loads and traffic categories of a campus wireless network

over time [18].

Another descriptive work explores the predictability of whether

two persons will interact by analyzing tracing data from academic

and office environments [26]. They collect ground truth of social

structures and use smart phone data to shed light on mobility by

consider which wireless access points were visible to a phone at

a given time. Using “virtual locationsž derived from these access

points, they generate a sequence of locations per user. They discover

communities that resemble the communities they found in the social

structure data.

Modeling studies: For efforts that aim to construct predictive

mobility models, some only focus on the spatial aspect, where the

goal is to predict the next location of a user, while others focus on

temporal models that predict whether a user will remain in her

current location for the next t minutes. More specific temporal

models attempt to predict the time at which the user will transition

to a new location.

One mobility model is the Trajectory Patterns Tree, a type of

decision tree that predicts the next location of a trajectory by finding

the path in the tree that best matches the locations on the trajectory

so far [28]. Learning depends on the movement of all available

objects in a certain area instead of on the individual history of

the owner of the trajectory only. This way, data is leveraged for

learning across moving objects, but without attempting to only

leverage data from objects closet in behavior to the current object.
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Prediction of a user’s next location has also been cast as a clas-

sification problem where the covariates include location, time of

arrival, previous location and previous duration of stay. Even the

temporal aspect of mobility was cast as a classification problem,

where a binary classifier learns a mapping from the predictive fea-

tures to 0 or 1 indicating whether the person will move in next n

minutes [23].

Another work that tries to build a model of next location uses

dynamic Bayesian networks (DBNs) [12]. The random variables in

the DBNs include location, day of the week, and time of day. The

work uses two mobility data sets; a Call Detail Records data and

a Nokia mobile data which is based on GPS. The authors address

the shortcomings of having a single mobility model by proposing

three models and using different approaches to combine them.

The idea of increasing prediction accuracy by leveragingmobility

data of a person’s social acquaintances was demonstrated on the

Nokia Data Challenge [13]. The assumption is that especially on

university campuses, people in the same social circle will tend

to visit the same locations at the same times (e.g., having meals

together, or studying in the library at the same time).

This idea was further explored in order to leverage data from

people who are not necessarily within the social circle of the user

we are modeling. The authors use spatial and temporal similarity

measures to find those users, which they call similar strangers [2]. A

Dynamic Bayesian Network is proposed to capture the dependency

of the next location on a number of features, which incorporates

aspects of the mobility patterns of similar strangers. They demon-

strate their approach on CDR data.

In pedestrian movement prediction [4], individuals are clustered

into groups based on their mobility traces. The approach learns a

Markov model for each group. To predict a person’s next location,

the approach identifies the group they belong to and infers the next

location based on this group’s model.

Like our approach, prior work has looked into both the spatial

and temporal modeling of mobility, but using smart phone data.

The authors propose a model that attempts to find relevant contex-

tual features that help in predicting the next location and duration

of stay [14]. They use ensemble methods to combine models that

use different contexts, where these models describe different con-

ditional distributions over the location/duration given contextual

variables.

In summary, surveying the state of the art in approaches to

modeling human mobility, we find the following alternatives:

• Dynamic Bayesian networks based on individual features

[12].

• Dynamic Bayesian networkswith locations of similar strangers

[2].

• Classifiers for predicting whether a person will move in the

next t time steps, and which if n locations they will move to

(SVN, KNN, DT) [23]

• Association rules + matching function to find a matching

rule [29]. All the matching functions are based on support

and confidence and do not consider spatial and temporal

distance.

• Clustering trajectories using some notion of trajectory simi-

larity (like a matching function), which is typically distance-

based.

• Decision tree for mining trajectory patterns [28].

2.2 Diffusion models

Studying the progress made in learning diffusion models is very

relevant to human mobility, since the movement of humans can

be seen as diffusion over a graph whose nodes are the different

locations. As with human mobility, learning a diffusion model in-

volves learning a model of the spatial and temporal behavior of the

spreading phenomenon.

Learning the diffusion process or the structure of the graph on

which a phenomenon spreads has many applications in informa-

tion diffusion [17, 31], epidemiology [11, 24] and social networks

analysis [10, 35]. Again as in human mobility, learning is based on

(possibly partial) observations of trajectories; sequences of where

the phenomenon has been and when.

Approaches for diffusion learning often do not fully exploit the

rich features associated with each transition in a trajectory. In

human mobility, these features can include the type of the edge

(road or corridor), features of the source and destination locations,

and features of the person making the transition (e.g., department

and title of the employee in an office building). Works on feature-

based diffusion do consider features of the source and destination,

but only in terms of the difference between their feature vectors,

assuming that the smaller the distance, the more likely an entity is

to make the transition [33]. While this approach reflects the high

probability of memes and retweets spreading among people with

similar interests in social networks, this assumption does not make

sense for humanmobility, since humansmove among locations with

different functions and features to fulfill their needs. For example, in

an office building, people are not necessarily likely to go to another

conference room after being in one.

2.3 The spatial and the temporal

Much of the earlier work studying how phenomena spread or phys-

ical objects move were restricted to using discrete time, where the

object or phenomenon moves from one location to the next in unit

time and immediately moves on. As such, thesemodels are oblivious

to the notion of duration of stay and only model the spatial aspect

of the spread. Examples of these models include Markov chains

and a line of diffusion modeling work using independent cascade

(IC) models [17]. Data used to learn these spatial models consists of

trajectories or sequences of cascades which list the locations visited

by the phenomenon in the order they were visited.

These earlier models were extended to capture and account for

time spent at a location and travel time. These spatiotemporal models

include continuous timeMarkov chains (CTMC) and spatiotemporal

IC models [31]. They learn from data consisting of time-stamped

trajectories or sequences of cascades which list the locations visited

and the time at which the visits happened.

The above models focus on the propagation of natural phenom-

ena and phenomena taking place in social networks, like the spread

of memes or news. They typically uses an exponential distribution

to model the duration of stay at a given location [3, 33]. In these
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Table 1: Elements of our latent allocation model.

Realizations of F and Y are observed.

θ , Γ Hyperparameters for the spatial and

temporal distributions

Ak ∈ RN×N Matrix of transition probabilities of

mobility profile k (spatial)

Σk ∈ RN×N Matrix of Rayleigh parameters of

mobility profile k (temporal)

F ∈ Rd Feature space of dimension d

W ∈ RK×d Weights per feature per topic

b ∈ RK Allocation vector (sums to 1)

z ∈ [1..K] Sampled topic/mobility profile

Y ∈ V 2 × R2 Realizations of transitions of the

form (vi , ti ,vj , tj )

K Number of mobility profiles

N Number of nodes/locations

M Number of transitions in a cascade

For each transition from location vi that was reached at time ti
with feature fi , the generative process is as follows:

(1) Generate b ∼ S(f Ti w), where bj = Sj (fi ) =
e
f T
i
wj

∑
k e

f T
i
wk

, j ∈

[1..K] and Sj (fi ) is a softmax function. Notice that S(fi ) can

be viewed as a neural embedding [21] for feature fi and

could be a deep neural network as long as the final layer is a

softmax function. b is thus the allocation vector describing

the probability of allocation of the transition to each topic

or mobility profile.

(2) Sample the topic/mobility profile z ∼multi(b)wheremulti(b)

is a single draw multinomial distribution parametrized by

vector b.

(3) Given topic z, matrices Az and Σz are the generating param-

eters for the spatial and temporal aspects of the transition,

respectively.

(4) Sample the next node to visitvj ∼multi(Az,vi ), whereAz,vi
is the vi -th row of Az .

(5) Sample di j ∼ Ray(Σz,vi ,vj ) where Ray(σ ) is the Rayleigh

distribution

Ray(x ;σ ) =
x

σ2
e
− x2

2σ 2

The arrival time at location vj is ti + di j .

(6) The transition γi is then (vi , ti ,vj , tj ), fi ).

The likelihood of a trajectory πc according to the above genera-

tive process is therefore:

P(πc |G) =

K∏

k=1

N (Ak , Σk ;θ , Γ)

M∏

m=1

S(bm | fm ) multi(zm = k |bm ) multi(vm+1 |Azm,vm )

Ray(tm+1 − tm |Σzm,vm,vm+1 ) (4)

where S() is a softmax function, multi() is a multinomial function,

Σk,i, j is the ij entry of matrix Σk and Ray() is the Rayleigh distri-

bution.

3.3 The inference

We now outline the inference algorithm for learning the parameters

of the proposed model. We use variational inference, which origi-

nated in physics [6] and was first introduced by Michael Jordan [22]

to the machine learning field. Mean field variational inference is

widely applied in latent variable graphical models such as LDA [8].

Denote the unknown latent variables collectively byL = A, Σ, z,W

and the observation data by π . The Bayesian inference problem for

finding the parameters in Equation 4 is:

P(L|π ) =
P(π |L)P(L)∫
L
P(π |L)P(L)

It is obvious that the integral in the denominator is intractable

for any reasonable sized problem, since the overall size of the latent

variable is 2 ∗ N 2
+M , where N is the number of nodes and M is

the number of observed transitions. Instead of computing P(L|π )

directly, variational inference aims to compute an alternative varia-

tional distribution q(L;ϕ). The optimal parameter of the variational

distribution is the one that minimizes the KL-divergence between

the original posterior P(L|π ) and the variational distribution q(L;ϕ):

q∗(L;ϕ) = argmin
ϕ

KL(q(L;ϕ)| |P(L|π )) (5)

Note that in variational inference, instead of minimizing the

KL-divergence directly (which is still intractable), we minimize the

equivalent term:

Eq (log(q(L;ϕ))) − Eq (log(p(L,π ))) (6)

since

KL(q(L;ϕ)| |P(L|π )) = E(log(q(L;ϕ)))−E(log(p(L,π )))+log(p(π ))

≥ E(log(q(L;ϕ))) − E(log(p(L,π ))) (7)

which is the original KL-divergence minus a constant with re-

spect to q.

A transformation of Equation 6 shows that

Eq (log(q(L;ϕ))) − Eq (log(p(L,π ))) =

KL(q(L)| |p(L)) − E[loд(p(π |L))] (8)

The first term indicates that the optimized variational distribu-

tion should be close to the prior, and the second term indicates

that it should put its mass on the configurations of latent variables

that explains the data. Thus variational inference encodes the trade-

off between likelihood and prior knowledge commonly seen in

Bayesian statistics.

Our Bayesian inference problem is therefore transformed to a

two step task:

(1) Specify a class of variational distributions q(L|ϕ).

(2) Solve the optimization problem in Equation 6.
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3.4 Function approximation using neural

networks

Neural Networks have been successfully applied as universal func-

tion approximators [19] to various functions such as the classifi-

cation function in object detection [30], the regression function

in sequence-to-sequence translation [32], and probability density

functions [27] [7].

In this paper, we assume the variational distribution is approxi-

mated by a feed-forward neural network:

q(A, Σ,b,W ;ϕ) = QA(A;ϕA, IA)QΣ(Σ;ϕΣ, IΣ)Qb (b;ϕb , F , Σb ,W )

The details of the neural network are shown in Figure 2, where

the layers of the network are described as follows:

(1) Input layer: IΣ and IA are identity vectors, and F is a matrix of

training features. {IΣ, IA, F } act as input for the feed-forward

neural network.

(2) Fully connected layers: The input {IΣ, IA, F } goes through

three fully connected layers. Since the spatial transition pa-

rameterA and and temporal transition parameter Σ are inde-

pendent, using three distinct fully connected layers reduces

the parameter dimension and increases scalability.

(3) Intermediate output: hΣ,hA,hb are the unconstrained out-

puts of the fully connected layers.

(4) Variable-specific layers: these layers encode assumptions

or constraints on the variables Σ,A,b. For example, for the

constraint Σ > 0, we use an exponential activation function,

and for the constraint that rows ofA are in the interval [0, 1]

and sum to 1, we use a softmax activation function.

(5) Latent variable output: these are the parameters of latent

variables Σ,A,b. If Σ,A,b are assumed to be point-wise val-

ues with probability 1, these nodes can indicate these value

themselves. Or if Σ,A,b are assumed to be distributions,

these nodes can indicate the parameters of the distribution.

(6) Loss function: the loss function as defined in Equation 6.

In addition, in the implementation, we also use: (1) the L2
regularization on the weights of the neural network; (2)

the cross entropy of the distribution on the parameters of

different mobility profiles, based on the assumption that the

mobility profiles should be distinctive.

Now the inference is reduced to finding the optimal parameters

in the above neural network to minimize Equation 6. This can be

done using first-order optimization schemes such as Stochastic

Gradient Descent [9] very effectively in Tensorflow at scale [1].

4 EXPERIMENTS

4.1 Simulated dataset

Wenow present experimental results using synthetic data generated

from a hypothetical office buildingwith 5 zones as shown in Figure 3.

Node 0 is the building entrance and nodes 3 and 4 are exits. There

are two mobility profiles; one profile dominates in bad weather,

such as wind and rain, where people tend to heavily use the link

1 → 3 and 2 → 4. The other is a fair weather profile where people

tend to heavily use the link 1 → 4 and 2 → 3 to enjoy the sunshine.

Additionally, we assume that in good weather, people tend to stay in

the office for shorter periods than in bad weather. For simplicity, we

assume that this binary weather is the only feature (i.e., F ∈ {0, 1}).

Given a binary feature, the sizes of the latent variable are as

follows:

(1) For each of the 2 mobility profiles, the spatial transition

matrix Ak is 5 × 5

(2) For each of the 2 mobility profiles, the temporal transmission

matrix Σk is 5 × 5

(3) Number of latent variables z isM , whereM is the total num-

ber of transitions in the data and each transition is allocated

1 of K mobility profiles.

(4) The softmax parameterW to map from F to b is 2 × 2

(5) The latent variable vector b is of size 2.

Figures 4 and 5 show the true and inferred A and Σ for each

mobility profile. As the figures show, our inference algorithm is

able to recover the spatial transition parameters fairly accurately,

inferring the higher tendency to use edges 1 → 3 and 2 → 4 in one

mobility profile and edges 1 → 4 and 2 → 3 in the other.

4.2 Access control dataset

We now report on our work in progress in applying our approach

to a real dataset. We obtained an access control (AC) dataset con-

sisting of card swipe logs collected by card readers in our facility.

Employees have cards enabling them to access different areas of

the facility, with some areas not subject to access control (freely

accessible without needing to swipe). For each card swiped at a

reader, the reader logs the time of swipe, card ID and whether ac-

cess was granted. The card ID links to the owner’s information in

an employees database.

This type of access control dataset poses some interesting chal-

lenges and opportunities. One of the challenges is that a given card

reader can control access to locations with a mix of very different

uses like offices and conference rooms. This means that from a card

reader reflects usage patterns of different types of rooms and can

result in very heterogeneous spatial and temporal mobility patterns.

Another challenge is that in our setting, employees must swipe

into anAC areas, but they do not swipe out. So if a person transitions

from an AC area to a non-AC area, this move is not logged, and in

building the graph representation, the move appears as a self-loop.

This is equivalent to having partially observable data where the

exact time a person left the AC area is unknown.

That being said, access control data, when collected, is cleaner

and more accurate than location data inferred from wireless net-

work access points, as is common in indoor human mobility litera-

ture. [2, 18, 26].

To conduct experiment, we selected a small subset of 5 card read-

ers in our facility. Figure 6 shows preliminary results of inferring

Ak from our AC dataset using the time of day as a binary feature

(morning vs. afternoon). As can be seen, this feature is not appro-

priate for uncovering mobility profiles and the inferred parameters

for both profiles are not very distinct.

Since the AC data is linked to the employee data that contains

information like the employee’s department, job title and office

location, we see a lot of potential for using a much richer feature

space that will allow the model to uncover and learn interesting

mobility profiles.







Latent Allocation Spatiotemporal Models

For Indoor Human Mobility UrbComp 2018, August 2018, London, United Kingdom

[25] Yanchi Liu, Chuanren Liu, Xinjiang Lu, Mingfei Teng, Hengshu Zhu, and Hui
Xiong. 2017. Point-of-Interest Demand Modeling with Human Mobility Patterns.
In KDD. ACM, 947ś955.

[26] Radu-Corneliu Marin, Ciprian Dobre, and Fatos Xhafa. 2012. Exploring pre-
dictability in mobile interaction. In Emerging Intelligent Data and Web Technolo-
gies (EIDWT). IEEE, 133ś139.

[27] Andriy Mnih and Karol Gregor. 2014. Neural variational inference and learning
in belief networks. arXiv preprint arXiv:1402.0030 (2014).

[28] Anna Monreale, Fabio Pinelli, Roberto Trasarti, and Fosca Giannotti. 2009.
Wherenext: a location predictor on trajectory pattern mining. In KDD. ACM,
637ś646.

[29] Mikołaj Morzy. 2007. Mining frequent trajectories of moving objects for location
prediction. In International Workshop on Machine Learning and Data Mining in
Pattern Recognition. Springer, 667ś680.

[30] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. 2015. Faster r-cnn:
Towards real-time object detection with region proposal networks. In Advances
in neural information processing systems. 91ś99.

[31] Manuel Gomez Rodriguez, David Balduzzi, and Bernhard Schölkopf. 2011. Uncov-
ering the temporal dynamics of diffusion networks. arXiv preprint arXiv:1105.0697
(2011).

[32] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Sequence to sequence learning
with neural networks. In Advances in neural information processing systems. 3104ś
3112.

[33] Liaoruo Wang, Stefano Ermon, and John E Hopcroft. 2012. Feature-enhanced
probabilistic models for diffusion network inference. In Joint European Conference
on Machine Learning and Knowledge Discovery in Databases. Springer, 499ś514.

[34] Pengfei Wang, Yanjie Fu, Guannan Liu, Wenqing Hu, and Charu Aggarwal. 2017.
Human Mobility Synchronization and Trip Purpose Detection with Mixture of
Hawkes Processes. In KDD. ACM, 495ś503.

[35] Duncan J Watts and Peter Sheridan Dodds. 2007. Influentials, networks, and
public opinion formation. Journal of consumer research 34, 4 (2007), 441ś458.


