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Abstract: The authors consider a bistatic configuration with a stationary transmitter transmitting unknown waveforms of
opportunity and a single moving receiver and present a deep learning (DL) framework for passive synthetic aperture radar
(SAR) imaging. They approach DL from an optimisation based perspective and formulate image reconstruction as a machine
learning task. By unfolding the iterations of a proximal gradient descent algorithm, they construct a deep recurrent neural
network (RNN) that is parameterised by the transmitted waveforms. They cascade the RNN structure with a decoder stage to
form a recurrent auto-encoder architecture. They then use backpropagation to learn transmitted waveforms by training the
network in an unsupervised manner using SAR measurements. The highly non-convex problem of backpropagation is guided to
a feasible solution over the parameter space by initialising the network with the known components of the SAR forward model.
Moreover, prior information regarding the waveform structure is incorporated during initialisation and backpropagation. They
demonstrate the effectiveness of the DL-based approach through numerical simulations that show focused, high contrast

imagery using a single receiver antenna at realistic signal-to-noise-ratio levels.

1 Introduction
1.1 Motivations

Deep learning (DL) has propelled significant developments in a
wide range of applications in science and engineering [1]. These
include advancements in medical imaging [2, 3], computer vision
[4, 5], and artificial intelligence [6], with an impressive
performance in object recognition, natural language processing,
and many other applications [1, 7].

Currently, most prominent applications of DL involve
establishing complex decision boundaries in high-dimensional
parameter spaces using large amounts of training data. We instead
consider DL as a joint estimation framework for problems that
contain unknown parameters in the measurement model. Passive
radar imaging falls into such a class of problems, in which
transmitter locations or transmitted waveforms may not be known a
priori. Passive radar has been an area of intense research due to the
proliferation of transmitters of opportunity and several advantages
it offers. These include efficient use of electromagnetic spectrum,
increased stealth, and reduced cost among others [8—18]. Existing
passive radar methods require two or more antennas, either
spatially separated or colocated with sufficient directivity and gain.
Specifically, these methods rely on correlating pairs of
measurements acquired by two different antennas. These methods
can be classified into two major categories: passive coherent
localisation (PCL) [19-23] and time difference-of-arrival (TDOA)/
frequency difference-of-arrival (FDOA) backprojection [8, 17, 24—
32].

The PCL approach attempts to recover a copy of the transmitted
waveform by filtering the received signal acquired by an antenna
directed towards a transmitter of opportunity. This is followed by
matched filtering of the received signal acquired by another
antenna directed to a scene of interest [33—36]. This approach relies
on an accurate estimation of transmitted waveforms. Recently,
several algorithmic advances have been reported in waveform
estimation using the structure of digital video broadcasting-
terrestrial (DVB-T) signals as illuminators of opportunity [37—41].
In addition to two antennas at each receiver location and prior
knowledge of the signal structure, PCL also requires direct line-of-
sight to a transmitter of opportunity and high signal-to-noise ratio
(SNR) for the received signal from the transmitter.

IET Radar Sonar Navig.
© The Institution of Engineering and Technology 2019

In the TDOA/FDOA backprojection approach, received signals
acquired by two or more sufficiently far-apart receivers are
correlated and back-projected based on time or frequency
difference of arrival to form an image of a scene [8, 24-30]. As
compared to PCL, TDOA/FDOA backprojection does not require
direct-line-of-sight to a transmitter, high SNR or the knowledge of
transmitter location. However, the method is limited to imaging
widely separated point scatterers. To overcome this limitation, an
alternative method based on low-rank matrix recovery (LRMR) has
been developed [18]. Despite its effectiveness in reconstructing
scenes with extended targets, the LRMR-based approach has
significant computational and memory requirements, which
preclude its applicability to realistically sized images.

Recently, the DL framework has been investigated for signal
processing problems, specifically with an emphasis on sparse
coding and compressed sensing. In [42], the iterative soft
thresholding and coordinate descent algorithms were implemented
via a recurrent neural network (RNN), in which each layer of the
network corresponded to an iteration. The model was trained in a
supervised manner using the desired solutions for sparse codes of
the corresponding inputs with the goal of accelerating convergence.
This fundamental observation was exploited to implement an
approximate message passing algorithm [43], to learn problem-
specific gradient descent parameters [44], and to estimate
parameterised priors [45]. In [46], we extended the idea of
emulating iterative maps using RNNs to image reconstruction
problems in a Bayesian framework. We considered the passive
imaging problem in which the transmitter location is unknown, and
used DL to refine the phase component of the synthetic aperture
radar (SAR) forward model. Training was done in an unsupervised
manner using SAR signals received directly via complex
backpropagation [47]. The method produces focused imagery
without increasing the computational complexity of the proximal
gradient descent algorithm which it is based on.

1.2 Our approach and its advantages

Following the principles introduced in [46, 48], we develop a DL-
based approach for passive SAR image reconstruction when the
transmitted waveforms of opportunity are unknown. The key
advantage of our approach as compared to other methods is that it
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only requires a single receiver antenna, thereby providing reduced
cost and increased versatility. Previously, we had presented
preliminary results of joint waveform estimation and imaging for
passive SAR in [49, 50]. In this study, we present the deep network
architecture and unsupervised training scheme to learn transmitted
waveforms as a parameter of the SAR imaging problem, while
reconstructing focused imagery. Specifically, we extend our
preliminary studies by developing the theory of our approach and
demonstrating its effectiveness via further numerical simulations.

Unlike traditional PCL, our approach does not require an
antenna directed to a transmitter of opportunity. We assume a
stationary transmitter transmitting unknown waveforms and a
single moving receiver collecting backscattered signal from a scene
of interest. We then take an optimisation perspective to DL and
interpret image reconstruction as a machine learning task. We
derive a proximal gradient descent update to solve for scene
reflectivity and formulate a recurrent-auto encoder that is
parameterised by unknown waveform coefficients. As a result of
our architecture, estimation of the transmitted waveforms is
formulated as a parameter learning task via backpropagation. We
use complex backpropagation to derive the parameter update
equations, making our method applicable to both real and complex
waveforms. Our method is based on unsupervised learning, in that;
the model is trained solely on received back-scattered signals
without using any SAR images as labels. As a result, we avoid
upper bounding the quality of reconstructed images by SAR
images reconstructed using conventional methods. The highly non-
convex problem of backpropagation is guided to a feasible solution
over the parameter space by initialising the network with the
known components of the SAR forward model.

In our problem formulation, we assume that the structural form
of transmitted waveforms is known a priori, and represent them as
a linear combination of known basis functions. A wide range of
communication and broadcasting waveforms falls into such a class
of waveforms including DVB-T and WiMAX signals. We
particularly formulate our method for transmitted signals with a flat
spectrum, which is applicable to illuminators of opportunity
generated from various spread spectrum methods. These include
frequency phase shift keying (PSK) modulated, code division
multiplexed and orthogonal frequency division multiplexed
(OFDM) signals. Recently, in [S1], a single receiver PCL
methodology was proposed to estimate DVB-T signals for passive
imaging, in which the signal structure was taken advantage of in
processing the received signal from the surveillance channel.
However, in our formulation, such prior knowledge on the
waveform is used merely as a functional constraint during
backpropagation, and lack thereof is not a limiting factor for the
proposed framework. Hence our approach provides flexibility to
incorporate any prior information of the waveform structure to
improve waveform estimation and imaging.

Finally, in addition to the benefits of deploying a single
receiver, our method provides means of estimating the waveform
with the task of reconstructing enhanced imagery. This is achieved
by formulating waveform estimation as minimisation of the
mismatch between the received SAR signal and the synthesised
SAR signal from the reconstructed scene. We show that our DL
approach produces high contrast imagery when trained under
realistic SNR levels. Our results indicate that the performance is
strongly correlated to the accuracy of the estimated flat spectrum
waveform, which demonstrates the joint estimation capability of
the DL approach.

The rest of the paper is organised as follows. In Section 2, we
introduce background material on DL. In Section 3, we present the
received signal and waveform models. In Section 4, we present the
network architecture for passive SAR image reconstruction. In
Section 5, we discuss the parameterisation and training of the
network. We provide numerical simulations and discussion of the
results in Section 6. Section 7 concludes the paper.

We use lower case bolditalic fonts to denote vector quantities in
finite-dimensional spaces and upper case bolditalic fonts to denote
matrices.

2 DL background
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The most fundamental architecture in DL is the artificial neural
network, characterised by a cascade of affine mappings followed
by point-wise non-linear operations, referred to as layers. Each
layer produces a representation h e C” of its input d € cv,
defined as
h =o(Ad +b), 0))]

where A € CY*V is the weight matrix, b € Cc¥ is the vector of
corresponding biases, and o(-) is an element-wise non-linear
function, referred to as the activation function of the network.
Letting Q denote the input space, such that d € Q, the layer
transforms Q by (1) to create a feature space containing the
representation A.

At each layer, a new representation of the previous layer output
is generated, resulting in a hierarchical representation of the input.
The output at the end of the kth layer can be written as

hy = oAy, + by) . )

Letting ¢p: Q; — I' be a mapping from the feature space produced
by the Lth layer, Q;, to the output space I', and redefining

d=1[d, 11" and Wi =1[As, bi], k=0,...,L, the network output
g* € I" becomes

g* = dpWro(Wi_,---oc(Wic(Wid))) . (3)

Equation (3) analytically defines the network operator,
Z(0):Q — I', which is the mapping between the input and output
spaces, where

L@ =g 0={Wii.,. )
In summary, the weights of the network provide a parameterisation
of the operation that the network performs, whereas the non-linear
unit introduces the capacity to approximate complex mappings
between input and output spaces. The nested non-linear
transformations are generally explained in terms of the universal
approximation theorem or probabilistic inference [52-54]. The
mapping performed by the network operator is referred to as
forward propagation.

Learning procedure in the network is the estimation of 6 with
respect to a figure of merit given a set of training data
{d\.d,,...,dy} and corresponding ground truth data set
G=1{g,8....8r}. This is achieved by optimising a cost function
with respect to network parameters 6, which is typically defined as

T
Tl =5 3 L0~ g, I )

n=1

The analytic method of computing the derivatives through the
network with respect to trainable parameters, 0, is referred to as the
back-propagation algorithm. Network parameters 6 are then
updated via gradient descent such that

0 =60 —nVegald, (©)

where 7, is the step size of the [th parameter update.

For large training sets, the gradient term vng[el] is estimated
as an average of the gradient values computed over a small subset
of the training data. This methodology, referred to as stochastic
gradient descent (SGD), performs several gradient updates each
time the full data is used. This update cycle is referred to as an
‘epoch.’

The optimisation over Zg[d] is typically a high-dimensional
and non-convex problem. The error surface often consists of many
saddle points and local minima [1, 55]. As a result, a critical aspect
of backpropagation is the initialisation of the network parameters
6, which is typically chosen to guide the network to a desirable
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Fig. 1 Process flow of estimation via DL. The forward propagation is modelled as the reconstruction method, whereas estimation is performed at
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Fig. 2 Process flow of the proposed recurrent auto-encoder. The optimiser reconstructs images, which are used to synthesise the input received signal. The

mismatch is back-propagated to update the shared parameters of the two modules
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Fig. 3 Depiction of the passive SAR configuration with flat topography w(x). A stationary transmitter of opportunity located at yr, yg:[s1, 5] = R® denotes

the receiver trajectory

locally optimal solution. We propose a DL framework for problems
in which we have unknowns or uncertainties in the measurement
model. In general, we can model a measurement mapping as

d=F©)p. ™

where d € CM are the measurements, p € C" is the unknown
quantity to be recovered, and F(0) is the measurement map that
depends on the parameters 6. Following the DL framework for
image reconstruction, we introduced in [46], recovering the
unknown p can be interpreted as learning a representation of the
measurements d in the image space. In this sense, the DL
framework captures the image reconstruction task at the forward
propagation step. However, since 0 is unknown and arbitrarily
initialised, the reconstructed image is initially inaccurate.

The advantages of the DL framework come at the
backpropagation step, which allows the unknown parameters 6 to
be learned and to produce an accurate measurement map, thereby
improving the accuracy of image reconstruction [46]. A high-level
illustration of the effect of the back-propagation step for imaging is
provided in Fig. 1, in which the reconstruction step is
parameterised by 6 and estimation is parameterised by training
data G per (5). Further details and discussion of DL framework for
image reconstruction are provided in Sections 4 and 5, while the
effect of back-propagation in our specific application is illustrated
in Fig. 2.

3 Passive SAR imaging
3.1 Imaging geometry
Let x = [x,i(x)] € R’ denote the position of a scatterer, where

x =[x,x] € R* and y:R> > R is a smooth function describing
the ground topography.
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We assume a stationary transmitter located at position y € R’
and a moving receiver traversing a trajectory 7yr(s), where
s € [s1,5,] denotes the slow-time variable. Fig. 3 illustrates the
passive SAR configuration under consideration. We assume that
both the transmitter and receiver locations are known, but the
transmitted waveforms are unknown.

3.2 llluminators of opportunity

This study considers communication and broadcasting signals as
the illuminators of opportunity. These signals are designed based
on spread spectrum methodology and characterised by orthogonal
division of the time or frequency domain to transmit different
communication symbols. One such class of signals are OFDM
waveforms. OFDM signals involve different phase or amplitude-
modulated symbols that are transmitted using a set of orthogonal
waveforms spanning the channel bandwidth [56, 57].

OFDM signals have been widely studied as illuminators of
opportunity due to the prevalence of DVB-T and WiMAX
standards used throughout the world [9, 11, 13, 14, 58-62].
Notably, the spectrum of an OFDM signal is relatively flat and
noise-like over the channel [13, 61]. This characteristic can be
observed by expressing the OFDM signal as a sum of random
phase modulation symbols by applying the central limit theorem.

We assume that the transmitted waveforms may vary during the
receiver's aperture time and model them as slow-time dependent as
follows:

K
W(w,5) = Y. apl@,s), ®)
k=1
where ¢y, k =1, ..., K, are basis functions and ¢, k =1, ..., K, are

(possibly complex) corresponding coefficients. Equation (8)



provides a representation by which most common waveforms of
opportunity can be modelled.

One such structure is that of binary PSK or quadrature PSK
(QPSK) modulated signals, which are building blocks of OFDM
signals. Specifically, for QPSK, the basis coefficients are sampled
uniformly on the unit circle, and the corresponding waveform has a
flat spectrum. In our framework, we use this flat-spectrum structure
as a statistical prior by the means of a constraint set in waveform
estimation. The same process can be used to model more complex
waveforms to find constraint sets for estimation.

3.3 Passive SAR forward model

Under the Born approximation and a flat topography assumption,
we model the received signal as [63]

d(@,s) = W(w,s) / e ORI (x, 5)p(x)dx, ©)

where
R(s,x) = [yr — x| + |yr(s) — x| (10)

is the bistatic range, € [w;, wy] is the fast-time frequency, ¢, is the
speed of light in free space, W(w, s) is the waveform transmitted at
s € [s1, 5,], and a(x, s) is the azimuth beam pattern. We let

F(w,5)[p] = f e @ORED e ) p(x)dx (11)

and write (9) as
d(w, s) ~ W(w, $)F(w, )p] . (12)

Without loss of generality, we assume a(x, s) is constant and set it
to 1. Placing the origin at the centre of the scene and invoking the
far-field and small scene approximations for a sufficiently long

aperture, F can be further approximated to yield the following
measurement model:

A0, 5) = W, s)e- @0 ol / kT e (13)

where k = 7;6) + 71 (x denotes the unit vector in the direction of
x) and F is now approximated by the Fourier transform up to a
phase factor.

We discretise the scene into an N-pixel grid of X = {x,-}fvz ., and
stack p(x;), i=1,...,N into a vector p € CV. We discretise the
fast-time frequency @ and slow-time s variables into {(w, DML
pairs and stack SAR measurements into a vector d € cM. with the
same sampling scheme, we stack the sampled waveform elements
W(w, $)lw.s),, into a vector w € cM. Thus, we obtain

d~ diag(w)ﬁp, (14)

where F is the matrix corresponding to the finite-dimensional
representation of & in (11).

3.4 Image formation

Without complete knowledge of the forward model matrix
F = diag(w)F, we are no longer able to form bistatic SAR images
using a two-layer filtered-backprojection type operation such as the
one described in [63]. Similarly, optimisation-based reconstruction
approaches are not applicable due to unknowns in the forward
model. Since the dependence of the waveform coefficients in the
forward model is multiplicative in the frequency domain, the
problem of image reconstruction can be viewed as a blind
deconvolution problem. A popular approach to solving such
problems is to use an alternating minimisation scheme, which
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requires the solution of two minimisation problems at each
iteration. In this work, we instead propose a data driven approach
based on DL. The main advantage of the DL-based method is that
it is task-driven. Instead of casting the unknown waveform as a
joint parameter of the objective function in optimisation, we cast it
as a parameter of the optimiser. This results in conducting
waveform estimation to specifically produce accurate imagery.

If the waveforms were known, estimation of the scene
reflectivity could be formulated within a Bayesian framework as
the following optimisation problem:

. 1 . - 2
p* = argming || d — diagw)Fp I, +iD(p), (15)
P

where the £,-norm term represents the log-likelihood function
under an additive white Gaussian noise assumption, ®(p) is the
regulariser capturing the prior information on p, and 1 > 0 is the
regularisation parameter.

By deploying a convex @, the optimisation can be implemented
as a forward-backward splitting algorithm [64]. The forward—
backward splitting algorithm takes the form of a gradient descent
step over the smooth #,-norm term, followed by a projection onto
the feasible set defined by A® as follows:

k+1

P = Poaolp’ — aV f1p*), (16)

where
] . i 2
fp)i=7 Il d—diagw)Fp |, (17

a > 0 is the step size and P,,o( - ) is the proximity operator of
aA®(p) defined as

1 )
P aro(p) = argmin 3 ly=pl +al®(y). (18)
y

When @ is the indicator function of a closed convex set, the
proximity operator is simply an orthogonal projection onto that set.
Using (17) and inserting V f[p*] into (16), we have

P = P ol — aF diag(wP)F)p* + aF diagw)"d), (19)

where |wl* denotes element-wise magnitude square of w. Clearly,
iterative reconstruction in (19) cannot be used without the
knowledge of w. Nevertheless, (19) serves as the foundation for the
development of our DL-based approach discussed in Sections 4
and 5.

4 Network architecture

Our goal is to implement a deep network that can recover scene
reflectivity accurately when the waveform coefficients are
unknown. To achieve this, we deploy the methodology proposed in
[46] for SAR imaging to simultaneously estimate the waveform
and reconstruct the image. Specifically, we use a recurrent auto-
encoder architecture [65]. A recurrent auto-encoder consists of a
two-stage network: a RNN that emulates the iterative imaging
algorithm defined by (19), and a decoder stage that maps the image
estimate back to the measurement space. The main advantage of
this architecture is that it allows for unsupervised training using the
SAR received signal.

4.1 RNN encoder

RNNs fundamentally differ from other architectures since the
parameters are shared over layers. As a result, in an RNN, each
layer performs the same transformation between feature spaces.
The RNN encoder is designed by unfolding the update equation in
(19) for a fixed number of iterations, say L. This emulates the
imaging algorithm described in Section 3. The corresponding
weight matrix and the bias vector are defined as
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0 =1 - aF 'diag(wPF, b= aF diagw)'d, (20)

respectively. With this approach, the iterations become the feature
transformations performed by the layers in (1) and we get the
following update equation:

P = Poua(Qp* + aF'd), @21)

where diag(w)ﬁ = F. Thus, the image estimates pk, k=1,....L,
become representations produced at the kth layer of the network
and the proximity operator P,o(-) becomes the network
activation function. The only condition required on the regulariser
to construct a neural network is that it must have a closed-form
proximity operator that acts element-wise on its argument (Fig. 4).

While we motivate the network architecture from an
optimisation perspective, we modify the forward propagation in a
way that deviates from this analogy. Notably, optimisation by (21)
is conducted over the complex domain to estimate the scene
reflectivity. Furthermore, the proximal gradient method that our
optimiser is based on requires a large number of iterations to
converge. However, such a large number of layers is not practical
from the point of view of training. Hence, we set L much smaller
than the number of iterations needed for convergence. Additionally,
we require the output of each layer to form visual representations
of the received SAR signal. This is achieved by removing the
phase of the representations in the network at forward propagation.

In the scope of this study, we consider the recovery of sparse
scenes and use the £,-norm constraint for @ as the sparsity
inducing prior. The use of £;-norm constraint is not a limitation of
our framework, as the same iterative form in (21) is obtained with
any ® that has a well-defined, element-wise proximity operator.
Furthermore, if the underlying scene is not sparse, a sparsifying
transform such as the wavelet transform can be deployed, and
optimisation can be re-formulated as recovery of sparse
coefficients. Therefore, we define the network non-linearity as a
phaseless soft thresholding operator as follows:

Pee(p) = max(p| - 7,0), pec’, (22)
where |p| denotes taking the absolute value of the entries of p, 7 is
the threshold determined by scaling the #,-norm constraint. With
this modification, every representation in the RNN becomes a
visual image, and feature mappings in (21) can be interpreted from
an image processing perspective, as discussed in Section 5.

4.2 Decoder

In implementing the decoder, we consider that scene reflectivities
may be upper bounded given the operating frequencies of the
receiver and typical scene refractive indices. Without loss of
generality, we assume that the scene reflectivities vary between 0
and 1 and that the scene consists of at least one strong reflector.
Under these assumptions, we normalise the final RNN output p*
before projection onto the measurement space as follows:

L
p
pr=—t 23
Fan @3
d d
aFHWH aFEWH
Q
pP Para(-) =~ pt ———O— Pasra () -

The normalisation of the final output enhances the effect of
learning in light of the expected range of reflectivity values in the
reconstructed image.

Following the normalised image formation step, the decoder
maps the estimate p* back to the received signal space and
synthesises an estimate of the SAR measurement as follows:

d* = diag(w)f‘p*. (24)

By the insertion of the linear decoding layer (24), the network
operator Z[0] acts as an approximation to the identity map on the
received signal space. Representing p* as a function of network
parameters 6 and the input d, we write

Z101(d) = d* := diag(w)Fp*(0,d) . (25)

The final mapping back to received signal space allows the model
to be trained in an unsupervised manner. This formulation offers a
significant advantage. A supervised training scheme would require
ground truth images coupled with SAR measurements. However, in
the context of image reconstruction, a large number of SAR images
acquired using the same imaging geometry may not be available.
Moreover, training the RNN using SAR images would upper bound
the performance by the reconstruction quality of conventional
imaging algorithms that formed the SAR images in the first place.
Our approach avoids these drawbacks by unsupervised training.

5 Network training
5.1 Forward propagation for SAR imaging

Consider the ideal expressions for the network weight matrix and
bias terms in (20) with the true underlying waveform. Essentially
the map Q is composed of an all pass filter I of scale one, and

FYF, which is a spatially varying filter of low pass characteristic.
Having aM < 1, @ acts as an image domain filter that gradually
suppresses all frequencies by a 1 — aM factor, except for the high-

frequency bands determined by the cut-offs of the rows of F'F. By
the definition of b in (20), the result of the linear filtering operation
is biased by the backprojection estimate. Since Fis sampled from a
Fourier integral operator [63], we know that backprojection
preserves the target placement and edges in the image. Hence, the
biasing step practically enhances the foreground of the output of
the filtering operation. By repetitive application of Q and biasing,
mid- to low-frequency components are gradually suppressed,
whereas the edges get further enhanced due to their high-frequency
content. Thereby, pixel-wise absolute-value thresholding at each
layer effectively performs background suppression rather than
suppressing the foreground, and the composite map of the layers
becomes a non-linear enhancement filter.

However, as emphasised throughout the paper, the forward map
F is not fully known and at initialisation, the network cannot
perform these operations accurately due to an arbitrary initial w.
Let w = w” be a randomly picked waveform coefficient vector to
initialise the network parameters @ and b. Setting the initial image
estimate fed to the network as p’ = 0, the representation at the first
layer becomes

p' = max(|aF" diagw")d| — a2,0). (26)
d
oFIWH
L—1 Q L n L *
— pll— Parre(-) — p"—~ WF/| p"|loc —~d

Fig. 4 Proposed recurrent auto-encoder architecture with W = diag(w). The initial estimate p° can be set according to preference (set as a vector of zeros in
this work). Following the estimate generated at layer L, a linear decoder maps the estimate back to the data space. The figure depicts the case in which

different learning rates (a;’s) are used at each iteration of the forward solver
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We define p as the intermediate estimate resulting from the
backprojection with its jth pixel value given as

M
~ ~H .. —o\ (7 .
pji=IF diagw"'dl;= Y WW(F)di. j=1....N. 27
k=1
Plugging in (14) into (27), and breaking down the contributions of

pixels with indices i=j and i# j into the estimate of the
reflectivity at the jth pixel, we obtain

M
pj= ﬂj( Z WO,
=

M — N
+ 2 2 (F)(F) 07 %wpr (28)
#J

k=11

where w, is the vector of true waveform coefficients, and p;,
j=1,...,N are the elements of the true scene p.

Consider a passive imaging scenario such that the true
waveform coefficients are sampled from a QPSK signal, and that
we set entries of w® with randomly picked symbols from the unit
circle in C. Since such a randomly initialised w’ is highly unlikely
to be correlated to the true QPSK waveform, the contribution of the
underlying scene pixel p; to its estimate p; diminishes.
Furthermore, this contribution is diminished to a level comparable
to that of other points in the underlying scene p;, where i # j. As
all scene reflectivities are scaled by low correlated complex
exponentials in (28), targets get suppressed and a noisy image is
obtained by backprojection. This phenomenon is observed in Fig. 5
from the reconstruction performance with a randomly initialised
waveform. Therefore, obtaining a highly correlated waveform
coefficient vector w is the key component of the reconstruction
process by (21).

5.2 Backpropagation for waveform estimation

Instead of parameterising the feature maps of the RNN by the
weight matrix  and the bias vector b, we limit parameterisation to
only the waveform vector w. Thereby, backpropagation is cast as a
solver for the waveform estimation problem. Furthermore, splitting
the waveform as a parameter preserves the known components of
Q and b, which are initialised using F.

In addition to the unknown waveform in the passive SAR
forward model, the optimisation hyperparameters can also be
learned. For our model, we include the threshold parameter of the
network non-linearity, initialised as 7= al into learning, and
define network parameter as 0 = {w, 7}.

Given training data D = {d,,d,, ...,dr}, we search a minimiser
over the parameter space {w, zr} for the following cost function:

T
Fow.0) = 7 Y £{diagonFpy.d,). (29)
n=1

where ¢ is a properly chosen loss function. For #, we pick the £,-
norm of the mismatch between the data synthesised by the network
and the input data. Furthermore, we incorporate constraints into the
cost function to enforce prior information on w,z. Most
significantly, we focus our attention on constraining the underlying
waveform by a priori functional form. For our problem, we
consider that the unknown waveform coefficients are sampled from
a flat spectrum signal, and restrict w to have unit modulo entries.
For 7, we invoke a non-negativity constraint and formulate the
backpropagation problem as

T
BP := minimisen Y || diagw)Fpit — d, I + ic, ) + ic
w.r T = w T

(30)
(),

where ic( -) denotes the indicator function of subscript set C, C,,
and C, denote constraint sets on parameters w and 7, respectively.

Ground Truth

Noise Free Initial Reconstruction L=4
0.035

0.025

0.015

0.005

Fig. 5 Ground truth image used in experiments (left) versus the image
reconstructed by the RNN encoder with the randomly initialised waveform
coefficients (right). The target is completely lost and suppressed in
background noise due to the mismatch introduced by the wrong waveform
in reconstruction

The minimisation is then performed by projected SGD. Taking
gradient steps over the smooth £, term, and projecting onto
constraint sets C,, and C,, we obtain the updates as

wit! = @cw(w’ - %l D W(diag(w)ﬁp;’zdn)la_af), 31)

nelg

e Z of(diagw)F p*., d,)

I+1 _ ! _
= %,(r T = | ,)’ (32)
0=0

ne€lp

where 6' = {wl, 7 } denotes the parameter values at the /th iteration
in backpropagation, 7,, and 7, are the learning rates (or step-size),
B C D is the randomly selected subset of the training data, |B| is the
cardinality of the subset B, Ip is an index set corresponding to B.
P denotes the projection operator corresponding to the constraint
set C such that for the specified constraints for w and 7, we have

=2

(Pe,00), = =, Pe(F) = max(7, 0) . (33)

il
1

=

As mentioned earlier, due to the nested non-linear structure of the
recurrent auto-encoder estimator, (29) is a highly non-convex
optimisation problem. In addition, first-order methods are prone to
converging to local minima, which adds further difficulty in
estimating w. However, our parameterisation enforces the problem
structure of SAR imaging, and places the network in a
neighbourhood over the loss surface only up to a diagonal
multiplier of the true forward model, along with any prior
knowledge of the functional form of w. Therefore, by the updates

IET Radar Sonar Navig.
© The Institution of Engineering and Technology 2019



in (6), a stationary point in the neighbourhood of a strong initial
point is searched. Hence, backpropagation is used as a tool for
refining the SAR forward model and improving image
reconstruction implemented by forward propagation.

5.3 Network derivatives

An important consideration is the computation of the
backpropagation equation for waveform coefficients. Since the
objective being minimised is a real-valued function of a complex
variable w, we have to perform complex backpropagation on the
parameters defined as

(34

v, = (61,”)

ow

where (- ) denotes complex conjugation and the partial derivative
in (34) is the Wirtinger derivative [66].

Notably, w parameterises both Q and F = diag(w)F. Writing the
partial derivative of the loss function £ with respect to w, from the
chain rule we have

oc(d*,d) _ 00 of(d*,d) + OF o¢(d*,d) (35)
ow ~ ow 00 ow OoF

Hence, we compute the derivative with respect to w by first

computing derivatives with respect to {Q, F'} as

oc(d*,d) _ dp* ot(d*,d)

o0 00 op* 6
ot(d*.d) _ dp* ot(d*.d) +( ) @ —d

oF oF — op* :

The derivative with respect to 7 is simply the real-valued partial
derivative of the form

oc(d*,d)y _ dp* of(d*.d)
or  or  op*

€0

The second component of the derivative with respect to F in (36)
originates from having the linear decoder stage that projects the
image estimate p* on the received signal space by F. In (36), the
partial derivative of F with respect to itself yields an identity tensor
of size M XN XM XN, which multiplies the image estimate

preRY to yield an M X N X M tensor. We provide a detailed
derivation of network derivatives in Section 10.1.

To back-propagate through the recurrent encoder component,
we use the backpropagation through time algorithm (BPTT). Since
the parameters {Q, F,r} are shared among layers, and only the
error resulting from the final layer is considered in the
optimisation, BPTT computes the derivatives in the RNN encoder
as

6p ap
_( o )apv (38)
where p, k=1,...,L is the network representation generated at
the kth layer.

Despite the general form we present in this section, a distinct
effect of the flat spectrum constraint we place on w for signals such
as QPSK or OFDM can be observed at backpropagation. As
explicitly shown in (20), Q only has dependence on w through its
elementwise modulus by the diag(lwl’) term. By setting the initial
w’ as a unit modulo entry signal, and projecting w iterates onto the
unit sphere in cM by (31), diag(iwl’) is merely the identity matrix
and Q is effectively fixed through the training procedure. Therefore
its dependence on the network parameterisation is dropped.
Removing the contribution of @ to the partial derivative in (35)
yields the following final update form for the parameter w
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2 ap~ 6p dp* o/(d*,d)

v

(39)

6 Numerical simulations
6.1 Scene and imaging parameters

We assume isotropic transmit and receive antennas, and simulate a
transmitted signal with bandwidth and centre frequency of 8 and
760 MHz, respectively. The simulated waveform is modulated
using QPSK, in which the symbols are generated from an i.i.d.
uniform distribution. This corresponds to ~20 m range resolution
for monostatic SAR. Thus, we simulate a 620 X 620 m” scene and
discretise it into 31 X 31 pixels as shown in Fig. 5.

The receiver antenna traverses a circular trajectory, defined as
Yr(s) = [Tcos(s), 7sin(s), 6.5]km. The transmitter is fixed and
located at y7;=1[11.2,11.2,0.2]km. The aperture is sampled
uniformly into 128 uniform samples, and the bandwidth is sampled
uniformly into 64 samples.

6.2 Training and testing sets

We generate training samples consisting of randomly generated
sparse scenes with a single point or extended target that varies in
rectangular shape and location. The length and width of each
rectangular target are sampled from a uniform distribution in the
range [1, 6]. The targets are placed randomly within the range of
[3, 28] x [3, 28] pixels. We then generate received SAR signals for
each scene using the full forward model in (14) described in
Section 3, and add a realisation of white Gaussian noise vector on
each SAR measurement we have generated. We consider six levels
of SNRs, —20, —15, —10, =5, 0, and 10 dB, and create a training set
of noisy received SAR signals of randomly generated scenes at
each SNR level, to form six statistically independent sets. The
proposed model is trained using the six training sets separately to
evaluate the robustness of the model to different noise levels.

In testing, we use measurements collected from a single scene
of interest. The test scene is displayed in Fig. 5 and the
backscattered field is generated by the forward model in (14).
Twenty different realisations of white Gaussian noise at —20, —15
-10, =5, 0, and 10 dB SNR are used to form six sets, each
consisting of 20 samples of measurements. Each test set is fed into
the model trained with the corresponding SNR level of received
SAR signals. We evaluate the reconstruction performance as the
average over 20 results for statistical accuracy.

For data collection, we envision a two-stage protocol to form
training and test sets as proposed in [46]. In the first stage, an
airborne receiver collects test data from a scene of interest. In the
second stage, arbitrary reflectors are placed in the scene to form
either extended or point targets and training data is collected under
the same imaging geometry as before. In the data collection
procedure, we make the assumption that changes on the transmitted
signal are negligible in slow-time. Although our formulation does
not require slow-time stationarity, a collection of the training set
under a slow time varying waveform is a complication that has to
be alleviated and is the main focus of our future work.

6.3 Network design and initialisation

We implement the proposed network with an RNN-encoder of
L =4 layers, and the phaseless soft-thresholding activation
function introduced in Section 4. The model is trained for ten
epochs for each experiment. We limit the number of training
samples based on the results of our previous study [46] and set it to
10. We perform batch gradient descent, which corresponds to a
single parameter update per epoch. We set the learning rate as
n, = 107 for waveform coefficients, and as 5, = 10™° for the
threshold parameter.

The network weight matrix and bias terms are initialised with
the known components of the forward model F in (25). We set the
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Fig. 6 Phantom used to evaluate resolution. The point targets are located
in range bins 15 and 17, cross range bins 10 and 12

initial regularisation parameter as A = 10, and set a = 1 x 107,

upper bounded by the reciprocal of the largest eigenvalue of F'F.
Accordingly, to the discussion in Section 6.2, we assume that
transmitted waveforms are static with respect to the slow-time
variable. As demonstrated in Section 5, we assume a priori
knowledge is available, and constrain the parameter w using the
QPSK properties, and project the entries of w at each update onto
the unit circle in C, as in (31). We initialise w by the real-valued
flat spectrum signal of all ones instead of random initialisation to
standardise our evaluation of different experiments.

6.4 Performance evaluation

We evaluate the reconstruction performance on the image and
waveform coefficients using the following figures of merit:

|| diagw)F(p*)' —d |I;

® 2
i Il p*—=p Il (40)
Ildll;

Lip™) = ,
(WAE

» Ly(p*) =

measures the normalised data domain mismatch and the image
domain error of the reconstructed image with respect to the ground
truth SAR measurement and testing image, respectively, whereas

|ELp{] — ElpfI
var[pi]

2
| we—w! ||

o) = EXG

, Lywh = . @D

measure the contrast in the reconstructed image and the normalised
waveform mismatch with respect to the ground truth QPSK
coefficients, respectively. (p*)l denotes the normalised image
generated by the RNN encoder, with the parameters obtained at
epoch /, and p is the ground truth image. w, is the ground truth

waveform coefficient vector and w' is the learned waveform
coefficient vector at epoch /. pf and p{ are the foreground and

background components of the reconstructed image, respectively.
E[ -] stands for statistical expectation, var|[ - ] stands for statistical
variance and d is the input SAR data. Curves corresponding to
each SNR value demonstrate the performance of the model trained
on measurements corresponding to that noise level and evaluated
on test samples collected at the same SNR.

To evaluate the resolution improvement achieved by learning,
we examine the bias terms of the DL-based model. This
corresponds to the evaluation of backprojection reconstruction
following matched filtering with the learned waveform
coefficients. We compare the peak and average background of the
reconstructed image with learned waveform coefficients to the one
obtained with the true waveform, and to that of reconstruction by
backprojection without matched filtering. Essentially, the last case
is equivalent to the initial waveform set to all 1's in its bandwidth.
Evaluation is performed on the phantom displayed in Fig. 6, with
respect to how the two point targets are resolved in horizontal and

vertical directions, as well as how the weak point target in (12) and
(17) is resolved from the background noise in our evaluations.

6.5 Results

Our simulations show that the DL-based approach achieves
accurate reconstruction performance under SNR scenarios above
—20dB for all metrics under consideration. To display the
performance visually, we present the reconstructed images by the
model under SNR levels of —15, —10, =5, and 0 dB in Fig. 7. The
images displayed in the figure demonstrate the impact of waveform
and threshold learning by the DL-based method as described in
Section 5.1. By fixing the image-domain filters due to the
constraints on w, learning the waveform coefficients become
equivalent to refining the backprojection image. Hence, waveform
learning directly impacts the placement and strength of target
pixels, whereas threshold learning controls the amount of
background suppression in the image. It is observed in Fig. 7 that
with the exception of the —20dB case, clear background
suppression and geometric fidelity of the extended target are
achieved by our method despite initialising the model with a
waveform that has poor correlation to the true one. Moreover,
image contrast and image mismatch metrics, as well as the decay in
waveform error shown in Fig. 8 validate the main arguments of our
approach, as the waveform coefficients are learned to the extent of
high correlation with the underlying QPSK signal such that the
model produces enhanced imagery.

As expected, the performance of the method degrades
gracefully as the noise level increases both in image reconstruction
and waveform estimation. For the —20 SNR case, the gradual
improvement in the waveform is insufficient to impact
reconstruction performance, as indicated by negligible changes in
image domain metrics as shown in Fig. 8. However, the drastic
impact of waveform estimation can be observed in the —10 dB
case. Despite no indicative improvement on the data mismatch
function over epochs similar to the —20 dB case, the algorithm
learns a much more correlated waveform coefficient, which
improves the reconstruction performance significantly.

We demonstrate the resolution performance of the DL-based
method for the —10 dB case as discussed in Section 6.4. The
images reconstructed by backprojection after matched filtering
with true, and learned waveform coefficients are provided in
Figs. 9 and 10, respectively. From Figs. 9 and 10, we see that the
linear reconstruction using the learned waveform produces a nearly
identical image as the one produced using the true waveform. This
can also be observed in the cross-sections at horizontal and vertical
directions that contain target pixels, which are provided in
Figs. 11-13 in log scale for reconstruction obtained by match-
filtering with true, initial, and learned waveform coefficients,
respectively. The peak and average background values at each
cross-section of the reconstructed image using learned waveform
coefficients are highly consistent with the ones obtained with true
waveform coefficients. Notably, the accuracy in image
reconstruction is obtained despite a final normalised waveform
mismatch of 0.5 as shown in Fig. 8, which indicates the robustness
of the method to errors in estimation.

Overall, it can be presumed from our experiments that learning
a sufficiently correlated waveform produces improved imagery.
The model offers considerable robustness to measurement noise
even with a limited number of training samples, which increases
the applicability of our method in real-world scenarios. However,
the limited performance in the —20 dB scenario can be traced to the
limited number of samples used in training. The poor improvement
of waveform error suggests the gradient estimates are highly
contaminated by noise, which can be avoided by averaging over
more samples. Handling such high noise scenarios may require
accurate initialisation, or more structural constraints on the
functional form of the waveform, as well as increasing the number
of training samples.
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Fig. 7 Reconstructed average images by the proposed model under —15, —10,
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image is formed by averaging the 20 test samples under different realisations at the same SNR. The model has learned suitable parameters such that imaging
performance is drastically improved over the initialisation image for every noise level under consideration
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Fig. 8 Average values of the proposed data mismatch, image mismatch (40), image contrast and waveform error metrics (41) over 20 test samples at —20),
=15, —10, =5, 0, and 10 dB SNR cases. Curves are obtained from reconstruction results with the parameter estimates generated by the network at each epoch,
trained with SAR measurements under corresponding SNRs

7 Conclusion

This study presented a novel DL-based approach for simultaneous
estimation of the scene reflectivity and the transmitted waveform.

IET Radar Sonar Navig.
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Our method requires a single receiver, providing reduced cost and
improved simplicity over existing methods such as PCL and
TDOA/FDOA backprojection. We consider a passive imaging
scenario in which the transmitter location is known, but the
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Fig. 9 Linearly reconstructed phantom image by first match filtering with
the true underlying waveform coefficients, followed by backprojection, at
—10 dB SNR
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Fig. 10 Linearly reconstructed phantom image by first match filtering
with the learned waveform coefficients, followed by backprojection, at —10
dB SNR
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Fig. 11 Cross section of linearly reconstructed images at —10 dB SNR by

matched filtering with true, initial (no matched filter), and learned

waveform coefficients at horizontal position 15. The background pixels at

the cross section are averaged to depict the noise level with respect to peak

values. All values displayed in logarithmic scale

transmitted waveform is unknown. We approach image
reconstruction in a Bayesian framework and set up an optimisation
problem to estimate the scene reflectivity. We formulate a proximal
gradient descent algorithm to solve for the scene reflectivity, which
we unfold for a fixed number of iterations to formulate an RNN
parameterised by waveform coefficients. Hence, for a given
waveform coefficient vector, the RNN becomes a solver for the
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Fig. 12 Cross section of linearly reconstructed images at —10 dB SNR by

matched filtering with true, initial (no matched filter), and learned

waveform coefficients at horizontal position 17. The background pixels at

the cross section are averaged to depict the noise level with respect to peak

values. All values displayed in logarithmic scale
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Fig. 13 Cross section of linearly reconstructed images at —10 dB SNR by

matched filtering with true, initial (no matched filter), and learned

waveform coelfficients at vertical position 12. The background pixels at the

cross section are averaged to depict the noise level with respect to peak

values. All values displayed in logarithmic scale

scene reflectivity at forward propagation, and waveform
coefficients become parameters that can be estimated by
backpropagation.

We then cascade the RNN with a decoding layer consisting of
normalisation and a linear forward map that synthesises SAR
measurements from the reconstructed scene reflectivities resulting
in a recurrent auto-encoder architecture. Thereby, we learn the
transmitted waveform in an unsupervised manner by minimising
the mismatch between a set of received SAR signals and
corresponding SAR measurements synthesised by the network. At
backpropagation, we employ a flat spectrum constraint on the
waveform by performing updates via projected SGD. Our
formulation has applicability to a wide range of spread spectrum
signals that are common to transmitters of opportunity. The main
advantage of our method is that the waveform estimation is
performed in a task driven manner. The DL-based model ultimately
estimates waveform coefficients with the goal of producing
accurate imagery by forward propagation. Moreover, the structural
form for the transmitted signals is merely used as a prior by the
means of a constraint set in our framework, and lack thereof does
not limit our framework.

We demonstrate the performance of our DL approach with
numerical simulations, showing that with a limited number of
training samples collected at realistic SNR levels, the model
estimates QPSK modulated signals in a manner that produces
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accurate SAR imagery. Furthermore, we show that our DL-based
method is robust to estimation errors, as it reconstructs images
highly consistent with the ones obtained by the true underlying
waveform even in the presence of a non-negligible mismatch in
learned and true waveform coefficients. In the future, we will
pursue bypassing the slow-time stationarity assumption of
transmitted waveform in training data collection, and explore
decoding changing waveforms by our DL framework. Furthermore,
we will further pursue improving the performance of our method in
low SNR scenarios and test the estimation quality with other
waveforms such as OFDM signals.
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10 Appendix

10.1 Waveform derivative

Due to having real-valued representations such that p* € R", and
p* = p* the first component of the complex backpropagation
equation becomes

*k - -
% = F'(d* — d) + F'(d* — d) = 2 Re(F'(d* — d)), (42)
which is purely real valued as expected. From the chain rule with
(42) and the normalisation derivative dp*/dp", we obtain the non-
layer dependent component of the network derivative in (39) by
multiplying (42) with

Ip* 1 allptll 1
% = —T#( M ——Iy.v|  (43)
dp o™l dp o™ Moo

where the partial of the infinity norm of p’ is simply a column
vector with entry 1 at the index of the maximal element of pF, and
0's elsewhere.

First, we consider the second term in the brackets of (39).
OF /0F tensor is an M X N array of M X N matrices. The (m, n)th
matrix in the array, I,,,, has all entries I,,,(i, j) = 0 except for 1 at
i=m,j=n. From the definition of the tensor—vector

(OF 10F)p* = 1L Typenwmtp’
M XxNXM tensor | =[I,,1I,,...,1] where the mth row of I,,

equals p’7, 0's otherwise. After another tensor—vector
multiplication with conjugate error term, the second expression
yields

multiplication, yields an

(%ﬂ*)(d* —d)= @ -d)p". (44)

Taking the first component inside the brackets of (39), we denote

L k5oL
_ ap~ op" dp* oc(d*,d)
a’;f_i; OF 0¥ 0gF 0p* - (45)

For each partial derivative of p’ with respect to other
representations in the network, we can write the chain rule as
ap*iopt = (0p**'10p*)(0p*13p*+"). Moving down the network
beginning from layer L, this derivative can be evaluated by
multiplying the ap*+'1apk term repeatedly for
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k=L-1,L-2,...,1. yk=|z where
7 = Qp* ' + aF"d. The partial of p* with respect to p*~' can be

evaluated as

Denote k|,

ot _ (o oyt ot oy*\op
dpk—l 0pk—l azk apk—l azk ay/( :

(46)

dp*/ay* is merely the derivative of the thresholding function
Pee,(+), which is a diagonal matrix with entries 1 at indexes where
y¥> 17, and 0 otherwise. Similarly, ay*/ 07" and ayklazk yield
diagonal matrices with entries, for the ith diagonal term, z5/ (2|z,’-‘|)
and z¥/ (2|z,l‘|), respectively. Finally, the partial derivatives of Z" and

Z* with respect to p*~!' yield QH and QT, respectively. Since Q is
Hermitian symmetric, we have

ap* . [ ZF))..
F = Re|Q diag m dlag((}’yk> ,), 47)

1

with Iy« ;. denoting the set of indexes i such that y¥> 7. For the F
derivative of the network representations, following the same
notation, we have

ot _ (o2 oyt | o ayt\opt 48)
OF ~ |\ OF g7k * OF 7% oyt

The first component in the parenthesis vanishes because zX only
depends on F™. This results from the property of Wirtinger
derivatives, such that (dc/dc) = 0, for a complex variable ¢ € C.
From (0ik/0F) = a(a(FT(f)/()F), indexing the third dimension of
the resulting M X N X N tensor with 7, at each 7, with subscript :, j
denoting the jth column, we have

aF'd)y\ [d ifj=i,
oF j 0 else.

Denoting previous terms computed as 97, the F-derivative at the
layer k becomes

(90 ,4); (Qp* + aF"d),; 3
2 @t +aFta)|

OF0). ;= (49)

if|(ka + aFHd),~| = y¥ > 7 and 0 everywhere else.

Finally, multiplying with the partial derivative of F = diag(w)F,
we obtain the derivative with respect to w by, for index
i=1,2,...,M, and subscript i, : denoting the ith 1 X N row of the

corresponding matrix
Y\ _ g (0f)\!
(), = 7 5, 0

10.2 Threshold derivative

Since p¥ = max (0, y¥ — 1), the derivative (9p*/07),, y will equal
—1 at indexes y¥ > 7 and 0 otherwise. Then, the kth layer derivative
becomes

o opt op* ot (d*, d)
CADNNE -5

K=lieTyks,

where S, ., is again the set of indexes where

b= |Qipk + aFin| > 7.
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