
Proceedings of Machine Learning Research vol 99:1–49, 2019 32nd Annual Conference on Learning Theory

Combinatorial Algorithms for Optimal Design

Vivek Madan VMADAN7@GATECH.EDU
Mohit Singh MOHIT.SINGH@ISYE.GATECH.EDU
Uthaipon (Tao) Tantipongpipat TAO@GATECH.EDU
Georgia Institute of Technology

Weijun Xie WXIE@VT.EDU
Virginia Polytechnic Institute and State University

Editors: Alina Beygelzimer and Daniel Hsu

Abstract
In an optimal design problem, we are given a set of linear experiments v1, . . . , vn ∈ Rd and k ≥ d,
and our goal is to select a set or a multiset S ⊆ [n] of size k such that Φ((

∑
i∈S viv

>
i)−1) is

minimized. When Φ(M) = Determinant(M)1/d, the problem is known as the D-optimal design
problem, and when Φ(M) = Trace(M), it is known as the A-optimal design problem. One of
the most common heuristics used in practice to solve these problems is the local search heuristic,
also known as the Fedorov’s exchange method (Fedorov, 1972). This is due to its simplicity and
its empirical performance (Cook and Nachtrheim, 1980; Miller and Nguyen, 1994; Atkinson et al.,
2007). However, despite its wide usage no theoretical bound has been proven for this algorithm. In
this paper, we bridge this gap and prove approximation guarantees for the local search algorithms
for D-optimal design and A-optimal design problems. We show that the local search algorithms are
asymptotically optimal when k

d is large. In addition to this, we also prove similar approximation
guarantees for the greedy algorithms for D-optimal design and A-optimal design problems when k

d
is large.
Keywords: Optimal Design, Experimental Design, D-optimal design, A-optimal design, Fedorov
Exchange, Local Search, Greedy Algorithm.

1. Introduction

Optimal experimental design (Pukelsheim, 2006) lies at the intersection of statistics and optimiza-
tion where the goal is to pick a subset of statistical trials to perform from a given set of available
trials. Linear models are one of the most widely used and well-studied models in the area (Federer
et al., 1955; Pukelsheim, 2006; Atkinson et al., 2007). The goal is to learn an unknown parameter
θ? ∈ Rd from a set of linear experiments {v1, . . . , vn} where each vi ∈ Rd. If the ith experiment
is performed, we observe yi = 〈vi, θ

?〉 + ηi where ηi is a small error introduced in the experiment.
Given an integer k ≤ n, the optimization problem involves picking k vectors out of n to ensure the
unknown parameter θ∗ can be deduced as accurately as possible.

By assuming the error vector ηi is a gaussian noise, the maximum likelihood estimate for θ?, call
it θ̂, is obtained via minimizing the least square error over the set S of performed experiments, i.e.
θ̂ = argminθ∈Rd

∑
i∈S ‖v>i θ − yi‖2

2. The error in estimation θ̂ − θ? is distributed as Gaussian with
mean zero. If the variance for each ηi is 1 (which can be assumed by normalization), then the covari-
ance matrix (

∑
i∈S viv

>
i)−1. Optimal design consists of minimizing a functionΦ

(
(
∑

i∈S viv
>
i)−1

)

where Φ(M) = det(M)
1
d for D-optimal design and Φ(M) = tr(M) for A-optimal design.

c© 2019 V. Madan, M. Singh, U.(. Tantipongpipat & W. Xie.

COMBINATORIAL ALGORITHMS FOR OPTIMAL DESIGN

D-DESIGN: Given a set of vectors v1, . . . , vn ∈ Rd for some d ∈ N, and a parameter k ≥ d, our
goal is to find a set or a multiset S ⊆ [n] of size k such that det

(∑
i∈S viv

>
i

)1/d is maximized1.
Here, det(M) denote the determinant of the matrix M .

A-DESIGN: Given a set of vectors v1, . . . , vn ∈ Rd for some d ∈ N, and a parameter k ≥ d, our
goal is to find a set or a multiset S ⊆ [n] of size k such that tr

((∑
i∈S viv

>
i

)−1
)
is minimized.

Here, tr(M) denote the trace of the matrix M .
When selecting a multiset, we refer to the problem as optimal design with repetitions and when

selecting a set, we refer to the problem as optimal design without repetitions. Statistically, D-
DESIGN objective aims to minimize the volume of the confidence ellipsoid and the A-DESIGN ob-
jective aims to minimize the expected length square of the error vector θ̂−θ∗. Several other objective
functions such as E-design, G-design, and I-design have also been studied in literature (Atkinson
et al., 2007).

One of the classical optimization methods that is used for optimal design problems is the local
search heuristic which is also called the Fedorov’s exchange method (Fedorov, 1972) (see also
Mitchell and Miller Jr (1970)). The method starts with any set of k experiments from the given
set of n experiments and aims to exchange one of the design vectors if it improves the objective.
The ease in implementing the method as well as its efficacy in practice makes the method widely
used (Nguyen and Miller, 1992) and implemented in statistics softwares such as SAS (see Atkinson
et al. (2007), Chapter 13). Moreover, there has been considerable study on heuristically improving
the performance of the algorithm. Surprisingly, theoretical analysis of this classical algorithm has
not been performed despite its wide usage. In this paper, we bridge this gap and give theoretical
guarantees on the performance of local search heuristic for D and A-optimal design problems. In
addition to local search, we analyze the greedy heuristic for the D and A-optimal design problems.

1.1. Our Results and Contributions

Our main contribution is to prove worst case bounds on the performance of simple local search
algorithm (also known as Fedorov Exchange method) and greedy algorithms. Our results also give
worst case performance guarantee on the variants of local search algorithm.

Our first result is for the D-optimal design problem where we show the following guarantee.
We consider both settings when the design vectors are allowed to be repeated in the solution and
when they are not allowed to be repeated.

Theorem 1 For any ε > 0, the local search algorithm returns a (1 + ε)-approximate solution for
D-DESIGN with or without repetitions whenever k ≥ d + d

ε .

Our analysis method crucially uses the convex relaxation for the D-DESIGN problem. In recent
works, the convex relaxation has been studied extensively and various rounding algorithms have
been designed (Wang et al. (2016); Allen-Zhu et al. (2017); Singh and Xie (2018); Nikolov et al.
(2019)). Solving the convex relaxation is usually the bottleneck in the running time of all these
algorithms. Our results differ from this literature in that we only use the convex relaxation for the
analysis of the local search heuristic. The algorithm does not need to solve the convex program
(or even formulate it). We use the dual-fitting approach to prove the guarantee. We also remark

1. Since det(M−1) = 1/ det(M), for notational convenience, we consider an equivalent formulation of D-DESIGN
where instead of minimizing det((

∑
i∈S viv

>
i)−1)1/d, we maximize det(

∑
i∈S viv

>
i)1/d.

2

COMBINATORIAL ALGORITHMS FOR OPTIMAL DESIGN

the above guarantee improves on the best previous bound which had an additional additive term of
1
ε2

log 1
ε in the requirement on the size of k.

We also consider the natural greedy algorithm for D-DESIGN problem. Indeed this algorithm
has also been implemented and tested in empirical studies (see for example Atkinson et al. (2007),
Chapter 12) and is referred to as the forward procedure algorithm. The algorithm is initialized to
a small set of experiments and new experiments are added greedily. We show that the guarantee is
slightly specific to the initialized set. If the initialized set is a local optimum set of size d, we obtain
the following result. Again we employ the dual-fitting approach to prove the bounds.

Theorem 2 For any ε > 0, the greedy algorithm for D-DESIGN with repetitions returns a (1 + ε)-
approximate solution whenever k ≥ Ω

(
d
ε

(
log 1

ε + log log d
))
.

A-DESIGN. While the simple combinatorial algorithms have tight asymptotic guarantee for D-
DESIGN, we show that a similar guarantee cannot be proven for A-DESIGN. Indeed, there are
examples where local optimum can be arbitrarily bad as compared to the optimum solution as we
show in Section 3.3. We note that the bad local optima arise due to presence of long vectors among
design vectors. In particular, we show that this is the only bottleneck to obtain an asymptotic guaran-
tee on the performance of the local search algorithm. Moreover, we show a combinatorial iterative
procedure to truncate the length of all the vectors while ensuring that the value of the optimal solu-
tion does not change significantly. This allows us to obtain a modified local search procedure with
the following guarantee.

Theorem 3 The modified local search algorithm for A-DESIGN with repetitions returns a (1 + ε)-
approximate solution whenever k = Ω

(
d
ε4

)
.

We note that the above asymptotic guarantee does not match the best approximation algo-
rithms (Nikolov et al., 2019) for A-DESIGN as was the case of D-DESIGN. Nonetheless, it specifi-
cally points why local search algorithm performs well in practice as has been noted widely (Atkin-
son et al., 2007).

We also consider the natural greedy algorithm for the A-DESIGN problem, which again requires
truncating the length of all vectors. As in D-DESIGN problem, the guarantee depends on the initial-
ized set. If the initialized set is a local optimum set of size cd for an absolute constant c, we obtain
the following guarantee.

Theorem 4 The modified greedy algorithm for A-DESIGN with repetitions returns a (1 + ε)-
approximate solution whenever k ≥ Ω

(
d
ε3

log2 1
ε

)
.

Approximate Local Search: Theorem 1 and 3 show that the local search for D-DESIGN and
modified local search for A-DESIGN yield (1 + ε)-approximation algorithm. But, as are typical of
local search algorithms, they are usually not polynomial time algorithms. However, the standard
fix is to make local improvements only when the objectives improves by a factor of 1 + δ. With
appropriately chosen δ, this implies a polynomial running time at the cost of a slight degradation in
the approximation guarantee. We show that under the same assumption on parameter k, approximate
local search for D-DESIGN and modified approximate local search for A-DESIGN yield (1 + 2ε)-
approximation when δ is small enough and take polynomially many iterations.

Theorem 5 The (1+δ)-approximate local search algorithm forD-DESIGN with repetitions returns
a (1 + 2ε)-approximate solution whenever k ≥ d + d

ε and δ < εd
2k , and the algorithm runs in

polynomial time.

3

COMBINATORIAL ALGORITHMS FOR OPTIMAL DESIGN

Theorem 6 The modified (1 + δ)-approximate local search algorithm for A-DESIGN with repeti-
tions returns a (1 + 2ε)-approximate solution whenever k = Ω

(
d
ε4

)
and δ < εd

2k , and the algorithm
runs in polynomial time.

We note that approximate local optimum sets are sufficient for initialization of greedy algo-
rithms, implying that greedy algorithms run in polynomial time.

1.2. Related Work

As we remarked earlier, experimental design is a classical problem and has attracted significant
attention throughout the years. We refer the reader to Pukelsheim (2006) for a broad survey on the
experimental design. Here, we mention the results known for the problems discussed in this paper.

D-DESIGN: When experiments can be picked fractionally, D-DESIGN reduces to the natural con-
vex program which can be solved efficiently (Sagnol and Harman (2015)). In contrast, when ex-
periments need to be chosen integrally as in this paper, D-DESIGN is NP-hard (Welch (1982)).
Hence, there has been a series of approximation algorithms known for the problem. Bouhtou et al.
(2010) gave a n

k -approximation algorithm based on rounding the solution of the natural convex pro-
gram. Wang et al. (2016) improved the approximation ratio to (1 + ε) when k ≥ d2

ε . Allen-Zhu
et al. (2017) gave a (1 + ε)-approximation algorithm when k = Ω

(
d
ε2

)
. Singh and Xie (2018) im-

proved this result and gave (1 + ε)-approximation algorithm when repetitions are not allowed and
k = Ω

(
d
ε + 1

ε2
log 1

ε

)
, and (1 + ε)-approximation when repetitions are allowed and k ≥ 2d

ε . Our
results improve on these bounds as they achieve (1 + ε)-approximation when k ≥ d + d

ε .

A-DESIGN: As in case of D-DESIGN, A-DESIGN reduces to solving the natural convex program
which can be done efficientlywhen experiments are picked fractionally. On the other hand, when ex-
periments are picked integrally as in this paper, A-DESIGN is NP-hard (Nikolov et al. (2019)). Sev-
eral of the results mentioned above for D-DESIGN work in more generality and in particular for A-
DESIGN as well. For instance, algorithm by Avron and Boutsidis (2013) gives n−d+1

k−d+1 -approximation
ratio for A-DESIGN as well. Algorithm by Wang et al. (2016) gives (1 + ε)-approximation ra-
tio when k ≥ d2

ε . Algorithm by Allen-Zhu et al. (2017) gives (1 + ε)-approximation ratio when
k = Ω

(
d
ε2

)
. Recently, Nikolov et al. (2019) showed d-approximation for A-DESIGN when k = d,

(1 + ε)-approximation when repetitions are not allowed and k = Ω
(

d
ε + 1

ε2
log 1

ε

)
, and (1 + ε)-

approximation when repetitions are allowed and k ≥ (1+ε)(d−1)
ε . On the hardness side, Nikolov

et al. (2019) showed that A-DESIGN is APX-hard for k = d; there is no c-approximation for some
constant c > 1.

Other variants of optimal design have been studied such as E-DESIGN problem where our goal
is to select set S ⊆ [n] of size k such that the minimum eigenvalue of

∑
i∈S viv

>
i is maximized.

E-DESIGN is also known to be an NP-hard problem (Çivril and Magdon-Ismail (2009)). Algorithm
by Avron and Boutsidis (2013) gives d ∙ n−d+1

k−d+1 -approximation algorithm. Wang et al. (2016) gave
(1 + ε)-approximation algorithm when k ≥ d2

ε . Allen-Zhu et al. (2017) improved this result and
gave (1 + ε)-approximation algorithm when k = Ω

(
d
ε2

)
.

1.3. Organization

In Section 2, we analyze the local search algorithm for D-DESIGN and prove Theorem 1. In Sec-
tion 3, we analyze the modified local search algorithm for A-DESIGN and prove Theorem 3. Sec-

4

COMBINATORIAL ALGORITHMS FOR OPTIMAL DESIGN

tions A and B include details and proofs deferred from the main body of the paper. We present
approximate local search algorithms for D-DESIGN and A-DESIGN and their analysis in Sections C
and D, respectively, proving Theorems 5 and 6. Greedy algorithms and their analysis forD-DESIGN
and A-DESIGN are presented in Sections E and F, respectively, which prove Theorems 2 and 4.

2. Local Search for D-DESIGN

We first give the local search algorithm for D-DESIGN with repetitions.

2.1. Local Search Algorithm

Algorithm 1 Local search algorithm for D-DESIGN

Input: V = {v1, . . . , vn} where vi ∈ Rd, d ≤ k ∈ N.
Let I be any (multi)-subset of [1, n] of size k such that X =

∑
i∈I viv

>
i is non-singular matrix.

while ∃i ∈ I, j ∈ [1, n] such that det
(
X − viv

>
i + vjv

>
j

)
> det(X) do

X = X − viv
>
i + vjv

>
j

I = I \ {i} ∪ {j}
end while
Return (I,X)

2.2. Relaxations

To prove the performance of local search algorithm, presented earlier as Theorem 1, we use the
convex programming relaxation for the D-DESIGN problem. We first describe these relaxations in
Figure 3 (see Chapter 7 of Boyd and Vandenberghe (2004)). Let φD

f denote the be the common
optimum value of (D-REL) and its dual (D-REL-DUAL). Let I? denote the indices of the vector in
the optimal solution and let φD = det

(∑
i∈I? viv

>
i

) 1
d be its objective. Observe that φD

f ≥ log φD.
Theorem 1 now follows from the following result.

Theorem 7 Let X be the solution returned by Algorithm 1. Then,

det(X) ≥

(
k − d + 1

k

)d

ed∙φD
f

and therefore,

det(X)
1
d ≥

k − d + 1
k

∙ φD.

Before we prove Theorem 7, we begin with a few definitions. Let (I,X) be the returned solution
of the algorithm. Let VI be the d × |I| matrix whose columns are vi for each i ∈ I . Observe that
X = VIV

>
I and X is invertible since det(X) > 0 at the beginning of the algorithm and det(X)

only increases in later iterations. We let τi = v>i X−1vi for any 1 ≤ i ≤ n. Observe that if i ∈ I ,
then τi is the leverage score of row vi with respect to the matrix V >

I . We also let τij = v>i X−1vj

for any 1 ≤ i, j ≤ n.

5

COMBINATORIAL ALGORITHMS FOR OPTIMAL DESIGN

max
x∈Rn

1
d

log det

(
n∑

i=1

xiviv
>
i

)

n∑

i=1

xi ≤ k

xi ≥ 0 i ∈ [1, n]

(a) Convex relaxation (D-REL) for D-DESIGN

min
μ∈R

Y ∈Rd×d

1
d

log det(Y) +
k

d
μ − 1

μ − v>i Y −1vi ≥ 0 i ∈ [1, n]

Y � 0

(b) Dual (D-REL-DUAL) of (D-REL)

Figure 3: Convex Relaxation and its Dual for the D-DESIGN problem

Notations: For convenience, we summarize the notations used in this section.

• φD
f is the common optimum value of (D-REL) and its dual (D-REL-DUAL).

• I? ⊆ [1, n] is the set of indices of the vectors in the optimal solution.

• φD = det
(∑

i∈I? viv
>
i

) 1
d , the integral optimum value of D-DESIGN

• I ⊆ [1, n], X =
∑

i∈I viv
>
i is the solution returned by the algorithm.

• For 1 ≤ i ≤ n, τi = v>i X−1vi.

• For 1 ≤ i, j ≤ n, τij = v>i X−1vj .

The following lemma states standard properties about leverage scores of vectors with respect to
the PSD matrix X =

∑
i∈I viv

>
i (see for example Drineas et al. (2012)). These results hold even

when X is not an output from a local search algorithm and the proof is included in the appendix.

Lemma 8 Let v1, . . . , vn ∈ Rd and I ⊆ [n]. For any matrix X =
∑

i∈I viv
>
i , we have:

1. For any i ∈ I , we have τi ≤ 1. Moreover, for any i ∈ I , τi = 1 if and only if X − viv
>
i is

singular.

2. We have
∑

i∈I τi = d.

3. For any 1 ≤ j ≤ n, we have
∑

i∈I τijτji = τj .

4. For any 1 ≤ i, j ≤ n, we have τij = τji and τij ≤
√

τiτj .

We now prove an upper bound on τj for the local optimal solution. This lemma utilizes the local
optimality condition crucially.

Lemma 9 For any j ∈ [1, n], τj ≤ d
k−d+1 .

6

COMBINATORIAL ALGORITHMS FOR OPTIMAL DESIGN

Before we prove the lemma, we complete the proof of Theorem 7 using Lemma 9.
Proof [Theorem 7] We construct a feasible solution to the (D-REL-DUAL) of the objective value
at most 1

d log det(X) + log k
k−d+1 . This would imply that

φD
f ≤

1
d

log det(X) + log
k

k − d + 1

which proves the first part of the theorem. The second part follows since φD
f ≥ log φD.

Let Y = αX, μ = max1≤j≤n v>j Y −1vj = 1
α maxj∈[1,n] v

>
j X−1vj where α > 0 will be fixed

later. Then, (Y, μ) is a feasible solution of (D-REL-DUAL). Hence,

φD
f ≤

1
d

log det(αX) +
k

d
∙

1
α

max
j∈[1,n]

v>j X−1vj − 1

≤ log α +
1
d

log det(X) +
k

dα
∙

d

k − d + 1
− 1 (Lemma 9)

Setting α = k
k−d+1 , we get

φD
f ≤ log

k

k − d + 1
+

1
d

log det(X) + 1 − 1 = log
k

k − d + 1
+

1
d

log det(X)

as required.

We now prove Lemma 9.
Proof [Lemma 9] Since X is a symmetric matrix, X−1 is also a symmetric matrix and therefore
τij = τji for each i, j. We first show that the local optimality condition implies the following claim:

Claim 1 For any i ∈ I and 1 ≤ j ≤ n, we have τj − τiτj + τijτji ≤ τi.

Proof Let i ∈ I, j ∈ [1, n]. By local optimality of I ,

det(X − viv
>
i + vjv

>
j) ≤ det(X).

Next we cite the following lemma for a determinant formula.
Lemma 10 (Matrix Determinant Lemma, Harville (1997)) For any invertible matrix A ∈ Rd×d

and a, b ∈ Rd,
det(A + ab>) = det(A)(1 + b>A−1a)

Applying the Lemma twice to det(X − viv
>
i + vjv

>
j), the local optimality condition implies that

det(X) ≥ det(X − viv
>
i + vjv

>
j) = det(X + vjv

>
j)(1 − v>i (X + vjv

>
j)−1vi)

= det(X)(1 + v>j X−1vj)(1 − v>i (X + vjv
>
j)−1vi)

Hence, (1 + v>j X−1vj)(1 − v>i (X + vjv
>
j)−1vi) ≤ 1. Applying Sherman-Morrison formula, we

get

(1 + v>j X−1vj)

(

1 − v>i

(

X−1 −
X−1vjv

>
j X−1

1 + v>j X−1vj

)

vi

)

≤ 1

(1 + τj)

(

1 − τi +
τijτji

1 + τj

)

≤ 1

(1 − τi)(1 + τj) + τijτji ≤ 1

τj − τiτj + τijτji ≤ τi.

7

COMBINATORIAL ALGORITHMS FOR OPTIMAL DESIGN

This finishes the proof of Claim 1.

Now summing the inequality in Claim 1 over all i ∈ I , we get
∑

i∈I

(τj − τiτj + τijτji) ≤
∑

i∈I

τi.

Applying Lemma 8, we obtain that kτj − dτj + τj ≤ d. Rearranging, we obtain that

τj ≤
d

k − d + 1

as desired.

2.3. D-DESIGN without Repetitions

Due to space constraints, we defer the proof of local search for D-DESIGN without repetitions to
the appendix.

3. Local Search for A-DESIGN

In this section, we prove the performance of modified local search, presented earlier as Theorem 3.
As remarked earlier, we need to modify the instance to cap the length of the vectors before applying
the local search procedure. This is done in Section 3.1. We show that the value of any feasible
solution only increases after capping. Moreover, the value of the natural convex programming
relaxation increases by at most a small factor. We then analyze that the local search algorithm
applied to vectors of short length returns a near optimal solution. Combining these facts give a
complete analysis of modified local search for A-DESIGN in Section 3.2 which implies Theorem 3.

3.1. Capping Vectors

Algorithm 2 Capping vectors length for A-DESIGN

Input: V = {v1, . . . , vn} ⊆ Rd, parameter Δ.
while ∃i ∈ [1, n], ||vi||22 > Δ do

t = argmaxi∈[n] ||vi||2.

For j ∈ [1, n], vj =
(
Id − 1

2
vtv>

t

||vt||22

)
vj

end while
For j ∈ [1, n], uj = vj .
Return U = {u1, . . . , un} ⊆ Rd

The algorithm to cap the length of input vectors is given in Algorithm 2. In each iteration, it
considers the longest vector vt. If the length of this vector (and thus every vector) is at most Δ, then
it returns the current updated vectors. Else, it scales down all the vectors along the direction of the
longest vector. Here, Id denotes the d-by-d identity matrix.

Before we give the guarantee about the algorithm, we introduce the convex program for the
A-DESIGN problem in Figure 6 (see Chapter 7 of Boyd and Vandenberghe (2004)). For any input

8

COMBINATORIAL ALGORITHMS FOR OPTIMAL DESIGN

A-REL(V)

min
x∈Rn

tr





(
n∑

i=1

xiviv
>
i

)−1




n∑

i=1

xi ≤ k

xi ≥ 0 i ∈ [n]

(a) Convex relaxationA-REL(V) forA-DESIGN

A-REL-DUAL(V)

max
λ∈Rn

Y ∈Rd×d

2 tr
(
Y 1/2

)
− kλ

λ − v>i Y vi ≥ 0 i ∈ [n]

Y � 0

(b) Dual A-REL-DUAL(V) of A-REL(V)

Figure 6: Convex Relaxation and its Dual for the A-DESIGN problem

vectors V = {v1, . . . , vn}, the primal program is A-REL(V) and the dual program is A-REL-
DUAL(V). We index these convex programs by input vectors V as we will analyze their objectives
when the input vectors change by the capping algorithm. We let φA

f (V) denote the (common)
optimal objective value of both convex programs with input vectors V .

We prove the following guarantee about Algorithm 2. The proof along with some intuition of
Algorithm 2 appears in the appendix.

Lemma 11 For any input vectors V = {v1, . . . , vn} ⊆ Rd and k ≥ d, if k ≥ 15 then the capping
algorithm returns a set of vectors U = {u1, . . . un} such that

1. ‖ui‖2
2 ≤ Δ for all i ∈ [n].

2. For any (multi-)set S ⊆ [n], tr
((∑

i∈S viv
>
i

)−1
)
≤ tr

((∑
i∈S uiu

>
i

)−1
)

.

3. φA
f (U) ≤

(
1 + 3000∙d

k

) (
φA

f (V) + 135∙d
Δ

)
.

Lemma 11 states that if an algorithm returns a good solution from capped vectors, then the
objective remains small after we map the solution back to the original (uncapped) input vectors.
Moreover, by choosing a sufficiently large capping length Δ, we may bound the increase in optimal
value of the natural convex programming relaxation after capping by a small factor. Optimizing for
Δ is to be done later.

3.2. Local Search Algorithm

We now consider the local search algorithm with the capped vectors. The performance of the algo-
rithm is stated as follows.

Theorem 12 Let (I,X) be the solution returned by Algorithm 3. If ||ui||22 ≤ Δ for all i ∈ [n],

tr(X−1) ≤ φA
f (U)




(

1 −
d − 2

k

)

−

√
ΔφA

f (U)

k





−1

.

9

COMBINATORIAL ALGORITHMS FOR OPTIMAL DESIGN

Algorithm 3 Local search algorithm for A-DESIGN with capped vectors

Input: U = {u1, . . . , un} ⊆ Rd, d ≤ k ∈ N.
Let I be any (multi)-subset of [1, n] of size k such that X =

∑
i∈I uiu

>
i is nonsingular.

while ∃i ∈ I, j ∈ [1, n] such that tr
(
(X − uiu

>
i + uju

>
j)−1

)
< tr(X−1) do

X = X − uiu
>
i + uju

>
j

I = I \ {i} ∪ {j}
end while
Return (I,X)

The proof of Theorem 12 is deferred to the appendix. We now analyze the modified local search
algorithm presented as Algorithm 4 with input vectors V = {v1, . . . , vn}which may contain vectors
with long length using Theorem 12. Let I? be the set of indices of the vectors in the optimal solution
of A-DESIGN with input vector set V and let φA(V) = tr

((∑
i∈I? viv

>
i

)−1
)
be its objective.

Observe that φA
f (V) ≤ φA(V).

Algorithm 4 Modified local search algorithm for A-DESIGN
Input: V = {v1, . . . , vn}, d ≤ k ∈ N.
Let Δ = d

ε2φA(V)
.

Let U = {u1, . . . , un} be the output of Vector Capping Algorithm 2 with input (V, Δ).
Let I ⊆ [1, n], X =

∑
i∈I uiu

>
i be the output of Local Search Algorithm 3 with input (U, k).

Return I .

Theorem 13 For input vectors V = {v1, . . . , vn} where vi ∈ Rd and parameter k, let I be the
solution returned by Algorithm 4. If k ≥ 2d

ε4
and ε ≤ 0.001, then

tr





(
∑

i∈I

viv
>
i

)−1


 ≤ (1 + ε)φA(V).

The (1 + ε)-approximation of Algorithm 4 is achieved by setting an appropriate capping length Δ
and combining the guarantees from Lemma 11 and Theorem 12.
Proof By Theorem 12,

tr





(
∑

i∈I

uiu
>
i

)−1


 ≤ φA
f (U)



1 −
d − 2

k
−

√
ΔφA

f (U)

k





−1

= φA
f (U)



1 −
ε4

2
+

ε4

d
− ε

√
φA

f (U)

2φA(V)





−1

The last inequality follows since k ≥ 2d
ε4
and Δ = d

ε2φA(V)
. By Lemma 11,

φA
f (U) ≤

(
1 + 1500ε4

) (
φA

f (V) + 135ε2φA
f (V)

)
.

10

COMBINATORIAL ALGORITHMS FOR OPTIMAL DESIGN

Since φA
f (V) ≤ φA(V), we get φA

f (U) ≤ (1 + 1500ε4)(1 + 135ε2)φA(V). Substituting in the
equation above, we get

tr





(
∑

i∈I

uiu
>
i

)−1


 ≤ φA(V)
(1 + 1500ε4)(1 + 135ε2)

1 − ε4

2 + ε4/d − ε
√

(1 + 1500ε4)(1 + 135ε2)/2

≤ (1 + ε)φA(V)

where the last inequality follows from the fact that ε < 0.001. By Lemma 11, we also have that
tr
((∑

i∈I viv
>
i

)−1
)
≤ tr

((∑
i∈I uiu

>
i

)−1
)
. Hence,

tr





(
∑

i∈I

viv
>
i

)−1


 ≤ (1 + ε)φA(V).

This finishes the proof of Theorem 13.

Algorithm 4 requires the knowledge of the optimum solution value φA(V). We can guess this
value efficiently by performing a binary search. The details appear in the appendix.

3.3. Instances with Bad Local Optima

In this section, we show that preprocessing input vectors to the A-DESIGN problem is required for
the local search algorithm to have any approximation guarantee. This is because a locally optimal
solution can give an arbitrarily bad objective value compared to the optimum. Hence, this require-
ment applies regardless of implementations of the local search algorithm. We summarize the result
as follows.

Theorem 14 For any k ≥ d ≥ 2, there exists an instance of A-DESIGN, either with or without
repetitions, such that a locally optimal solution has an arbitrarily bad approximation ratio.

We note that any instance to A-DESIGN with repetitions can be used for A-DESIGN without
repetitions by making k copies of each input vector. Therefore, it is enough to show example of
instances only inA-DESIGN with repetitions. For each i, let ei be the unit vector in the ith dimension.
In this section, N is a real number tending to infinity, and the A(N) ∼ B(N) notation indicates
that limN→∞

A(N)
B(N) = 1. All asymptotic notions such as big-Oh are with respect to N → ∞. We

first show the bad instance when k ≥ d = 2. Though d = 2 seems a small case to consider, the
calculation presented is central to prove the main theorem later.

Lemma 15 There exists an instance of A-DESIGN for k ≥ d = 2, with repetitions, such that a
locally optimal solution has an arbitrarily bad approximation ratio.

The construction in Lemma 15 can be generalized to d > 2 dimensions by adding a vector with an
appropriate length to each additional dimension. The proof of Theorem 14 appears in the appendix.
We now prove the Lemma.
Proof Let v1 = [1; 1

N2], v2 = [1;− 1
N2], w1 = [N4; 1

N], w2 = [N4;− 1
N], and let the input of

A-DESIGN be these four vectors. We first make straightforward calculations, summarized as the
following claim.

11

COMBINATORIAL ALGORITHMS FOR OPTIMAL DESIGN

Claim 2 Let p, q be positive integers. Then,

tr

((
pv1v

>
1 + qv2v

>
2

)−1
)

=
p + q

4pq
N4 + O(1) (1)

tr

((
pv1v

>
1 + qv2v

>
2 + w1w

>
1

)−1
)

=
1

p + q
N4 + O(N) (2)

tr

((
pv1v

>
1 + qv2v

>
2 + w2w

>
2

)−1
)

=
1

p + q
N4 + O(N) (3)

tr

((
w1w

>
1 + w2w

>
2

)−1
)

=
N2

2
+ O(N−8) (4)

ProofWe will repeatedly use the formula tr

([
a b
c d

]−1
)

= a+d
ad−bc . We have

tr

((
pv1v

>
1 + qv2v

>
2

)−1
)

= tr

([
p + q (p − q)N−2

(p − q)N−2 (p + q)N−4

]−1
)

=
p + q + (p + q)N−4

(p + q)2N−4 − (p − q)2N−4
=

p + q

4pq
N4 + O(1)

tr

((
pv1v

>
1 + qv2v

>
2 + w1w

>
1

)−1
)

= tr

([
N8 + p + q N3 + (p − q)N−2

N3 + (p − q)N−2 N−2 + (p + q)N−4

]−1
)

=
N8 + O(1)

(p + q)N4 + O(N)
=

1
p + q

N4 + O(N)

The calculation for tr
((

pv1v
>
1 + qv2v

>
2 + w2w

>
2

)−1
)
is symmetric. Finally, we have

tr
(
w1w

>
1 + w2w

>
2

)−1
= tr

([
2N8 0

0 2N−2

]−1
)

=
N2

2
+

1
2N8

finishing the proof.

We now continue the proof of Lemma 15. Let p = bk
2c, q = dk

2e and consider the solution
S which has p and q copies of v1 and v2 respectively. By Claim 2, the current objective of S is
tr
((

pv1v
>
1 + qv2v

>
2

)−1
)
∼ k

4pqN4 and the objective of S \ {vi} ∪ {wj} for any pair i, j ∈ {1, 2}

is 1
p+q−1N4 + O(N) ∼ 1

k−1N4. As k
4pqN4 ≥ k

k2−1
N4 > 1

k−1N4 for k ≥ 2, S is locally optimal.
However, consider another solution S∗ which picks p and q copies of w1 and w2. Since

tr
(
w1w

>
1 + w2w

>
2

)−1
= O(N2), by monotonicity of tr((∙)−1) under Loewner ordering, we must

have that the objective given by S∗ is also at most O(N2), which is a Θ(N2)-factor smaller than
the objective value of S. The result follows because N tends to infinity.

4. Acknowledgement

VivekMadan, Mohit Singh, and Uthaipon (Tao) Tantipongpipat are supported by NSF grant 1717947.

12

COMBINATORIAL ALGORITHMS FOR OPTIMAL DESIGN

References

Zeyuan Allen-Zhu, Yuanzhi Li, Aarti Singh, and Yining Wang. Near-optimal design of experiments
via regret minimization. In Doina Precup and Yee Whye Teh, editors, Proceedings of the 34th In-
ternational Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August
2017, volume 70 of Proceedings of Machine Learning Research, pages 126–135. PMLR, 2017.

Anthony Atkinson, Alexander Donev, and Randall Tobias. Optimum experimental designs, with
SAS, volume 34. Oxford University Press, 2007.

Haim Avron and Christos Boutsidis. Faster subset selection for matrices and applications. SIAM
Journal on Matrix Analysis and Applications, 34(4):1464–1499, 2013.

Dennis S Bernstein. Matrix mathematics: Theory, facts, and formulas with application to linear
systems theory, volume 41. Princeton university press Princeton, 2005.

Mustapha Bouhtou, Stephane Gaubert, and Guillaume Sagnol. Submodularity and randomized
rounding techniques for optimal experimental design. Electronic Notes in Discrete Mathematics,
36:679–686, 2010.

Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press, 2004.

Ali Çivril and Malik Magdon-Ismail. On selecting a maximum volume sub-matrix of a matrix and
related problems. Theoretical Computer Science, 410(47-49):4801–4811, 2009.

R Dennis Cook and Christopher J Nachtrheim. A comparison of algorithms for constructing exact
D-optimal designs. Technometrics, 22(3):315–324, 1980.

Michał Dereziński and Manfred K Warmuth. Subsampling for ridge regression via regularized
volume sampling. arXiv preprint arXiv:1710.05110, 2017.

Petros Drineas, Malik Magdon-Ismail, Michael W Mahoney, and David P Woodruff. Fast approx-
imation of matrix coherence and statistical leverage. Journal of Machine Learning Research, 13
(Dec):3475–3506, 2012.

Walter Theodore Federer et al. Experimental design. Macmillan Co., New York and London, 1955.

Valerii Vadimovich Fedorov. Theory of optimal experiments. Elsevier, 1972.

David A Harville. Matrix algebra from a statistician’s perspective, volume 1. Springer, 1997.

Carl D Meyer, Jr. Generalized inversion of modified matrices. SIAM Journal on Applied Mathe-
matics, 24(3):315–323, 1973.

Alan J Miller and Nam-Ky Nguyen. Algorithm as 295: A fedorov exchange algorithm for D-optimal
design. Journal of the royal statistical society. series c (applied statistics), 43(4):669–677, 1994.

Toby J Mitchell and FLMiller Jr. Use of design repair to construct designs for special linear models.
Math. Div. Ann. Progr. Rept.(ORNL-4661), 13, 1970.

Nam-Ky Nguyen and Alan J Miller. A review of some exchange algorithms for constructing discrete
D-optimal designs. Computational Statistics & Data Analysis, 14(4):489–498, 1992.

13

COMBINATORIAL ALGORITHMS FOR OPTIMAL DESIGN

Aleksandar Nikolov, Mohit Singh, and Uthaipon Tao Tantipongpipat. Proportional volume sampling
and approximation algorithms for A-optimal design. In Proceedings of the Thirtieth Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 1369–1386. SIAM, 2019.

Friedrich Pukelsheim. Optimal design of experiments. SIAM, 2006.

Guillaume Sagnol and Radoslav Harman. Computing exact d-optimal designs by mixed integer
second-order cone programming. The Annals of Statistics, 43(5):2198–2224, 2015.

Alexander Schrijver. Theory of linear and integer programming. John Wiley & Sons, 1998.

Mohit Singh and Weijun Xie. Approximate positive correlated distributions and approximation
algorithms for D-optimal design. To appear in SODA, 2018.

Yining Wang, Adams Wei Yu, and Aarti Singh. On computationally tractable selection of experi-
ments in regression models. arXiv preprint arXiv:1601.02068, 2016.

William J Welch. Algorithmic complexity: three np-hard problems in computational statistics.
Journal of Statistical Computation and Simulation, 15(1):17–25, 1982.

Appendix A. Proofs from Section 2

We use the notation 〈A,B〉 for an inner product of two matrices A,B of the same size. We begin
by stating the Sherman-Morrison formula that is important in our calculations. We instantiate it for
symmetric matrices.

Theorem 16 Let L be an d × d invertible matrix and v ∈ Rd. Then
(
L + vv>

)−1
= L−1 −

L−1vv>L−1

1 + v>L−1v

Lemma 17 (Matrix Determinant Lemma, Harville (1997)) For any invertible matrix L ∈ Rd×d and
v ∈ Rd,

det(L + vv>) = det(L)(1 + v>L−1v)

We now detail the missing proofs.
Proof [Lemma 8] Let W = X−i = X − viv

>
i =

∑
j∈I\{i} vjv

>
j . To show τi ≤ 1, we make two

cases depending on whether W is singular or not.

14

COMBINATORIAL ALGORITHMS FOR OPTIMAL DESIGN

Case 1: W is non-singular.

τi = v>i (W + viv
>
i)−1vi

= v>i

(

W−1 −
W−1viv

>
i W−1

1 + v>i W−1vi

)

vi

= v>i W−1vi −
v>i W−1viv

>
i W−1vi

1 + v>i W−1vi

=
v>i W−1vi + (v>i W−1vi)2 − (v>i W−1vi)2

1 + v>i W−1vi

=
v>i W−1vi

1 + v>i W−1vi

< 1.

Last inequality follows from the fact that v>i W−1vi > 0 since W−1 is non-singular.

Case 2: W is singular. We have that X is non-singular and W = X − viv
>
i is a singular matrix.

Let Y † denote the Moore-Penrose pseudo-inverse of Y for any matrix Y . Observe that X† = X−1.
From Theorem 1 (Meyer, 1973), we have that

X−1 = W † −
W †viv

>
i (I − WW †)>

‖(I − WW †)vi‖2
2

−
(I − W †W)>viv

>
i W †

‖(I − W †W)>vi‖2
2

+
(1 + v>i W †vi)(I − W †W)>viv

>
i (I − WW †)>

‖(I − W †W)>vi‖2
2‖(I − WW †)vi‖2

2

Now we use the fact that (I −WW †) and (I −W †W) are projection matrices. Since v>Pv =
‖Pv‖2

2 for any projection matrix P and vector v, we obtain that

v>i X−1vi = v>i W †vi −

(
v>i W †vi

) (
v>i (I − WW †)>vi

)

‖(I − WW †)vi‖2
2

−

(
v>i (I − W †W)>vi

)
v>i W †vi

‖(I − W †W)>vi‖2
2

+
(1 + v>i W †vi)v>i (I − W †W)>viv

>
i (I − WW †)>vi

‖(I − W †W)>vi‖2
2‖(I − WW †)vi‖2

2

= v>i W †vi − v>i W †vi − v>i W †vi + (1 + v>i W †vi)

= 1

as claimed.
We now show that

∑
i∈I τi = d. Indeed

∑

i∈I

τi =
∑

i∈I

v>i X−1vi =
∑

i∈I

〈X−1, viv
>
i 〉 = 〈X−1,

∑

i∈I

viv
>
i 〉 = 〈X−1, X〉 = d

Similarly, we have

15

COMBINATORIAL ALGORITHMS FOR OPTIMAL DESIGN

max
1
d

log det

(
n∑

i=1

xiviv
>
i

)

n∑

i=1

xi ≤ k

1 ≥ xi ≥ 0 i ∈ [1, n]

(a) Convex relaxation (D-REL) for D-
DESIGN

min
1
d

log det(Y) +
k

d
μ +

1
d

n∑

i=1

ηi − 1

μ + ηi − v>i Y −1vi ≥ 0 i ∈ [1, n]

ηi ≥ 0 i ∈ [1, n]

Y � 0

(b) Dual (D-REL-DUAL) of (D-REL)

Figure 9: Convex Relaxation and its Dual for the D-DESIGN problem without repetitions

∑

i∈I

τijτji =
∑

i∈I

v>i X−1vjv
>
j X−1vi =

∑

i∈I

〈X−1vjv
>
j X−1, viv

>
i 〉 = 〈X−1vjv

>
j X−1,

∑

i∈I

viv
>
i 〉

= 〈X−1vjv
>
j X−1, X〉 = v>j X−1vj

For the last part, observe that X−1 is symmetric and thus τij = τji. Moreover,

τij = v>i X−1vj = (X− 1
2 vi)

>(X− 1
2 vj) ≤ ‖X− 1

2 vi‖2‖X
− 1

2 vj‖ =
√

τiτj

where the inequality follows from Cauchy-Schwarz.

A.1. Local Search for D-DESIGN without Repetitions

In this section, we focus on the variant of D-DESIGN where repetitions of vectors are not allowed,
and show the approximation guarantee of the local search in this setting. In comparison to D-
DESIGN with repetitions, the relaxation now has an upper bound on xi and extra nonnegative vari-
ables ηi on the dual.

The local search algorithm 1 is modified by considering a swap where elements to be included
in the set must not be in the current set. We prove a similar approximation ratio of the local search
algorithm for the without repetition setting.

Theorem 18 LetX be the solution returned by the local search algorithm. Then for all k ≥ d+1,

det(X) ≥

(
k − d

k

)d

ed∙φD
f

and therefore,

det(X)
1
d ≥

k − d

k
∙ φD.

16

COMBINATORIAL ALGORITHMS FOR OPTIMAL DESIGN

We note that in the case k = d, the design problem without repetition is identical to with repetition
since the optimal solution must be linearly independent, and thus the bound from with repetitions
of Theorem 7 applies to obtain d-approximation.

The proof of Theorem 18 is similar toD design requires a different bound on τj from the setting
with repetitions to set a feasible dual solution, since the local search condition no longer applies to
all vectors j ∈ [n] but only for those not in output set I . We first give a bound of τj for j /∈ I .

Lemma 19 For any j /∈ S and any i ∈ S such that τi < 1,

τj ≤
τi

1 − τi
.

ProofWe claim that the local search condition implies that for any i ∈ I and j /∈ I , we have

τj − τiτj + τijτji ≤ τi. (5)

The proof of the claim is identical to that of Claim 1. Hence, we have

τi ≥ τj − τiτj + τ2
ij ≥ τj − τiτj (6)

which finishes the proof of the Lemma.

We now prove the main Theorem.
Proof [Theorem 18]

As in the proof of Theorem 7, we construct a feasible solution to the (D-REL-DUAL) of the
objective value of at most 1

d log det(X) + log k
k−d which is sufficient as a proof of the theorem.

Denote τmin = minj∈I v>j Y −1vj . Let

Y = αX, μ =
k

α(k − d)
τmin, ηj =

{
0, j /∈ I
τj−τmin

α j ∈ I

where α > 0 will be fixed later. We first check the feasibility of the solution. It is clear by definition
that μ, ηj ≥ 0. For j /∈ I , by Lemma 19, we have

v>j Y −1vj =
1
α
∙ τj ≤

1
α
∙

τmin

1 − τmin
≤

1
α
∙

k

k − d
τmin = μ + ηj

where the second inequality follows from τmin ≤ 1
k

∑
i∈I τi = d

k . For i ∈ I , we have

μ + ηi ≥
1
α
∙ (τmin + τi − τmin) = v>i Y −1vi

Therefore, the solution is dual feasible. This solution obtains the objective of 1
d log det(αX)− 1 +

k
dμ + 1

d

∑n
i=1 ηi which is equal to

=
1
d

log det(αX) − 1 +
k

d

k

α(k − d)
τmin +

1
αd

∑

i∈I

(τi − τmin)

=
1
d

log det(αX) − 1 +
k2

αd(k − d)
τmin +

1
αd

(d − kτmin)

=
1
d

log det X + log α − 1 +
1
α

(
k

k − d
τmin + 1

)

≤
1
d

log det X + log α − 1 +
k

α(k − d)

17

COMBINATORIAL ALGORITHMS FOR OPTIMAL DESIGN

where the last inequality is by τmin ≤ d
k . Finally, we set α = k

k−d to obtain the objective value of
dual

1
d

log det(X) + log
k

k − d
− 1 + 1 =

1
d

log det(X) + log
k

k − d

as required.

Appendix B. Proofs from Section 3

B.1. Proof of Performance of Modified Local Search Algorithm for A-DESIGN

B.1.1. PROOF OF THEOREM 12

We first outline the proof of Theorem 12. Let (I,X) be the returned solution of the Algorithm 3.
Observe that X is invertible since X is invertible at the beginning and tr(X−1) only decreases in
the later iterations. Let τij = u>

i X−1uj , hij = u>
i X−2uj , τi = τii, hi = hii, and β = tr(X−1).

Since, X is a symmetric matrix, X−1 is also a symmetric matrix and therefore τij = τji for each
i, j ∈ [n].

Notations For convenience, we restate the notations used in this section.

• V : Input to Modified Local Search Algorithm 4.

• I?: indices of the vectors in the optimal solution of A-DESIGN with input vector set V .

• φA(V) = tr
((∑

i∈I? viv
>
i

)−1
)
.

• U : Output of Vector Capping Algorithm 2 and input to Local Search Algorithm with capped
vectors 3.

• Δ : For every i ∈ [1, n], ||ui||22 ≤ Δ.

• (I,X) : Output of Local Search Algorithm with capped vectors 3 on input (U, k).

• φA
f (U), and φA

f (V) denote the (common) optimal value of objective values of the convex
program with input vectors from V and U respectively.

• For i, j ∈ [1, n], τij = u>
i X−1uj , hij = u>

i X−2uj .

• For i ∈ [n], τi = τii, hi = hii.

Following lemma shows some standard connections between τij , τi, hij and hi’s. Proof of the
lemma is presented in Section B.1.3.

Lemma 20 We have the following.

1. For any i ∈ I , we have τi ≤ 1. Moreover, for any i ∈ I , τi = 1 if and only if X − viv
>
i is

singular.

18

COMBINATORIAL ALGORITHMS FOR OPTIMAL DESIGN

2. We have
∑

i∈I τi = d.

3. For any i, j ∈ [n], hi(1 + τj) − 2τijhij ≥ 0.

4. For any j ∈ [n], we have
∑

i∈I τ2
ij = hj .

5. We have
∑

i∈I hi = β.

6. For any j ∈ [n], we have
∑

i∈I τijhij = hj .

7. For any j ∈ [n], we have τj ≤
√

hj ||uj ||2.

8. For any i ∈ [n], let X−i = X − uiu
>
i . If X−i is invertible, then for any j ∈ [n], we have

• u>
j X−1

−i uj =
τj+τ2

ij−τiτj

1−τi
, and

• u>
j X−2

−i uj = hj +
hiτ

2
ij

(1−τi)2
+ 2τijhij

1−τi
.

Next lemma shows a lower bound on hj in terms of β and φA
f (U) by constructing a dual feasible

solution.

Lemma 21 We havemaxj∈[n] hj ≥
β2

k∙φA
f (U)

.

Next lemma shows an upper bound on hj in terms of β and τj using the local optimality condi-
tion.

Lemma 22 For any j ∈ [n], hj

1+τj
≤ β

k−d+2 .

Before we prove these lemmas, we complete the proof of Theorem 12.
Proof [Theorem 12] By Lemma 22, for any j ∈ [n], hj

1+τj
≤ β

k−d+2 . By Lemma 20, τj ≤
√

hj ||uj ||2 ≤
√

hjΔ. Hence, for any j ∈ [n],

hj

1 +
√

hjΔ
≤

β

k − d + 2
.

By Lemma 21, there exists j ∈ [n] such that hj ≥
β2

k∙φA
f (U)

. Now we note the following claim.

Claim 3 f(x) = x
1+c

√
x
is a monotonically increasing function for x ≥ 0 if c ≥ 0.

Proof f ′(x) = 1
1+c

√
x

+ x ∙ −1
(1+c

√
x)2

∙ c
2
√

x
= 2+c

√
x

(1+c
√

x)2
which is always positive for x ≥ 0 if c ≥ 0.

19

COMBINATORIAL ALGORITHMS FOR OPTIMAL DESIGN

Hence, we have

β2

k∙φA
f (U)

1 +
√

β2

k∙φA
f (U)

Δ
≤

β

k − d + 2

k − d + 2
k

β

φA
f (U)

≤ 1 +

√
ΔφA

f (U)

k

β

φA
f (U)



1 −
d − 2

k
−

√
ΔφA

f (U)

k



 β

φA
f (U)

≤ 1

tr(X−1) = β ≤ φA
f (U)



1 −
d − 2

k
−

√
ΔφA

f (U)

k





−1

.

This finishes the proof of Theorem 12.

Next, we prove Lemma 21 and Lemma 22.
Proof [Lemma 21] We prove the lemma by constructing a feasible solution to A-REL-DUAL(U).
Let

Y = γX−2, λ = max
j∈[n]

u>
j Y uj = γ max

j∈[n]
hj

where γ > 0 will be fixed later. Then, (Y, λ) is a feasible solution to A-REL-DUAL(U). Hence,

φA
f (U) ≥ 2 tr

((
γX−2

)1/2
)
− kγ max

j∈[n]
hj = 2

√
γβ − kγ max

j∈[n]
hj .

Substituting γ =
(

β
k maxj∈[n] hj

)2
, we get φA

f (U) ≥ β2

k maxj∈[n] hj
. This gives us maxj∈[n] hj ≥

β2

kφA
f (U)

which is the desired inequality in Lemma 21.

Proof [Lemma 22] We start the proof by showing an inequality implied by the local optimality of
the solution.

Claim 4 For any i ∈ I, j ∈ [n],

hi(1 + τj) − hj(1 − τi) − 2τijhij ≥ 0 (7)

Proof For i ∈ I , let X−i = X − uiu
>
i . First consider the case when X−i is singular. From

Lemma 20, τi = 1 and hi(1 + τj) − 2τijhij ≥ 0. Hence,

hi(1 + τj) − hj(1 − τi) − 2τijhij ≥ 0.

Now, consider the case when X−i is non-singular. By local optimality condition, we have that
for any i ∈ I, j ∈ [n],

β ≤ tr

((
X−i + uju

>
j

)−1
)

20

COMBINATORIAL ALGORITHMS FOR OPTIMAL DESIGN

By Sherman-Morrison formula,

tr

((
X−i + uju

>
j

)−1
)

= tr(X−1
−i)−

u>
j X−2

−i uj

1 + u>
j X−iuj

= tr(X−1)+
u>

i X−2ui

1 − u>
i X−1ui

−
u>

j X−2
−i uj

1 + u>
j X−iuj

Hence, local optimality of I implies that for any i ∈ I, j ∈ [n],

β ≤ tr(X−1) +
u>

i X−2ui

1 − u>
i X−1ui

−
u>

j X−2
−i uj

1 + u>
j X−iuj

(8)

By Lemma 20, we have u>
j X−1

−i uj =
τj+τ2

ij−τiτj

1−τi
and u>

j X−2
−i uj = hj +

hiτ
2
ij

(1−τi)2
+ 2τijhij

1−τi
.

Substituting these and tr(X−1) = β, u>
j X−2uj = hj , and u>

j X−1uj = τj in equation (8), we get

β ≤ β +
hi

1 − τi
−

hj +
hiτ

2
ij

(1−τi)2
+ 2τijhij

1−τi

1 +
τj+τ2

ij−τiτj

1−τi

0 ≤
hi

1 − τi
−

hj(1 − τi)2 + hiτ
2
ij + 2(1 − τi)τijhij

(1 − τi)(1 − τi + τj + τ2
ij − τiτj)

0 ≤
hi

1 − τi
−

hiτ
2
ij

(1 − τi)(1 − τi + τj + τ2
ij − τiτj)

−
hj(1 − τi)2 + 2(1 − τi)τijhij

(1 − τi)(1 − τi + τj + τ2
ij − τiτj)

0 ≤
hi(1 − τi + τj + τ2

ij − τiτj − τ2
ij)

(1 − τi)(1 − τi + τj + τ2
ij − τiτj)

−
hj(1 − τi) + 2τijhij

1 − τi + τj + τ2
ij − τiτj

0 ≤
hi(1 + τj)

1 − τi + τj + τ2
ij − τiτj

−
hj(1 − τi) + 2τijhij

1 − τi + τj + τ2
ij − τiτj

0 ≤ hi(1 + τj) − hj(1 − τi) − 2τijhij

Last inequality follows from the fact that 1− τi + τj − τiτj + τ2
ij = (1− τi)(1+ τj)+ τ2

ij > 0 which
follows from the fact that τi < 1 (Lemma 20 and X−i is invertible). This concludes the proof of
claim 4.

Next, we sum up equation (7) from claim 4 for all i ∈ Z and get

(1 + τj)
∑

i∈I

hi − hj(|I| −
∑

i∈I

τi) − 2
∑

i∈I

τijhij ≥ 0

By Lemma 20,
∑

i∈I hi = β,
∑

i∈I τi = d, and
∑

i∈I τijhij = hj . We also know that |I| = k
throughout the algorithm. Substituting these in the equation above we get, (1 + τj)β −hj(k− d)−
2hj ≥ 0 or equivalently,

hj

1 + τj
≤

β

k − d + 2
.

This finishes the proof of Lemma 22.

21

COMBINATORIAL ALGORITHMS FOR OPTIMAL DESIGN

B.1.2. THE CAPPING ALGORITHM AND THE PROOF OF LEMMA 11

Some intuition of the capping algorithm. Section 3.3 shows an example where local search
outputs a solution with very large cost, thus showing that local search does not provide any approx-
imation algorithm. The failure of local search algorithm is the presence of extremely long vectors
(||v||22 much larger than A-optimum) which leads to “skewed” eigenvectors and eigenvalues. More-
over, we were able to show that this is the only bottleneck. That is, if all vector norms are small
(compared to A-optimum), solution output by the local search algorithm has cost at most (1 + ε)
times the fractional optimum.

The capping algorithm should then satisfy the following(s): Given an instance with arbitrary
length vectors, output a new instance such that

1. All vectors in the new instance have small length

2. Fractional optimum of the new instance does not increase by more than 1+ ε factor of the old
fractional optimum

3. Any integral solution in the new instance can be translated into an integral solution in the old
instance with the same or lower cost.

If we can get such a procedure, we run the local search on the new instance and get an integral
solution with cost at most (1 + ε) times the fractional optimum of the new solution. Combining
with the properties above, we can then get an integral solution in the old instance with cost at most
(1 + ε)2 of the old fractional optimum.

We note that a more natural capping algorithm where we pick the longest vector, scale this
vector down, and project all other vectors into the space orthogonal to the large vector satisfies
properties (1) and (2) but not (3). That is, given an integral solution in the new instance, we can not
always find an integral solution in the old instance with roughly the same cost.

We now proof of Lemma 11, which says that our capping algorithm satisfies three properties we
want.
Proof [Lemma 11] For ease of notation, we consider the equivalent algorithm of Algorithm 2.

Algorithm 5 Capping vectors length for A-DESIGN

Input: V = {v1, . . . , vn} ⊆ Rd, parameter Δ.
For i ∈ [1, n], w0

i := vi, ` = 0.
while ∃i ∈ [1, n], ||wl

i||
2
2 > Δ do

t` = argmaxi∈[1,n] ||w
l
i||2.

% For all vectors, scale the component along with wt direction.

For j ∈ [1, n], w`+1
j =

(

Id − 1
2

w`
t`

(w`
t`

)>

||w`
t`
||22

)

w`
j

` = ` + 1.
end while
For j ∈ [1, n], uj = w`

j .
Return U = {u1, . . . , un} ⊆ Rd

First observe that the length of the largest vector reduces by a constant factor and length of any
vector does not increase. Thus the algorithm ends in a finite number of iterations. Observe that the

22

COMBINATORIAL ALGORITHMS FOR OPTIMAL DESIGN

first property is trivially true when the algorithm returns a solution. For the second property, we
show that the objective value of any set S only increases over the iterations. In particular, we show
the following claim.

Claim 5 For any set S ⊂ [n] and any ` ≥ 0,

tr





(
∑

i∈S

w`
i (w

`
i)

>

)−1


 ≤ tr





(
∑

i∈S

w`+1
i (w`+1

i)>
)−1





Proof Let Z =

(

Id×d − 1
2

w`
t`

(w`
t`

)>

||w`
t`
||22

)

tr





(
∑

i∈S

w`+1
i (w`+1

i)>
)−1



 = tr





(

Z
∑

i∈S

w`
i (w

`
i)

>Z>

)−1




= tr



Z−1

(
∑

i∈S

w`
i (w

`
i)

>

)−1

Z−1





=

〈

Z−2,

(
∑

i∈S

w`
i (w

`
i)

>

)−1〉

Observe that Z has all eigenvalues 1 except for one which is 1
2 . Thus Z−1 and Z−2 have all

eigenvalues at least one and in particular Z−2 � I . Hence,

tr





(
∑

i∈S

w`+1
i (w`+1

i)>
)−1



 ≥ tr





(
∑

i∈S

w`
i (w

`
i)

>

)−1




as required.

To prove the last property, we aim to obtain a recursion on the objective value of the convex
program over the iterations. Let W ` = {w`

1, . . . , w
`
n} be the set of vectors at the end of `th iteration

and let α?
` = φA

f (W `) denote the objective value of the convex program with the vectors obtained
at the end of `th iteration. We divide the iterations in to epochs where in each epoch the length
of the maximum vector drops by a factor of 2. For ease of notation, we let p = 0 be the last
epoch and p = 1 to be the second last epoch and so on. For any integer p ≥ 0, we let rp :=
argmin` maxi∈[n] ‖w

`
i‖

2
2 ≤ 2p ∙Δ be the last iteration of pth epoch. Thus in the pth epoch the length

of the largest vector is in the interval [2p ∙Δ, 2p+1 ∙Δ). Let T denote the first epoch and thus rT = 0.
Next lemma bounds the increase in the relaxation value in each iteration. The bound depends on
which epoch does the iteration lies in.

Lemma 23 For every ` ∈ [rp, rp−1), we have

α?
`+1 ≤

(

1 +
2−3p/4

k

)(

α?
l +

8
2p/4Δ

)

.

23

COMBINATORIAL ALGORITHMS FOR OPTIMAL DESIGN

Next lemma bounds the number of iterations in the pth epoch.

Lemma 24 For every p ≥ 1, we have rp−1 − rp + 1 ≤ 8
3d.

We first see the proof of last claim of Lemma 11 using Lemma 23 and Lemma 24 and then prove
these lemmas.

Using Lemmas 23 and 24, we bound the increase in relaxation value in each epoch.

Claim 6 For every p ≥ 1, we have

α?
rp−1

≤

(

1 +
2−3p/4

k

) 8
3
d(

α?
rp

+
64d

3 ∙ 2p/4Δ

)

.

Proof From Lemma 23, we have

α?
rp−1

≤

(

1 +
2−3p/4

k

)rp−1−rp+1

α?
rp

+
8

2p/4Δ




rp−1−rp+1∑

i=1

(

1 +
2−3p/4

k

)i




≤

(

1 +
2−3p/4

k

)rp−1−rp+1(

α?
rp

+
8

2p/4Δ
(rp−1 − rp + 1)

)

≤

(

1 +
2−3p/4

k

)rp−1−rp+1(

α?
rp

+
8

2p/4Δ
(rp−1 − rp + 1)

)

≤

(

1 +
2−3p/4

k

) 8
3
d(

α?
rp

+
64d

3 ∙ 2p/4Δ

)

(Lemma 24)

as required.

Solving the recurrence in Claim 6, we get a bound on the total increase in the relaxation cost
throughout the algorithm.

α?
r0

≤



Π>
p=0

(

1 +
2−3p/4

k

) 8
3
d






α?
rT

+
T∑

p=0

64d

3 ∙ 2p/4Δ





≤

(

Π>
p=0

(

1 +
2−3p/4

k

)) 8
3
d(

α?
rT

+
21/4

21/4 − 1
64d

3Δ

)

≤

(

Π>
p=0

(

1 +
2−p/2

k

)) 8
3
d(

α?
rT

+
135d
Δ

)

(9)

Claim 7 For any k ≥ 15,

Π∞
p=0

(

1 +
2−3p/4

k

)

≤ 1 +
3
k
.

24

COMBINATORIAL ALGORITHMS FOR OPTIMAL DESIGN

Proof

Π∞
p=0

(

1 +
2−3p/4

k

)

= 1 +
1
k

∞∑

p=0

2−3p/4 +
1
k2

∞∑

p1=0

∞∑

p2=0

2−3p1/42−3p2/4

+
1
k3

∞∑

p1=0

∞∑

p2=0

∞∑

p3=0

2−3p1/4−3p2/4−3p3/4 . . .

= 1 +

∑∞
p=0 2−3p/4

k
+

(∑∞
p=0 2−3p/4

k

)2

+

(∑∞
p=0 2−3p/4

k

)3

+ . . .

≤ 1 +
2.47
k

+

(
2.47
k

)2

+

(
2.47
k

)3

+ . . .

=
1

1 − 2.47/k

≤ 1 +
3
k

Last inequality follows since k ≥ 15.

Substituting bound from claim 7 in Equation (9), we get

α?
r0

≤

(

1 +
3
k

) 8
3
d(

α?
rT

+
135d

k

)

≤

(

1 + e8 d

k

)(

α?
rT

+
135d

k

)

Last inequality follows from the fact that (1 + a/x)y ≤ 1 + ea x
y if x > y > 0 and a ≥ 1.

By definition, rT = 0. Hence, α?
0 = α?

rT
= φA

f (V). Also, by definition α?
r0

= φA
f (U). Hence,

φA
f (U) ≤

(

1 + e8 d

k

)(

φA
f (V) +

135d

Δ

)

≤

(

1 + 3000
d

k

)(

φA
f (V) + 135

d

Δ

)

.

This finishes the proof of Lemma 11.

To complete the missing details in the proof of Lemma 11, we now prove Lemmas 23 and 24.
Proof [Lemma 23] For simplicity of exposition, we make some simplifying assumptions. Without
loss of generality, we assume that t` = 1, i.e., the longest vector is the first vector in this iteration.
Also, since trace is invariant under rotation of basis, we may assume that w`

1 =
√

γe1 for some
non-negative number γ where e1 =

(
1 0 . . . 0

)> is the first standard vector. Hence,

w`+1
j =

(

Id×d −
1
2
e1e

>
1

)

w`
j .

Since, w`
1 is the largest vector in this iteration and ` ∈ [rp, rp−1), we have

2pΔ ≥ γ > 2p−1Δ. (10)

Let x be the optimal solution for A-REL(w`
1, . . . , w

`
n). We construct a feasible solution y for

A-REL(w`+1
1 , . . . , w`+1

n) with objective at most as required in the lemma. Let δ ≥ 0 be a constant
that will be fixed later. Let

yi =

{
k

k+δ (δ + x1) i = 1
k

k+δxi i ∈ [2, n]

25

COMBINATORIAL ALGORITHMS FOR OPTIMAL DESIGN

Claim 8 y is a feasible solution to A-REL(w`+1
1 , . . . , w`+1

n).

Proof Since, x is a feasible solution of A-REL(w`
1, . . . , w

`
n), we know that

∑n
i=1 xi ≤ k. Thus

n∑

i=1

yi =
k

k + δ
δ +

k

k + δ

n∑

i=1

xi ≤
k

k + δ
δ +

k

k + δ
k ≤ k.

Clearly y ≥ 0 and thus it is feasible.

Now we bound the objective value of the solution y. Let

X =
n∑

i=1

xiw
`
i (w

`
i)

>, Y =
n∑

i=1

yiw
`+1
i (w`+1

i)>.

Claim 9 For any δ > 0, tr(Y −1) ≤ k+δ
k

(
tr(X−1) + 4

δγ

)
.

Before we prove Claim 9, we complete the proof of Lemma 6.
From Equation (10), we have γ ≥ 2p−1Δ and substituting δ = 2−p/2 in Claim 9 we get,

tr(Y −1) ≤

(

1 +
2−p/2

k

)(

tr(X−1) +
8

2p/2Δ

)

.

Since, x is an optimal solution to A-REL(w`
1, . . . , w

`
n), we have α?

` = φA
f (w`

1, . . . , w
`
n) =

tr(X−1). Moreover, since y is a feasible solution to A-REL(w`+1
1 , . . . , w`+1

n), we have

α?
`+1 = φA

f (w`+1
1 , . . . , w`+1

n) ≤ tr(Y −1) ≤

(

1 +
2−p/2

k

)(

α?
` +

8
2p/2Δ

)

.

Hence, it only remains to show the proof of Claim 9.

Proof [Claim 9] Let X =
∑n

i=1 xiw
`
i (w

`
i)

> =

[
p q̄>

q̄ R

]

where p ∈ R, q̄ ∈ Rd, R ∈ Rd−1×d−1.

Then

k + δ

k
Y = δw`+1

1 (w`+1
1)> +

n∑

i=1

xiw
`+1
i (w`+1

i)>

=

(

Id×d −
1
2
e1e

>
1

)(

δw`
1(w

`
1)

> +
n∑

i=1

w`
i (w

`
i)

>

)(

Id×d −
1
2
e1e

>
1

)>

=

[
1
2 0̄>

0̄ I(d−1)×(d−1)

] [
p + δγ q̄>

q̄ R

] [
1
2 0̄>

0̄ I(d−1)×(d−1)

]

=

[
1
4(p + δγ) 1

2 q̄>
1
2 q̄ R

]

Since X is positive definite, we must have p > 0, R is also positive definite and more over
p − q̄>R−1q̄ > 0 (see Proposition 2.8.4 Bernstein (2005)).

26

COMBINATORIAL ALGORITHMS FOR OPTIMAL DESIGN

Fact 1 (Block Inversion formula) For A ∈ Ra×a, D ∈ Rd×d, B ∈ Ra×d, C ∈ Rd×a such that[
A B
C D

]

is invertible, we have

[
A B
C D

]−1

=

[
(A − BD−1C)−1 −(A − BD−1C)−1BD−1

−(D − CA−1B)−1CA−1 (D − CA−1B)−1

]

Applying block inversion formula on X , we get

X−1 =




1

p−q̄>R−1q̄
. . .

. . .
(
R − 1

p q̄q̄>
)−1





Since, X is a positive semi-definite matrix, X−1 is also a positive semi-definite matrix. Hence,
principle submatrices are positive semidefinite. In particular,

p − q̄>R−1q̄ ≥ 0. (11)

and,
R −

1
p
q̄q̄> � 0(d−1)×(d−1) (12)

Next, let us compute tr(X−1).

tr(X−1) =
1

p − q̄>R−1q̄
+ tr

((

R −
1
p
q̄q̄>

)−1
)

≥ tr

((

R −
1
p
q̄q̄>

)−1
)

. (13)

Applying block-inversion formula to k+δ
k Y , we get

(
k + δ

k
Y

)−1

=





(
1
4(p + δγ) − 1

4 q̄>R−1q̄
)−1

. . .

. . .
(
R − 1

(p+δγ)/4
1
4 q̄q̄>

)−1





Hence,
k

k + δ
tr
(
Y −1

)
=

4
δγ + p − q̄>R−1q̄

+ tr

((

R −
1

p + δγ
q̄q̄>

)−1
)

Claim 10
4

δγ + p − q̄>R−1q̄
≤

4
δγ

Proof By Equation (11), p − q̄>R−1q̄ ≥ 0. Hence, the inequality trivially follows.

Claim 11

tr

((

R −
1

p + δγ
q̄q̄>

)−1
)

≤ tr

((

R −
1
p
q̄q̄>

)−1
)

27

COMBINATORIAL ALGORITHMS FOR OPTIMAL DESIGN

Proof Since, δ, α ≥ 0, 1
p+δγ ≤ 1

p . Hence,

1
p + δγ

q̄q̄> �
1
p
q̄q̄>

−
1

p + δγ
q̄q̄> � −

1
p
q̄q̄>

R −
1

p + δγ
q̄q̄> � R −

1
p
q̄q̄>

(

R −
1

p + δγ
q̄q̄>

)−1

�

(

R −
1
p
q̄q̄>

)−1

tr

((

R −
1

p + δγ
q̄q̄>

)−1
)

≤ tr

((

R −
1
p
q̄q̄>

)−1
)

Applying the above two claims, we get

k

k + δ
tr
(
Y −1

)
≤

104

δγ
+ tr

((

R −
1
p
q̄q̄>

)−1
)

k

k + δ
tr
(
Y −1

)
≤

104

δγ
+ tr(X−1) (eq (13))

tr(Y −1) ≤
k + δ

k

(

tr(X−1) +
104

δγ

)

.

This finishes the proof of Claim 9.

Proof of Claim 9 also finishes the proof of Lemma 23.

Proof (Lemma 24) By definition of rp and rp−1, we know that for any ` ∈ [rp, rp−1),

2p−1Δ ≤ max
i∈[n]

||w`
i ||

2
2 ≤ 2pΔ

Let Mrp = Id×d, Rrp = Id×d and for ` ∈ [rp, rp−1), let

M`+1 =

(

Id×d −
1
2

w`
t`
(w`

t`
)>

||w`
t`
||22

)

M`, R`+1 = MT
`+1M`+1.

For ` ∈ [rp, rp−1), consider the potential function tr(R`). We show the following properties about
this potential function:

Claim 12 Let M`, R` be as defined above for ` ∈ [rp, rp−1). Then, tr(Rrp) = d and for ` ∈
[rp, rp−1),

• tr(R`) ≥ 0, and

28

COMBINATORIAL ALGORITHMS FOR OPTIMAL DESIGN

• tr(R`+1) ≤ tr(R`) − 3
8 .

Using Claim 12, it is easy to see that rp−1 − rp + 1 ≤ 8
3d. Hence, to prove Lemma 24, it is enough

to prove Claim 12.
Proof (Claim 12) Since, Rrp = Id×d, tr(Rrp) = d is trivially true. Also, for any ` ∈ [rp, rp−1),
R` = M>

` M` which is positive semidefinite. Hence, tr(R`) ≥ 0 for any ` ∈ [rp, rp−1). For
` ∈ [rp, rp−1),

R`+1 = M>
`+1M`+1 = M>

`

(

Id×d −
1
2

w`
t`
(w`

t`
)>

||w`
t`
||22

)>(

Id×d −
1
2

w`
t`
(w`

t`
)>

||w`
t`
||22

)

M`

Matrix
(

Id×d − 1
2

w`
t`

(w`
t`

)>

||w`
t`
||22

)

is symmetric. Hence,

R`+1 = M>
`

(

Id×d −
w`

t`
(w`

t`
)>

||w`
t`
||22

+
1
4

w`
t`
(w`

t`
)>

||w`
t`
||22

w`
t`
(w`

t`
)>

||w`
t`
||22

)

M`

= M>
`

(

Id×d −
w`

t`
(w`

t`
)>

||w`
t`
||22

+
1
4

w`
t`
(w`

t`
)>

||w`
t`
||22

)

M`

= M>
` M` −

3
4

(M>
` w`

t`
)(w`

t`
)>M`

||w`
t`
||22

= R` −
3
4

(M>
` w`

t`
)(M>

` w`
t`
)>

||w`
t`
||22

By definition w`
t`

= M`w
rp

t`
. Hence,

R`+1 = R` −
3
4

(M>
` M`w

rp

t`
)(M>

` M`w
rp

t`
)>

||w`
t`
||22

= R` −
3
4

(R`w
rp

t`
)(R`w

rp

t`
)>

||w`
t`
||22

And the trace is

tr(R`+1) = tr

(

R` −
3
4

(R`w
rp

t`
)(R`w

rp

t`
)>

||w`
t`
||22

)

= tr(R`) −
3
4

||R`w
rp

t`
||22

||w`
t`
||22

By Cauchy-Shwarz inequality, ||u||22 ≥ (vT u)2/||v||22. Substituting u = R`w
rp

t`
and v = w

rp

t`
, we

get

tr(R`+1) ≤ tr(R`) −
3
4

(
(wrp

t`
)>R`w

rp

t`

)2

||wrp

t`
||22 ∙ ||w

`
t`
||22

= tr(R`) −
3
4

(
(wrp

t`
)>M>

` M`w
rp

t`

)2

||wrp

t`
||22 ∙ ||w

`
t`
||22

= tr(R`) −
3
4

||M`w
rp

t`
||42

||wrp

t`
||22||w

`
t`
||22

= tr(R`) −
3
4

||w`
t`
||42

||wrp

t`
||22||w

`
t`
||22

= tr(R`) −
3
4

||w`
t`
||22

||wrp

t`
||22

Since, ` ∈ [rp, rp−1), ||w`
t`
||22 = maxi∈[n] ||w

`
i ||

2
2 ≥ 2p−1Δ. Also, by definition of rp, ||w

rp

t`
||22 ≤

maxi∈[n] ||w
rp

i ||22 ≤ 2pΔ. Hence,

tr(R`+1) ≤ tr(R`) −
3
4

2p−1Δ
2pΔ

= tr(R`) −
3
8
.

29

COMBINATORIAL ALGORITHMS FOR OPTIMAL DESIGN

as desired.

Hence, the proof of Lemma 24 is completed.

B.1.3. PROOF OF LEMMA 20

Proof [Lemma 20] Proof of first and second statement is same as that in Lemma 8. So, we start by
proving that hi(1 + τj) − 2τijhij ≥ 0.

Claim 13 For any j ∈ [n], X−1/2uju
>
j X−1/2 � τjId.

Proof Since, X is a symmetric matrix, X−1 and X−1/2 are also symmetric matrices. Hence, if
q = X−1/2uj , then X−1/2uju

>
j X−1/2 = qq>. Such a matrix has one non-zero eigenvalue equal to

||q||22 = u>
j X−1uj = τj . Hence, X−1/2uju

>
j X−1/2 � τjId.

Next, we use this to derive further inequalities.

X−1/2uju
>
j X−1/2 � τjId

2X−1/2uju
>
j X−1/2 � 2τjId

2X−1/2uju
>
j X−1/2 � (1 + τj)Id (τj ≤ 1, j ∈ [n])

X−1/2X−1/2uju
>
j X−1/2X−3/2 � X−1/2(1 + τj)X

−3/2 (X−1/2, X−3/2 are PSD)

2X−1uju
>
j X−2 � (1 + τj)X

−2

If A � B, then v>Av ≤ v>Bv for all v. Hence, u>
i (2X−1uju

>
j X−2 ≤ (1 + τj)X−2)ui ≤ 0. Or

in other words, hi(1 + τi) − 2τijhij ≥ 0.
Next, we show that

∑
i∈I τ2

ij = hj .
∑

i∈I

τ2
ij =

∑

i∈I

u>
i X−1uju

>
i X−1uj =

∑

i∈I

u>
i X−1uju

>
j X−1ui

=
∑

i∈u

〈X−1uju
>
j X−1, uiu

>
i 〉

= 〈X−1uju
>
j X−1,

∑

i∈Z

uiu
>
i 〉

= 〈X−1uju
>
j X−1, X〉

= 〈u>
j X−1, XX−1u>

j 〉

= 〈u>
j X−1, u>

j 〉 = u>
j X−1uj = hj

30

COMBINATORIAL ALGORITHMS FOR OPTIMAL DESIGN

Next, we show that
∑

i∈I hi = β.
∑

i∈I

hi =
∑

i∈Z

u>
i X−2ui

=
∑

i∈I

〈X−2, uiu
>
i 〉

= 〈X−2,
∑

i∈I

uiu
>
i 〉 = 〈X−2, X〉

= 〈X−1, X−1X〉

= 〈X−1, Id〉 = tr(X−1)

Next, we show that
∑

i∈I τijhij = hj .
∑

i∈I

τijhij =
∑

i∈I

u>
i X−1uju

>
i X−2uj =

∑

i∈I

u>
i X−1uju

>
j X−2ui

=
∑

i∈I

〈X−1uju
>
j X−2, uiu

>
i 〉

= 〈X−1uju
>
j X−2,

∑

i∈Z

uiu
>
i 〉 = 〈X−1uju

>
j X−2, X〉

= 〈u>
j X−2, u>

j X−1X〉

= 〈u>
j X−2, uj〉 = hj

Next, we show that τj ≤
√

hj ||uj ||2.
√

hj ||uj ||2 =
√

u>
j X−2uj ||uj ||2

=
√
||X−1uj ||22||uj ||2 = ||X−1uj ||2||uj ||2

≥ u>
j X−1uj = τj .

Here, the last inequality follows from Cauchy-Schwarz inequality: for any u, v ∈ Rd, u>v ≤
||u||2||v||2.

Next, we show the last two equalities. For i ∈ [n], X−i = X − uiu
>
i . Let j ∈ [n]. By

Sherman-Morrison formula,

X−1
−i = X−1 +

X−1uiu
>
i X−1

1 − u>
i X−1ui

= X−1 +
X−1uiu

>
i X−1

1 − τi
(14)

Hence,

u>
j X−1

−i uj = u>
j X−1uj +

u>
j X−1uiu

>
i X−1uj

1 − τi

= τj +
u>

j X−1uiu
>
i X−1uj

1 − τi

= τj +
τij ∙ τij

1 − τi
=

τj + τ2
ij − τiτj

1 − τi

31

COMBINATORIAL ALGORITHMS FOR OPTIMAL DESIGN

Squaring the terms in equation (14), we get

X−2
−i = X−2 +

X−1uiu
>
i X−2uiu

>
i X−1

(1 − τi)2
+

X−1uiu
>
i X−2

1 − τi
+

X−2uiu
>
i X−1

1 − τi

= X−2 + hi
X−1uiu

>
i X−1

(1 − τi)2
+

X−1uiu
>
i X−2

1 − τi
+

X−2uiu
>
i X−1

1 − τi

Hence,

u>
j X−2

−i uj = u>
j X−2uj + hi

u>
j X−1uiu

>
i X−1uj

(1 − τi)2
+

u>
j X−1uiu

>
i X−2uj

1 − τi
+

u>
j X−2uiu

>
i X−1uj

1 − τi

= hj + hi
τij ∙ τij

(1 − τi)2
+

τijhij

1 − τi
+

hijτij

1 − τi

= hj +
hiτ

2
ij

(1 − τi)2
+

2τijhij

1 − τi

B.2. Guessing A-Optimum Value φA(V)

We remarked earlier that Algorithm 4 requires the knowledge of the optimum solution value φA(V).
We can guess this value efficiently by performing a binary search. We explain the details and the
proof of the polynomial runtime of the search in this section.

Let α = tr
((∑n

i=1 viv
T
i

)−1
)
. Since we may pick at most k copies of each vector, we have that

φA(V) ≥ tr
((

k
∑n

i=1 viv
T
i

)−1
)

= 1
kα. The fractional solution xi = k

n is feasible for A-REL(V).

Hence, φA
f (V) ≤ tr

((
k
n

∑n
i=1 viv

T
i

)−1
)

= n
k α. Using the result in Allen-Zhu et al. (2017), we get

that φA(V) ≤ (1 + ε)φA
f (V). Hence, φA(V) ∈

[
1
kα, n(1+ε)

k α)
]
. Hence, given an instance, we first

compute α and then perform a binary search for φA(V) in the interval [1kα, n(1+ε)
k α].

Suppose the current range of the optimum is [`, u]. We guess OPT to be `+u
2 (use this as A-

optimum φA(V)) and run the modified local search algorithm. We claim that if it outputs a solution
with cost at most (1+ε) `+u

2 then φA(V) lies in the range [`, (1+ε) `+u
2]. If it outputs a solution with

cost more than (1+ε) `+u
2 , then φA(V) lies in the range [`+u

2 , u]. The first statement is trivially true.
The second statement is equivalent to the following: If φA(V) is less than `+u

2 , then the algorithm
outputs a solution of cost at most (1 + ε) `+u

2 . Proof of this fact follows exactly the same way as
the proof of Theorem 13 by substituting φA(V) with `+u

2 everywhere. The proof still follows, since
the only place we use the meaning of the φA(V) value is in claiming that there exists a fractional
solution with value φA(V). Because φA(V) is less than `+u

2 , this statement is true with φA(V)
replaced by `+u

2 .
We can guess the value of φA(V) upto a factor of 1 + ε in log1+ε(n(1 + ε)) ≤ log(n(1+ε))

ε
iterations. This introduces an additional multiplicative factor of 1+ ε in the approximation factor in
Theorem 13. Hence, we get an approximation factor of (1 + ε)(1 + ε) ≤ (1 + 3ε) and polynomial
number of iterations.

32

COMBINATORIAL ALGORITHMS FOR OPTIMAL DESIGN

B.3. Example of Instances to A-DESIGN

In this section, we give more details deferred from Section 3.3, starting with the proof of Theorem
14.
Proof [Theorem 14] The case d = 2 is proven in Lemma 15, so let d ≥ 3. Let

v1 = [1;
1

N2
; 0; . . . ; 0], v2 = [1;−

1
N2

; 0; . . . ; 0], w1 = [N4; N ; 0; . . . ; 0],

w2 = [N4;−N ; 0; . . . ; 0], U =

{

ui :=
1

N3
ei : i = 3 . . . , d

}

,

and let {v1, v2, w1, w2} ∪ U be the input vectors to A-DESIGN. Let p = bk−d+2
2 c, q = dk−d+2

2 e.
Consider a solution S which picks p and q copies of v1 and v2, and one copy of ui for each i =
3, . . . , d. We claim that S is locally optimal.

Consider a swap of elements S′ = S \ {s}∪ {s′} where s′ 6= s. If s ∈ U , then S′ does not span
full dimension. Hence, s ∈ {v1, v2}. If s′ = ei ∈ U for some i, then the increase of eigenvalue
of S′ in the ith axis reduces the objective by Θ(N3). However, by Claim 2, removing a vector s
will increase the objective by Ω(N4) . Finally, if s′ /∈ U , then the swap appears within the first
two dimension, so the calculation that a swap increases the objective is identical to the case d = 2,
proven in Lemma 15. Therefore, S is locally optimal.

We now observe that the objective given by S is Θ(N4), dominated by eigenvalues of eigenvec-
tors spanning the first two dimension. However, consider a solution S∗ which picks p and q copies
of w1 and w2, and one copy of ui for each i = 3, . . . , d. The objective of S∗ contributed by eigen-
values of eigenvectors lying in the first two dimension is O(N2) (Claim 2), so the total objective of
S∗ is Θ(N3), which is arbitrarily smaller than Θ(N4), the objective of S.

We also remark that the exmple of input vectors to A-DESIGN given in this section also shows
that A-DESIGN objective S → tr

((∑
i∈S viv

>
i

)−1
)
is not supermodular, making the analysis

of algorithms in submodular optimization unapplicable. A set function g : 2U → R is called
submodular if g(S ∪ {u}) − g(S) ≥ g(S′ ∪ {u}) − g(S′) for all S ⊆ S′ ⊆ U and u ∈ U , and g
is supermodular if −g is submodular. In other words, g is supermodular if the marginal loss of g by
adding u is decreasing as the set S is increasing by a partial ordering “⊆”. As a set increases, the
marginal loss of the A-DESIGN objective not only potentially increase, but also has no upper bound.

Remark 25 For any d ≥ 2, T > 0, there exist sets of vectors S (S′ in Rd and a vector w ∈ Rd

such that
tr
((∑

i∈S′ vv>
)−1
)
− tr

((∑
i∈S′ vv> + ww>

)−1
)

tr
((∑

i∈S vv>
)−1
)
− tr

((∑
i∈S vv> + ww>

)−1
) > T

Proof We first assume d = 2. Use the same definitions of vectors from Lemma 15 and set S =
{v1, v2} , S′ = {v1, v2, w1} and w = w2. By Claim 2,

tr





(
∑

i∈S

vv>

)−1


− tr





(
∑

i∈S

vv> + ww>

)−1


 = O(N)

33

COMBINATORIAL ALGORITHMS FOR OPTIMAL DESIGN

and

tr





(
∑

i∈S′

vv>

)−1


− tr





(
∑

i∈S′

vv> + ww>

)−1


 ≥ tr





(
∑

i∈S′

vv>

)−1




− tr

((
w1w

>
1 + w2w

>
2

)−1
)

= Θ(N4),

so the proof is done because N tends to infinity. For the case d ≥ 3, we may pad zeroes to all
vectors in the above example and add a unit vector to S, S′ to each of other d − 2 dimensions.

Appendix C. Approximate Local Search for D-DESIGN

While Theorem 7 proves a guarantee for every local optimum, it is not clear at all whether the local
optimum solution can be obtained efficiently. Here we give a approximate local search algorithm
that only makes improvements when they result in substantial reduction in the objective. We show
that this algorithm is polynomial time as well results in essentially the same guarantee as Theorem 7.

Algorithm 6 Approximate Local search algorithm for D-DESIGN

Input: V = v1, . . . , vn ∈ Rd, d ≤ k ∈ n, parameter δ > 0.
Let I be any (multi)-subset of [1, n] of size k such that X =

∑
i∈I viv

>
i is non-singular matrix.

while ∃i ∈ I, j ∈ [1, n] such that det
(
X − viv

>
i + vjv

>
j

)
> (1 + δ) ∙ det(X) do

X = X − viv
>
i + vjv

>
j

I = I \ {i} ∪ {j}
end while
Return (I,X)

Recall that φD
f denote the be the common optimum value of (D-REL) and its dual (D-REL-

DUAL). I? denote the indices of the vector in the optimal solution and φD = det
(∑

i∈I? viv
>
i

) 1
d

be its objective. We have φD
f ≥ log φD. We have the following result about Algorithm 6.

Theorem 26 Let X be the solution returned by Algorithm 6. Then,

det(X) ≥ e−kδ

(
k − d + 1

k

)d

ed∙φD
f

and therefore,

det(X)
1
d ≥ e−

kδ
d

k − d + 1
k

∙ φD.

Moreover, the running time of the algorithm is polynomial in n, d, k, 1
δ and the size of the input.

34

COMBINATORIAL ALGORITHMS FOR OPTIMAL DESIGN

Proof of the theorem is analogous to the proof of Theorem 7. Let (I,X) be the returned solution
of the algorithm. We also let VI denote the d × |I| matrix whose columns are vi for each i ∈ I .
Observe that X = VIV

>
I and X is invertible since det(X) > 0 at the beginning of the iteration and

it only increases in later iterations. We let τi = v>i X−1vi for any 1 ≤ i ≤ n. Observe that if i ∈ I ,
then τi is the leverage score of row vi with respect to the matrix V >

I . We also τij = v>i X−1vj for
any 1 ≤ i, j ≤ n. As in Theorem 7, we have some properties regarding τi and hi.

Lemma 27 We have the following.

1. For any i ∈ I , we have τi ≤ 1. Moreover, for any i ∈ I , τi = 1 if and only if X − viv
>
i is

singular.

2. We have
∑

i∈I τi = d.

3. For any 1 ≤ j ≤ n, we have
∑

i∈I τijτji = τj .

4. For any 1 ≤ i, j ≤ n, we have τij = τji and τij ≤
√

τiτj .

Proof of the lemma is identical to that of Lemma 8. Next, we show an upper bound on τj for the
approximate local optimal solution.

Lemma 28 For any j ∈ [1, n],

τj ≤
d + δk

k − d + 1
.

Before we prove the lemma, we complete the proof of Theorem 26.
Proof [Theorem 26] We construct a feasible solution to the (D-REL-DUAL) of the objective value
of at most 1

d log det(X) + log k
k−d+1 + kδ

d . This would imply that

O?
f ≤

1
d

log det(X) + log
k

k − d + 1
+

kδ

d

which proves the first part of the theorem. The second part follows since φD
f ≥ log φD.

Let

Y = αX, μ = max
1≤j≤n

v>j Y −1vj =
1
α

max
j∈[1,n]

v>j X−1vj

where α > 0 will be fixed later. Then, (Y, μ) is a feasible solution of (D-REL-DUAL). Hence,

φD
f ≤

1
d

log det(αX) +
k

d
∙

1
α

max
j∈[1,n]

v>j X−1vj − 1

≤ log α +
1
d

log det(X) +
k

dα
∙

d + kδ

k − d + 1
− 1 (Lemma 28)

Setting α = k
k−d+1 , we get

φD
f ≤ log

k

k − d + 1
+

1
d

log det(X) + 1 +
kδ

d
− 1 = log

k

k − d + 1
+

1
d

log det(X) +
kδ

d

as required.

Proof [Lemma 28] Since X is a symmetric matrix, X−1 is also a symmetric matrix and therefore
τij = τji for each i, j. We first show that the approximate local optimality condition implies the
following claim:

35

COMBINATORIAL ALGORITHMS FOR OPTIMAL DESIGN

Claim 14 For any i ∈ I and j ∈ [n], we have

τj − τiτj + τijτji ≤ δ + τi. (15)

Proof Let i ∈ I , j ∈ [n] and X−i = X − viv
>
i . First, consider the case when X−i is singular. From

Lemma 8, we have that τi = 1, τij = τji ≤
√

τiτj ≤ 1. Hence,

τj − τiτj + τijτji ≤ τj − τj + 1 = τi ≤ δ + τi

Now consider the case when X−i is non-singular. By local optimality of I , we get that

det
(
X−i + vjv

>
j

)
≤ (1 + δ) det

(
X−i + viv

>
i

)
(16)

Claim 15 For any invertible matrix A ∈ Rd×d and v ∈ Rd,

det(A + vv>) = det(A)(1 + v>A−1v)

Hence, local optimality of I implies that for any i ∈ I, j ∈ [n],

det(X−i)(1 + v>j X−1
−i vj) ≤ (1 + δ) det(X−i)(1 + v>i X−1

−i vi)

Dividing both sides by det (X−i) , we get for each i ∈ I and j ∈ [n], we have 1 + v>j X−1
−i vj ≤

(1 + δ)(1 + v>i X−1
−i vi) or equivalently,

v>j X−1
−i vj ≤ δ + (1 + δ)v>i X−1

−i vi.

From the Sherman-Morrison Formula we obtain that for any i ∈ I and j ∈ [n], we have

v>j

(

X−1 +
X−1viv

>
i X−1

1 − v>i X−1vi

)

vj ≤ δ + (1 + δ)v>i

(

X−1 +
X−1viv

>
i X−1

1 − v>i X−1vi

)

vi.

Now using the definition of τi, τj and τij , we obtain that for any i ∈ I and 1 ≤ j ≤ n, we have

τj +
τjiτij

1 − τi
≤ δ + (1 + δ)

(

τi +
τ2
i

1 − τi

)

.

Multiplying by 1 − τi, which is positive from Lemma 8, on both sides we obtain that for any i ∈ I
and 1 ≤ j ≤ n,

τj − τiτj + τijτji ≤ δ(1 − τi) + (1 + δ)τi = δ + τi

thus finishing the proof of the claim.

Now summing over the inequality in Claim 14 for all i ∈ I , we get
∑

i∈I

(τj − τiτj + τijτji) ≤
∑

i∈I

δ +
∑

i∈I

τi.

Applying Lemma 8, we obtain that

kτj − dτj + τj ≤ δk + d.

Rearranging, we obtain that

τj ≤
d + δk

k − d + 1

36

COMBINATORIAL ALGORITHMS FOR OPTIMAL DESIGN

Runtime Analysis. One may obtain the worst-case runtime for local search for D-design as fol-
lows. Let L be the maximum number of the length of binary string that encodes the number in each
component across all input vectors vi. Suppose we start with any solution S with nonzero deter-
minant det(VSV T

S) =
∑

R⊆S,|R|=d det(VRV T
R) (Cauchy-Binet), which can be done in polynomial

time by finding a set of linearly independent vectors. Since VSV >
S is PSD, det(VSV T

S) is non-
negative and hence must be strictly positive, and therefore at least one term det(VRV T

R) is strictly
positive. We now use the fact that for a square matrix A, the binary encoding length of det(A) is
at most twice of the encoding length of matrix A (the exact definition of encoding length and the
proof are in Theorem 3.2 of Schrijver (1998)). Since the length of d × d matrix VRV T

R is at most
d2 + Ld2 ≤ 2Ld2, the length of det(VRV T

R) is at most 4Ld2. Hence, the value of the determinant
is at least 2−4Ld2 .

The optimum solution S∗ of D-DESIGN attains objective
∑

R⊂S∗,|R|=d det(VRV T
R) (Cauchy-

Binet). Each term det(VRV T
R) again has length at most 4Ld2, and so is at most 24Ld2 . Therefore,

the optimum is at most
(
k
d

)
∙ 24Ld2

≤ kd24Ld2 . Hence, any solution S with nonzero determinant
is a kd28Ld2-approximation. Each swap increases the objective by a multiplicative factor 1 + δ, so
the algorithm takes at most log1+δ(k

d28Ld2
) ≤ 2

δ d log k ∙ (8Ld2) = O(Ld3 log k
δ) swapping steps

for δ < 1/2. We may use matrix determinant lemma (for rank-one update) to compute the new
determinant objective rather than recomputing it in the next iteration. The matrix determinant lemma
computation takes O(d2) times, so one swapping steps takes O(knd2) time by computing all kn

potential pairs of swaps. Therefore, the local search in total takesO(Ld3 log k
δ knd2) = O(Lknd5 log k

δ)
arithmetic operations.

Appendix D. Approximate Local Search for A-DESIGN

Algorithm 7 Approximate Local search algorithm for A-DESIGN

Input: U = {u1, . . . , un} ⊆ Rd, d ≤ k ∈ N.
Let I be any (multi)-subset of [1, n] of size k such that X =

∑
i∈I viv

>
i is non-singular.

while ∃i ∈ I, j ∈ [1, n] such that tr
(
(X − uiu

>
i + uju

>
j)−1

)
< (1 − δ) tr(X−1) do

X = X − uiu
>
i + uju

>
j

I = I \ {i} ∪ {j}
end while
Return (I,X)

Recall that for any input vectors V = {v1, . . . , vn}, the primal program is A-REL(V) and the
dual program is A-REL-DUAL(V). We index these convex program by input vectors as we aim
to analyze their objectives when the input changes by the capping algorithm. φA

f (V) denote the
(common) optimal value of objective values of the convex program with input vectors from V . I?

denote the indices of the vectors in the optimal solution of A-DESIGN with input vector set V and
let φA(V) = tr

((∑
i∈I? viv

>
i

)−1
)
be its objective. Recall that φA

f (V) ≤ φA(V).
Similar to the local search result for A-DESIGN of Theorem 12, we can prove the following

theorem:

37

COMBINATORIAL ALGORITHMS FOR OPTIMAL DESIGN

Theorem 29 Let X be the matrix returned by Algorithm 7. If ||ui||22 ≤ Δ for all i ∈ [n],

tr(X−1) ≤ φA
f (U)




(

1 −
d − 2

k

)
1

1 + (k − d)δ
−

√
ΔφA

f (U)

k





−1

.

To prove Theorem 29, we can prove the following lemma instead of Lemma 22.

Lemma 30 For any j ∈ [n],
hj

1 + τj
≤

β(1 + (k − d)δ)
k − d + 2

Instead of Theorem 13, Theorem 29 now leads to the following theorem:

Theorem 31 For input vectors V = {v1, . . . , vn} and parameter k, let U = {u1, . . . , un} be the
set of vectors returned by the Capping Algorithm 2 with vector set V and Δ = d

ε2φA(V)
. Let (I,X)

be the solution returned by Algorithm 3 with vector set U and parameter k. If k ≥ 2d
ε4
, δ ≤ εd

2k ,
andε ≤ 0.001 then,

tr





(
∑

i∈I

viv
>
i

)−1


 ≤ (1 + 2ε)φA(V).

Proof of the theorems and lemmas are identical to the corresponding theorems and lemmas
proved in Section 3. Hence, we avoid the tedious calculations in reproving these theorems.

Runtime Analysis We claim that the running times of both capping and approximate local search
forA-DESIGN are polynomial in n, d, k, 1

δ and the size of the input. The runtime analysis of approx-
imate local search algorithm for A-DESIGN is identical to the one for D-DESIGN (with a change of
objective, but the objective can still be computed ion polynomial time).

The significant change is the use of capping algorithm, which needs to be shown to ternimate
in polynomial time. Let L be the maximum number of the length of binary string that encodes the
number in each component across all input vectors vi. Then ||vi||2 ≤

√
d ∙ 22L for all i’s. In each

iteration, the capping algorithm reduces the length of at least one vector by at least half, and hence
by n log 22L

Δ = O(nL log 1
Δ) iteration of capping, all vectors have length at most Δ. As in the

analysis of approximate local search for D-DESIGN, the encoding length of φA(V) is polynomial
in n, d, k, L, and so is log 1

Δ (as Δ = d
ε2φA(V)

). Hence, the capping algorithm takes polynomial (in
n, d, k, L) number of steps.

Appendix E. Greedy Algorithm for D-DESIGN

To prove Theorem 2, we again use the convex programming relaxation for the D-DESIGN prob-
lem. Recall the relaxation (D-REL) and its dual (D-REL-DUAL) shown in figure 2b. φD

f denote
the be the common optimum value of (D-REL) and its dual (D-REL-DUAL). I? denote the indices
of the vector in the optimal solution and let φD = det

(∑
i∈I? viv

>
i

) 1
d be its objective. Observe that

φD
f ≥ log φD. Now, Theorem 2 follows from the following theorem with an appropriate initializa-

tion of first d vectors which will be specified later.

38

COMBINATORIAL ALGORITHMS FOR OPTIMAL DESIGN

Algorithm 8 Greedy algorithm for D-DESIGN

Input: V = v1, . . . , vn ∈ Rd, d ≤ k ∈ N, S0 ⊂ [n].
X0 =

∑
j∈S0

vjv
>
j .

for i = 1 to k − |S0| do
ji = argmaxj∈[n] det(X + vjv

>
j)

Si = Si−1 ∪ {ji}, Xi = Xi−1 + vjiv
>
ji

end for
I = Sk−|S0|, X = Xk−|S0|

Return (I,X).

Theorem 32 For any set of vectors v1, . . . , vn ∈ Rd, suppose S0 ⊂ [1, n] is a set of size d such
that det

(∑
i∈S0

viv
>
i

) 1
d > d

kκ ∙ φD for some 1
e ≥ κ > 0 and k ≥ d

ε

(
log 1

ε + log log 1
κ

)
. Let (I,X)

be the solution returned by Algorithm 8. Then,

det(X) ≥ (1 − 5ε)φD

Before we prove Theorem 32, we state and prove the following theorem, which better conveys main
ideas of the proof.

Theorem 33 For any set of vectors v1, . . . , vn ∈ Rd and k ≥
d log 1

ε
ε , suppose S0 ⊂ [1, n] is a set

of size d such that det
(∑

i∈S0
viv

>
i

) 1
d > d

kκ ∙φD for some 1 > κ > 0. Let s = max{d log log 1
κ , 0}

and (I,X) be the solution returned by picking k − d + s vectors greedily. Then,

det(X) ≥ (1 − 4ε)φD

Theorem 33 gives a bi-criteria approximation where we pick small number s of extra vectors than
the budget k while obtaining near-optimal solution. These s vectors are required to improve the
initial approximation d

kκ to a ratio d
k independent of n or κ.

Proof [Theorem 33] To prove this theorem, we show the following two lemmas. First lemma shows
the increase in the solution value in each greedy step.

Lemma 34 For t ∈ [0, k − |S0| − 1], det(Xt+1) ≥ det(Xt)

(

1 + d
k

eφD
f

(det(Xt))1/d

)

Next lemma shows that this recursion leads to the desired bound in the theorem.

Lemma 35 Let ` ≥ 0. Let z0, . . . , zk−` be such that for t ∈ [0, k− `−1], zt+1 ≥ zt

(
1 + d

kzt

)1/d
.

Then,

1. If z0 < d
k , then for any s ≥ d log log dz0

k , we have

zs ≥
d

ek

2. If z0 ≥ d
ek , then we have

zk−` ≥
k − d − `

k
−

2d
k

log
k

d

39

COMBINATORIAL ALGORITHMS FOR OPTIMAL DESIGN

Proof of Theorem 33 follows from these two lemmas by defining zt = eφD
f

(det(Xt))1/d in the bound
in Lemma 34. Lemma 35 implies that for any initial κ approximation with d initial vectors to the
D design problem of k vectors, s = d log log 1

κ vectors is enough to guarantee d
ek -approximation.

Then, the second bound of Lemma 35 applies for the rest of the greedy algorithm. We now prove
these two lemmas.
Proof [Lemma 34] By definition, det(Xt+1) = maxj∈[n] det(Xt+vjv

>
j). By Lemma 17, det(Xt+

vjv
>
j) = det(Xt)(1 + v>j X−1

t vj). Hence,

det(Xt+1) = det(Xt)

(

1 + max
j∈[n]

v>j X−1
t vj

)

(17)

Next, we lower bound maxj∈[n] v
>
j X−1

t vj by constructing a feasible solution to the (D-REL-
DUAL). Let

Y = αXt, μ = max
j∈[n]

v>j Y −1vj =
1
α

max
j∈[n]

v>j X−1
t vj

where α will be fixed later. Then, (Y, μ) is a feasible solution of (D-REL-DUAL). Hence,

φD
f ≤

1
d

log det(αXt) +
k

d
∙

1
α

max
j∈[n]

v>j X−1
t vj − 1

which implies
dα

k

(

φD
f + 1 − log α −

1
d

log det(Xt)

)

≤ max
j∈[n]

v>j X−1
t vj

Setting, α = eφD
f

det(Xt)1/d , we get

max
j∈[n]

v>j X−1
t vj ≥

d

k

eφD
f

det(Xt)1/d

(

φD
f + 1 − log

eφD
f

det(Xt)1/d
−

1
d

log det(Xt)

)

=
d

k

eφD
f

det(Xt)1/d

Substituting the bounds in equation (17), we get

det(Xt+1) ≥ det(Xt)

(

1 +
d

k

eφD
f

(det(Xt))1/d

)

.

This finishes the proof of Lemma 34.

Proof [Lemma 35] We first prove the first bound. The recursion implies that zt+1

zt
≥
(

d
kzt

) 1
d , which

is equivalent to

log zt+1 ≥
1
d

log
d

k
+

d − 1
d

log zt (18)

Define at := log d
k − log zt. If au ≤ 0 for any u ≤ s, then we are done because zs ≥ zu ≥ d

k . Else,
we can rearrange terms to obtain

at+1 ≤

(

1 −
1
d

)

at (19)

40

COMBINATORIAL ALGORITHMS FOR OPTIMAL DESIGN

Hence, we have

as ≤

(

1 −
1
d

)s

a0

≤ e−
s
d a0 ≤ e−

s
d log

dz0

k
≤ 1

where the last inequality follows from s ≥ log log dz0
k . Therefore, log d

k − log zs = as ≤ 1, giving
the desired bound.

To prove the second bound, the recursion is equivalent to

log
zt+1

zt
≥

1
d

log

(

1 +
d

kzt

)

(20)

It is clear that zt is an increasing sequence in t, hence d
kzt

≤ d
kz0

= e. We use log(1 + x) ≥ x
e

for 0 ≤ x ≤ e (by concavity of log x) to lower bound the right-hand-side of (20) above inequality
to obtain

log
zt+1

zt
≥

1
d
∙

d

ekzt
=

1
ekzt

Thus, by using ex ≥ 1 + x, we have zt+1

zt
≥ e

1
ekzt ≥ 1 + 1

ekzt
, which implies

zt+1 ≥ zt +
1
ek

Therefore, we obtain zt ≥ t
ek for all t ≥ 0.

Next, we apply the bound log(1+x) ≥ x− x2

2 = x
(
1 − x

2

)
whenever 0 ≤ x on the right-hand-

side of (20) to obtain

log
zt+1

zt
≥

1
d

d

kzt

(

1 −
d

2kzt

)

≥
1

kzt
∙

(

1 −
2d

t

)

where the last inequality comes from zt ≥ t
ek . Thus, applying ex ≥ 1 + x, we have zt+1

zt
≥

1 + 1
kzt

∙
(
1 − 2d

t

)
, which implies

zt+1 ≥ zt +
1
k
−

2d

tk
(21)

Summing (21) from t = d to t = k − ` − 1 gives

zk−` ≥ zd +
k − d − ` − 1

k
−

2d
k

(
1
d

+
1

d + 1
+ . . . +

1
k − ` − 1

)

≥
k − d − `

k
−

2d
k

log
k

d

as desired.

41

COMBINATORIAL ALGORITHMS FOR OPTIMAL DESIGN

Now we prove Theorem 33. We first pick s vectors greedily to guarantee that zs ≥ d
ek . (If

z0 > d
ek , then s = 0.) Substituting ` = d and k ≥

d log 1
ε

ε in Lemma 35 gives

zk−` ≥ 1 −
d

k

(

2 + 2 log
k

d

)

≥ 1 −
2ε

log 1
ε

(

1 + log
1
ε

+ log log
1
ε

)

≥ 1 − 4ε

where the second inequality follows from 1
x (1 + log x) being decreasing function on x ≥ 1, and

the last inequality is by 1 + x ≤ ex with x = log 1
ε .

We are now ready to prove the main theorem.
Proof [Theorem 32] The proof is identical to the proof of Theorem 33 except that, after using
s = log log 1

κ vectors to obtain d
ek -approximation, we only take k − d − s greedy steps instead of

k − d greedy steps. Hence, we set ` = d + s to the second bound of Lemma 35 to obtain

zk−` ≥
k − 2d − s

k
−

2d
k

log
k

d
= 1 −

d

k

(

2 + 2 log
k

d

)

−
s

k

We have 1− d
k

(
2 + 2 log k

d

)
≥ 1−4ε identical to the proof of Theorem 33. By k ≥ d

ε log log 1
κ = s

ε ,
we have s

k ≤ ε, completing the proof.

We finally note on combinatorial algorithms for setting initial solution of size d. One may
use volume sampling algorithms to achieve n

k -approximation to optimal objective in for picking d
vectors (Avron and Boutsidis, 2013). Alternatively, we can perform local search on initial d vectors
to obtain d(1 + δ)-approximation in time polynomial in 1

δ , as shown in Section C. Since we know
that the relaxation gaps of A- and D- optimal design are at most k

k−d+1 , we can bound the optimum
values of design problems between picking d and k vectors to be at most k multiplicative factor apart
(Avron and Boutsidis, 2013; Nikolov et al., 2019). The approximation ratios of two algorithms are
hence n and dk(1+ δ), respectively. We formalize this argument and the result with locally optimal
initial set as the following statement, which proves Theorem 2.

Corollary 36 Greedy algorithm initialized by a local optimal set of size d returns a (1 + 5ε)-
approximation whenever k ≥ d

ε (log 1
ε + log log d + 1).

We first argue the ratio of optimum D-DESIGN values when the size of the set is d and k. Denote
φD(d), φD(k) = φD the optimum D-DESIGN objective det

(∑
i∈S viv

>
i

) 1
d on size d, k, respec-

tively. Denote φD
f (d), φD

f (k) = φD
f the common optimum value of (D-REL) and its dual (D-REL-

DUAL) for size constraints of d, k respectively.

Claim 16 We have
φD(k) ≤ kφD(d)

Proof Because (D-REL) is a relaxation of D-DESIGN (up to log scale), we have

exp φD
f (k) ≥ φD(k), exp φD

f (d) ≥ φD(d)

42

COMBINATORIAL ALGORITHMS FOR OPTIMAL DESIGN

We may scale any optimal solution of (D-REL) with size k to size d by applying xi := d
kxi

coordinate-wise. Therefore, we have

φD
f (d) ≥ φD

f (k) + log
d

k

Finally, we know that the integrality gap of (D-REL) is k
k−d+1 . This follows from the approximation

result of local search algorithm which compares the objective value of returned set to the objective to
the convex relaxation. (This exact bound of the gap also follows from previous work on proportional
volume sampling (Nikolov et al., 2019).) We apply this gap for size budget d to obtain

exp φD
f (d) ≤ dφD(d)

Therefore, we have
φD(k) ≤ exp φD

f (k) ≤
k

d
exp φD

f (d) ≤ kφD(d) (22)

as desired.

Proof [Corollary 36] Theorem 1 implies that a local search solution satisfies d-approximation when
budget size is d. Hence, by Claim 16, a local solution is dk-approximation compared to D-DESIGN
with a size budget of k.

We now apply Theorem 32: it is sufficient to show that

k ≥
d

ε

(

log
1
ε

+ log log
1
κ

)

(23)

for κ = 1
d2 , so the result follows.

Appendix F. Greedy Algorithm for A-DESIGN

In this section, we prove Theorem 4. As remarked in the case of local search algorithm, we need
to modify the instance to cap the length of the vectors in the case of greedy algorithm as well. This
is done by Algorithm 2. As shown in Lemma 11, the value of any feasible solution only increases
after capping and the value of the convex programming relaxation increases by a small factor if k is
large.

We now show that the greedy algorithm run on these vectors returns a near optimal solution.
For any input vectors V = {v1, . . . , vn}, the primal program is A-REL(V) and the dual program is
A-REL-DUAL(V). φA

f (V) denotes the (common) optimal value of objective values of the convex
program with input vectors from V . I? denotes the indices of the vectors in the optimal solution of
A-DESIGN with input vector set V and φA(V) = tr

((∑
i∈I? viv

>
i

)−1
)
be its objective. We show

the following theorem about Algorithm 9 in terms of capping length Δ.

Theorem 37 Let ||ui||22 ≤ Δ, S0 ⊆ [n] of size r ≥ d such that tr
((∑

i∈S0
uiu

>
i

)−1
)
≤ κ ∙φA(U)

for some κ ≥ 1, and Λ =
√

ΔφA
f (U)

k . Let (I,X) be the solution returned by Algorithm 9. Then we
have

tr(X−1) ≤

(

1 −
d + r

k
− 2Λ log

k max{Λκ, 1}
d

)−1

φA(U)

43

COMBINATORIAL ALGORITHMS FOR OPTIMAL DESIGN

Algorithm 9 Greedy algorithm for A-DESIGN

Input: U = u1, . . . , un ∈ Rd, d ≤ k ∈ N, S0 ⊂ [n].
X0 =

∑
j∈S0

uju
>
j .

for i = 1 to k − |S0| do

ji = argminj∈[n] tr

((
X + uju

>
j

)−1
)

Si = Si−1 ∪ {ji}, Xi = Xi−1 + ujiu
>
ji

end for
I = Sk−|S0|, X = Xk−|S0|.
Return (I,X).

Similar to the analysis of local search for A-DESIGN, capping vector length is necessary to obtain
theoretical guarantee. We will optimize over the length Δ later in Theorem 40.
Proof [Theorem 37] To prove the theorem, we show the following two lemmas:

Lemma 38 For any t ∈ [0, k− |S0|], let zt = tr(X−1
t)/φA

f (U). Then, for any t ∈ [0, k− |S0| − 1],

zt+1 ≤ zt





1 −

zt

k

(

1 + zt

√
ΔφA

f (U)

k

)







Lemma 39 Let Λ ≥ 0 and ` ≥ 0. Suppose zt+1 ≤ zt

(
1 − zt

k(1+ztΛ)

)
for all t ≥ 0, then

1. If z0 > 1
Λ , then for any s ≥ 2Λk log(Λz0), we have

zs ≤
1
Λ

2. If z0 ≤ 1
Λ , we have

zk−` ≤

(

1 −
d + `

k
− 2Λ log

k

d

)−1

Proof [Lemma 38] By definition,

tr(X−1
t+1) = min

j∈[n]
tr

((
Xt + uju

>
j

)−1
)

.

By Sherman-Morrison formula,

tr(X−1
t+1) = tr(X−1

t) − max
j∈[n]

u>
j X−2

t uj

1 + u>
j X−1

t uj

44

COMBINATORIAL ALGORITHMS FOR OPTIMAL DESIGN

Note that u>
j X−1

t uj = 〈uj , X
−1
t uj〉. By Cauchy-Schwarz inequality, u>

j X−1
t uj is at most

||uj ||2||X
−1
t uj ||2 = ||uj ||2

√
u>

j X−2
t uj . Since, ||uj ||22 ≤ Δ, we get u>

j X−1
t uj ≤

√
Δ ∙ u>

j X−2
t uj .

Hence,

tr(X−1
t+1) ≤ tr(X−1

t) − max
j∈[n]

u>
j X−2

t uj

1 +
√

Δ ∙ u>
j X−2

t uj

(24)

Next, we lower bound maxj∈[n] u
>
j X−2

t uj by finding a feasible solution to A-REL-DUAL. Let,

Y = γX−2
t , λ = max

j∈[n]
u>

j Y uj = γ max
j∈[n]

u>
j X−2

t uj

where γ > 0 will be fixed later. Then, (Y, λ) is a feasible solution to A-REL-DUAL(U). Hence,

φA
f (U) ≥ 2 tr

((
γX−2

t

)1/2
)
− kγ max

j∈[n]
u>

j X−2
t uj

max
j∈[n]

u>
j X−2

t uj ≥
1
kγ

(
2
√

γ tr(X−1
t) − φA

f (U)
)

Substituting γ =

(
φA

f (U)

tr(X−1
t)

)2

, we get

max
j∈[n]

u>
j X−2

t uj ≥
tr(X−1

t)2

kφA
f (U)

.

As proved in Claim 3, x
1+c

√
x
is a monotonically increasing function for x ≥ 0 if c ≥ 0. Hence,

max
j∈[n]

u>
j X−2

t uj

1 +
√

Δ ∙ u>
j X−2

t uj

≥

tr(X−1
t)2

kφA
f (U)

1 +

√

Δ tr(X−1
t)2

kφA
f (U)

Substituting zt = tr(X−1
t)

φA
f (U)

, we get

max
j∈[n]

u>
j X−2

t uj

1 +
√

Δ ∙ u>
j X−2

t uj

≥
tr(X−1

t)
k

zt

1 + zt

√
ΔφA

f (U)

k

.

Substituting this inequality in Equation (24), we get

tr(X−1
t+1) ≤ tr(X−1

t)





1 −

zt

k

(

1 + zt

√
ΔφA

f (U)

k

)





 .

Substituting zt = tr(X−1
t)/φA

f (U) and zt+1 = tr(X−1
t+1)/φA

f (U), we get

zt+1 ≤ zt





1 −

zt

k

(

1 + zt

√
ΔφA

f (U)

k

)





 .

45

COMBINATORIAL ALGORITHMS FOR OPTIMAL DESIGN

This finishes the proof of Lemma 38.

Proof [Lemma 39] We first prove the first bound. If zt ≤ 1
Λ for any t < s, then we are done, so

assume ztΛ ≥ 1. The recursion then implies

zt+1 ≤ zt

(

1 −
zt

k(2ztΛ)

)

= zt

(

1 −
1

2kΛ

)

Therefore,

zs ≤ z0

(

1 −
1

2kΛ

)s

≤ z0e
− 1

2Λ
s ≤ z0e

− log Λz0 =
1
Λ

as desired.
We now prove the second bound. Let at = 1

zt
. Then the recursion zt+1 ≤ zt

(
1 − zt

k(1+ztΛ)

)

can be rewritten as
at+1

at
≥

(

1 −
1

k (Λ + at)

)−1

(25)

Applying
(
1 − 1

k(Λ+at)

)−1
≥ 1 + 1

k(Λ+at)
and rearranging terms, we obtain

at+1 ≥ at +
at

k(Λ + at)
= at +

1
k
−

Λ
k(Λ + at)

(26)

It is obvious from (25) that at is an increasing sequence, and hence at ≥ a0 ≥ Λ for all t ≥ 0. So
(26) implies

at+1 ≥ at +
1
k
−

Λ
k(2Λ)

= at +
1
2k

(27)

Therefore, we have at ≥ t
2k for all t ≥ 0.

Using this bound at ≥ t
2k , the recursion (26) also implies

at+1 ≥ at +
1
k
−

Λ

k(t
2k)

= at +
1
k
−

2Λ
t

(28)

Summing 28 from t = d to t = k − ` − 1 gives

ak−` ≥ ad +
k − d − `

k
− 2Λ

k−`−1∑

t=d

1
t

=
k − d − `

k
− 2Λ log

k

d

proving the desired bound.

We now prove Theorem 37. The first bound of Lemma 39 shows that with initial approximation
κ, we require s = max{0, 2Λk log(Λκ)} steps to ensure 1

Λ approximation ratio. After that, we can

46

COMBINATORIAL ALGORITHMS FOR OPTIMAL DESIGN

pick k − r − s vectors. Hence, we apply the second bound of Lemma 39 with ` = r + s to get the
approximation ratio of X as

zk−` ≤

(

1 −
d + r + s

k
− 2Λ log

k

d

)−1

=

(

1 −
d + r

k
− 2Λ

(

log
k

d
+ max {log Λκ, 0}

))−1

=

(

1 −
d + r

k
− 2Λ log

k max{Λκ, 1}
d

)−1

proving the desired bound.

Next, we tune Δ in Theorem 37 and use Lemma 11 to obtain the final bound, from which
Theorem 4 will follow.

Theorem 40 For input vectors V = {v1, . . . , vn} and parameter k ∈ N, let U = {u1, . . . , un} be
the set of vectors returned by the Capping Algorithm 2 with input vector set V and Δ = d

εφA(V)
.

Let S0 ⊆ [n] be an initial set of size r ≥ d where tr
((∑

i∈S0
uiu

>
i

)−1
)
≤ κ ∙ φA(U) for some

κ ≥ 1. Let (I,X) be the solution returned by Algorithm 9 with vector set U and parameter k. If
k ≥ r

ε +
d(log2 κ+log2 1

ε)
ε3

and ε ≤ 0.0001, then

tr





(
∑

i∈I

viv
>
i

)−1


 ≤ (1 + 6000ε)φA(V)

Proof By Lemma 11, substituting Δ, we have

φA
f (U) ≤

(

1 +
5000d

k

)
(
φA

f (V) + 150εφA(V)
)

≤ (1 + 5500ε)φA(V) (29)

where the last inequality follows from φA(V) ≥ φA
f (V), k ≥ d

ε . and ε ≤ 0.0001. Thus, we have

Λ =

√
ΔφA

f (U)

k
=

√
dφA

f (U)

εkφA(V)
≤

√
d(1 + 5500ε)

εk
≤ 2

√
d

εk

Next, Theorem 37 implies that

tr(X−1) ≤

(

1 −
d + r

k
− 2Λ log

k max{Λκ, 1}
d

)−1

φA(U) (30)

Note that

2Λ log
k max{Λκ, 1}

d
≤ 2Λ log

kκ

d

≤ 4

√
d

εk
log

k

d
+ 4

√
d

εk
log κ

47

COMBINATORIAL ALGORITHMS FOR OPTIMAL DESIGN

Since 1√
x

log x is a decreasing function on x ≥ 8, applying k ≥
d log2 1

ε
ε3

, we have
√

d

εk
log

k

d
≤

ε

log 1
ε

(

3 log
1
ε

+ log log
1
ε

+ log 2

)

≤ 4ε

where the last inequality follows from ε ≤ 0.0001. Also, applying k ≥
d log2 1

κ
ε3

, k ≥
d log2 1

ε
ε3

≥ d
ε ,

and k ≥ r
ε , we have

√
d

εk
log κ ≤ ε,

d

k
≤ ε,

r

k
≤ ε

Hence, (30) implies that

tr(X−1) ≤ (1 − 22ε)−1 φA(U) (31)

Combining (31) with Lemma 11 and (29) gives

tr





(
∑

i∈I

viv
>
i

)−1


 ≤ tr(X−1) ≤ (1 − 22ε)−1 (1 + 5500ε)φA(V)

≤ (1 + 6000ε)φA(V)

where the last inequality follows from ε ≤ 0.0001.

We note an efficient combinatorial algorithm of volume sampling (Avron and Boutsidis, 2013;
Dereziński and Warmuth, 2017) that gives n

k -approximation to the A-DESIGN problem of selecting
d vectors (note that these randomized algorithms can be derandomized, e.g. by rejection sampling).
Alternatively, from our result on approximate local search algorithm for A-DESIGN in Section D,
we can also initialize with c ∙d vectors for an absolute constant c and perform local search algorithm
to obtain 1 + 0.0001 + δ approximation in time polynomial in 1

δ for some small δ. Similar to
Claim 16, we can relate the optimum of A-DESIGN of size budget d ≤ r ≤ k and k to be at most
factor k

r−d+1 apart (Avron and Boutsidis, 2013; Nikolov et al., 2019). Hence, the volume sampling
on initial set of size d and local search on initial set of size cd give approximation ratio of n and

k
cd−d+1(1 + 0.0001 + δ) ≤ k

d , respectively; that is, κ can be set to n or k
d in Theorem 40 and we

adjust r accordingly. Using the local search on initial cd vectors to set the value of κ and r, we
prove Theorem 4.
Proof [Theorem 4] Suppose k ≥ C ∙ d

ε3
log2 1

ε for some absolute constant C > 0 to be specified

later and ε ≤ 0.0001. By Theorem 40, it is sufficient to have k ≥ r
ε +

d(log2 κ+log2 1
ε)

ε3
, where

κ = k
d and r = cd by initializing the greedy algorithm with an output from an approximate local

search algorithm of size cd for an absolute constant c. By checking the derivative of f(k) :=

k − cd
ε −

d(log2 k
d
+log2 1

ε)
ε3

, f(k) is increasing when 2d log k
d ≤ kε3, which is true for a large enough

C. Hence, we only need to show f(k) ≥ 0 for k = C ∙ d
ε3

log2 1
ε . The condition f(k) ≥ 0 is

equivalent to

C log2 1
ε
≥ log2 C log2 1

ε

ε3
+ log2 1

ε
+ cε2 (32)

48

COMBINATORIAL ALGORITHMS FOR OPTIMAL DESIGN

It is clear that log2 1
ε + cε2 ≤ C

2 log2 1
ε for C ≥ 3 + c. We also have

log2 C log2 1
ε

ε3
=

(

log C + 3 log
1
ε

+ 2 log log
1
ε

)2

≤

(

log C + 5 log
1
ε

)2

≤

(√
C

2
− 5 + 5 log

1
ε

)2

≤

(√
C

2
log

1
ε

)2

where we use x ≤ ex for x = log 1
ε , log C ≤

√
C − 5 for a sufficiently large C, and log 1

ε ≥ 1 for
the three inequalities above, respectively. Hence, we finished the proof of (32).

49

	Introduction
	Our Results and Contributions
	Related Work
	Organization

	Local Search for
	Local Search Algorithm
	Relaxations
	 without Repetitions

	Local Search for
	Capping Vectors
	Local Search Algorithm
	Instances with Bad Local Optima

	Acknowledgement
	Proofs from Section 2
	Local Search for without Repetitions

	Proofs from Section 3
	Proof of Performance of Modified Local Search Algorithm for A-design
	Proof of Theorem 12
	The Capping Algorithm and the Proof of Lemma 11
	Proof of Lemma 20

	Guessing A-Optimum Value A(V)
	Example of Instances to

	Approximate Local Search for
	Approximate Local Search for
	Greedy Algorithm for
	Greedy Algorithm for

