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Abstract

In this paper, we revisit the Empirical Risk Minimization problem in the non-
interactive local model of differential privacy. In the case of constant or low
dimensions (p � n), we first show that if the loss function is (∞, T )-smooth,
we can avoid a dependence of the sample complexity, to achieve error α, on the
exponential of the dimensionality p with base 1/α (i.e., α−p), which answers a
question in [19]. Our approach is based on polynomial approximation. Then, we
propose player-efficient algorithms with 1-bit communication complexity and O(1)
computation cost for each player. The error bound is asymptotically the same
as the original one. With some additional assumptions, we also give an efficient
algorithm for the server. In the case of high dimensions (n� p), we show that if
the loss function is a convex generalized linear function, the error can be bounded
by using the Gaussian width of the constrained set, instead of p, which improves
the one in [19].

1 Introduction

Differential privacy [7] has emerged as a rigorous notion for privacy which allows accurate data
analysis with a guaranteed bound on the increase in harm for each individual to contribute her
data. Methods to guarantee differential privacy have been widely studied, and recently adopted in
industry [15, 8].

Two main user models have emerged for differential privacy: the central model and the local one. In
the central model, data are managed by a trusted central entity which is responsible for collecting
them and for deciding which differentially private data analysis to perform and to release. A classical
use case for this model is the one for collecting census data [9]. In the local model, each individual
manages his/her proper data and discloses them to a server through some differentially private
mechanisms. The server collects the (now private) data of each individual and combines them into a
resulting data analysis. A classical application of this model is the one aiming at collecting statistics
from user devices like in the case of Google’s Chrome browser [8], and Apple’s iOS-10 [15, 20].

In the local model, there are two basic kinds of protocols: interactive and non-interactive. Bassily
and Smith [2] have recently investigated the power of non-interactive differentially private protocols.
This type of protocols seems to be more appealing to real world applications, due to the fact that they
can be implemented more easily (i.e., less influenced by the network latency issue). Both Google and
Apple use the non-interactive model in their projects [15, 8].
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Despite being used in industry, the local model has been much less studied than the central one. Part
of the reason for this is that there are intrinsic limitations in what one can do in the local model.
As a consequence, many basic questions, that are well studied in the central model, have not been
completely understood in the local model, yet.

In this paper, we study differentially private Empirical Risk Minimization in the non-interactive local
model. Before showing our contributions and discussing comparisons with previous works, we first
discuss our motivations.

Problem setting [19, 24, 23] Given a convex, closed and bounded constraint set C ⊆ R
p, a

data universe D, and a loss function ` : C × D 7→ R. A dataset D = {x1, x2 · · · , xn} ∈ Dn

defines an empirical risk function: L̂(θ;D) = 1
n

∑n
i=1 `(θ, xi). When the inputs are drawn i.i.d

from an unknown underlying distribution P on D, we can also define the population risk function:
LP(θ) = ED∼Pn [`(θ;D)]. Now we have the following two kinds of excess risk, one is empirical risk,
i.e. ErrD(θpriv) = L̂(θpriv;D)−minθ∈C L̂(θ;D), the other one is population risk, i.e. ErrP(θpriv) =
LP(θpriv)−minθ∈C LP(θ).

The problem that we study in this paper is finding θpriv ∈ C under non-interactive local differential
privacy (see Definition 1) which makes the empirical and population excess risk as low as possible.
Alternatively, when dimensionality p is a constant or low, we can express this problem in terms of
sample complexity as finding n as small as possible for achieving ErrD ≤ α and ErrP ≤ α, where α
is the user specified error tolerance (or simply called error).

Motivation Smith et al. [19] prove the following result concerning the problem for general convex
1-Lipschitz loss functions over a bounded constraint set.

Theorem 1. Under the assumptions above, there is a non-interactive ε-LDP algorithm such that for
all distribution P on D, with probability 1− β, we have

ErrP(θpriv) ≤ Õ
(

(

√
p log2(1/β)

ε2n
)

1
p+1

)

. (1)

A similar result holds for ErrD, with at least Ω(n
1

p+1 ) for both computation and communication
complexity for each user. Alternatively, to achieve error α, the sample complexity must satisfies
n = Ω̃(

√
pcpε−2α−(p+1)), where c is some constant (approximately 2). More importantly, they

also show that generally, the dependence of the sample size over the dimensionality p, in the terms
α−(p+1) and cp, is unavoidable.

This situation is somehow undesirable: when the dimensionality is high and the target error is low, the
dependency on α−(p+1) could make the sample size quite large. However, several results have already
shown that for some specific loss functions, the exponential dependency on the dimensionality can
be avoided. For example, Smith et al. [19] show that, in the case of linear regression, there is a non-
interactive (ε, δ)-LDP algorithm2 whose sample complexity for achieving error α for the empirical
risk is n = Ω(p log(1/δ)ε−2α−2). Similarly, Zheng et al. [27] showed that for logistic regression, if
the sample complexity satisfies n > O

(

p( 8rα )4r log log(8r/α)( 4rε )
2cr log(8r/α)+2( 1

α2ε2 )
)

, where c and
r are independent of p, then there is a non-interactive (ε, δ)-LDP algorithm with ErrP(θpriv) ≤ α.

This propels us to the following natural questions: i) Is there any algorithm that has a lower sample
complexity than the one in Theorem 1? ii) The above discussion indicates that there is a gap between
the general case and the case of specific loss functions. Is it possible to introduce some natural
conditions on the loss function that guarantee non-interactive ε-LDP with sample complexity that
is not exponential in the dimensionality p? iii) The computation and communication costs for each
user in the protocols of Smith et al. [19] depend on n, which could be high for large datasets. Is it
possible to make them independent of n? iv) The bounds in Smith et al. [19] are not very meaningful
in high dimensions. However, in machine learning it is quite common to have high dimensionality,
i.e., n � p. Thus, can we obtain some more meaningful bounds for the high dimensional case?
Below we investigate the answer to each question.

2Although, these two results are formulated for non-interactive (ε, δ)-LDP, in the rest of the paper we will
focus on non-interactive ε-LDP algorithms.
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Our Contributions

1. We first show that by using Bernstein polynomial approximation, it is possible to achieve a
non-interactive ε-LDP algorithm in constant or low dimensions with the following properties.
If the loss function is (8, T )-smooth (see Definition 5), with a sample complexity of n =

Ω̃
(

(c0p
1
4 )pα−(2+ p

2 )ε−2
)

, the excess empirical risk is ensured to be ErrD ≤ α, If the
loss function is (∞, T )-smooth, the sample complexity can be further improved to n ≥
Ω̃(4p(p+1)D2

ppε
−2α−4), where Dp depends only on p. Note that in the first case, the sample

complexity is lower than the one in [19] when α ≤ O( 1p ), and in the second case, the sample

complexity depends only polynomially on α−1, instead of the exponential dependence as in
[19]. Furthermore, our algorithm does not assume convexity for the loss function and thus
can be applied to non-convex loss functions.

2. Then, we address the efficiency issue, which has only been partially studied before [19].
Following an approach similar to [2], we propose an algorithm for our loss functions which
has only 1-bit communication cost and O(1) computation cost for each client, and achieves
asymptotically the same error bound as the original one. Additionally, we show also a novel
analysis for the server. This shows that if the loss function is convex and Lipschitz and the
convex set satisfies some natural conditions, then we have an algorithm which achieves the
error bound of O(pα) and runs in polynomial time in 1

α (instead of exponential time as in
[19]) if the loss function is (∞, T )-smooth.

3. Next, we consider the high dimensional case, and show that if the loss function is a convex
generalized linear function, then an ε-LDP algorithm is achievable with its risk bound
depending only on n and the Gaussian Width of C, which is much smaller than the one in
[19]. Particularly, if C is an `1 norm ball or a distribution simplex, the risk bound depends
only on n and log p, instead of p.

4. Lastly, we show the generality of our technique by applying the polynomial approximation
techniques to other problems. We give non-interactive ε-LDP algorithms for answering the
class of k-way marginals queries and the class of smooth queries, by using different type of
polynomials approximations (details are in Supplementary Material).

Methods Sample Complexity
(omit Poly(p) terms)

Communication
Cost (each
user)

Computation
Cost (each
user)

Running
time for the
server

Assumptions

Claim 4 in
[19]

Ω̃(4pα−(p+2)ε−2) 1 O(1) O
(

( 1
α
)p
)

Lipschitz

Theorem 10
in [19]

Ω̃(2pα−(p+1)ε−2) Ω(n
1

p+1 ) Ω(n
1

p+1 ) Not Men-
tioned

Lipschitz and
Convex

This Paper Ω̃
(

(c0p
1

4 )pα−(2+ p

2
)ε−2

)

1 O(1) O(( 1
α
)
p

2 ) (8, T )-smooth

This Paper Ω̃(4p(p+1)D2
p
ε−2α−4) 1 O(1) O

(

Poly( 1
α
)
)

(∞, T )-smooth

Table 1: Comparisons with existing results in [19] (we assume p is a constant). When the error
α ≤ O( 1p ), the sample complexity of (8, T )-smooth loss functions is less than the existing result.

When the error α ≤ O( 1
16p ), the sample complexity for (∞, T )-smooth loss functions is less than

the previous results.

Table 1 shows some comparisons with the results in [19]. Due to the space limit, all proofs and some
details of the algorithms are left to the Supplementary Material.

2 Related Works

ERM in the local model of differential privacy has been studied in [12, 3, 6, 5, 27, 19, 25]. Ka-
siviswanathan et al. [12] showed a general equivalence between learning in the local model and
learning in the statistical query model. Duchi et al. [6, 5] gave the lower bound O(

√
d

ε
√
n
) and optimal
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algorithms for general convex optimization; however, their optimal procedure needs many rounds
of interactions. The works that are most related to ours are [27, 19]. Zheng et al. [27] considered
some specific loss functions in high dimensions, such as sparse linear regression and kernel ridge
regression.

Note that although it also studied a class of loss functions (i.e., Smooth Generalized Linear Loss
functions) and used the polynomial approximation approach, the functions investigated in our paper
are more general, which include linear regression and logistic regression, and the approximation
techniques are quite different. Smith et al. [19] studied general convex loss functions for population
excess risk and showed that the dependence on the exponential of the dimensionality is unavoidable.
In this paper, we show that such a dependence in the term of α is actually avoidable for a class of loss
functions. This even holds for non-convex loss functions, which is quite different from all existing
works. Also we study the high dimensional case by using dimension reduction. The polynomial
approximation approach has been used under central model in [1, 26, 21, 27] and the dimension
reduction has been used in local model in [2, 27].

3 Preliminaries

Differential privacy in the local model. In LDP, we have a data universe D, n players with each
holding a private data record xi ∈ D, and a server that is in charge of coordinating the protocol. An
LDP protocol proceeds in T rounds. In each round, the server sends a message, which we sometime
call a query, to a subset of the players, requesting them to run a particular algorithm. Based on the
queries, each player i in the subset selects an algorithm Qi, run it on her data, and sends the output
back to the server.

Definition 1. [12, 19] An algorithm Q is ε-locally differentially private (LDP) if for all pairs
x, x′ ∈ D, and for all events E in the output space of Q, we have Pr[Q(x) ∈ E] ≤ eεPr[Q(x′) ∈ E].
A multi-player protocol is ε-LDP if for all possible inputs and runs of the protocol, the transcript of
player i’s interaction with the server is ε-LDP. If T = 1, we say that the protocol is ε non-interactive
LDP.

Algorithm 1 1-dim LDP-AVG

1: Input: Player i ∈ [n] holding data vi ∈ [0, b],
privacy parameter ε.

2: for Each Player i do

3: Send zi = vi + Lap( bε )
4: end for
5: for The Server do
6: Output a = 1

n

∑n
i=1 zi.

7: end for

Since we only consider non-interactive LDP
through the paper, we will use LDP as non-
interactive LDP below. As an example that will
be useful in the sequel, the next lemma shows an
ε-LDP algorithm for computing 1-dimensional
average.

Lemma 1. Algorithm 1 is ε-LDP. Moreover, if
player i ∈ [n] holds value vi ∈ [0, b] and n >
log 2

β with 0 < β < 1, then, with probability
at least 1 − β, the output a ∈ R satisfies: |a −
1
n

∑n
i=1 vi| ≤

2b
√

log 2
β√

nε
.

Bernstein polynomials and approximation.
We give here some basic definitions that will
be used in the sequel; more details can be found in [1, 13, 14].

Definition 2. Let k be a positive integer. The Bernstein basis polynomials of degree k are defined as
bv,k(x) =

(

k
v

)

xv(1− x)k−v for v = 0, · · · , k.

Definition 3. Let f : [0, 1] 7→ R and k be a positive integer. Then, the Bernstein polynomial of f of
degree k is defined as Bk(f ;x) =

∑k
v=0 f(v/k)bv,k(x). We denote by Bk the Bernstein operator

Bk(f)(x) = Bk(f, x).

Definition 4. [14] Let h be a positive integer. The iterated Bernstein operator of order h is defined
as the sequence of linear operators B(h)

k = I − (I −Bk)
h =

∑h
i=1

(

h
i

)

(−1)i−1Bik, where I = B0
k

denotes the identity operator and Bik is defined as Bik = Bk ◦ Bk−1
k . The iterated Bernstein

polynomial of order h can be computed as B(h)
k (f ;x) =

∑k
v=0 f(

v
k )b

(h)
v,k(x), where b(h)v,k(x) =

∑h
i=1

(

h
i

)

(−1)i−1Bi−1
k (bv,k;x).
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Iterated Bernstein operator can well approximate multivariate (h, T )-smooth functions.
Definition 5. [14] Let h be a positive integer and T > 0 be a constant. A function f : [0, 1]p 7→ R is
(h, T )-smooth if it is in class Ch([0, 1]p) and its partial derivatives up to order h are all bounded by T .
We say it is (∞, T )-smooth, if for every h ∈ N it is (h, T )-smooth.
Definition 6. Assume f : [0, 1]p 7→ R and let k1, · · · , kp, h be positive integers. The multivariate
iterated Bernstein polynomial of order h at y = (y1, . . . , yp) is defined as:

B
(h)
k1,...,kp

(f ; y) =

p
∑

j=1

kj
∑

vj=0

f(
v1
k1
, . . . ,

vp
kp

)

p
∏

i=1

b
(h)
vi,ki

(yi). (2)

We denote B(h)
k = B

(h)
k1,...,kp

(f ; y) if k = k1 = · · · = kp.

Theorem 2. [1] If f : [0, 1]p 7→ R is a (2h, T )-smooth function, then for all positive integers k and

y ∈ [0, 1]p, we have |f(y)− B
(h)
k (f ; y)| ≤ O(pTDhk

−h). Where Dh is a universal constant only
related to h.

Our settings We conclude this section by making explicitly the settings that we will consider
throughout the paper. We assume that there is a constraint set C ⊆ [0, 1]p and for every x ∈ D and
θ ∈ C, `(·, x) is well defined on [0, 1]p and `(θ, x) ∈ [0, 1]. These closed intervals can be extended to
arbitrarily bounded closed intervals. Our settings are similar to the ‘Typical Settings’ in [19], where
C ⊆ [0, 1]p appears in their Theorem 10, and `(θ, x) ∈ [0, 1] from their 1-Lipschitz requirement and
‖C‖2 ≤ 1.

4 Low Dimensional Case

Definition 6 and Theorem 2 tell us that if we know the value of the empirical risk function, i.e. the
average of the sum of loss functions, on each of the grid points ( v1k ,

v2
k · · · vpk ), where (v1, · · · , vp) ∈

T = {0, 1, · · · , k}p for some large k, then we can approximate it well. Our main observation is that
this can be done in the local model by estimating the average of the sum of loss functions on each of
the grid points using Algorithm 1. This is the idea of Algorithm 2.

Algorithm 2 Local Bernstein Mechanism

1: Input: Player i ∈ [n] holding data xi ∈ D, public loss function ` : [0, 1]p ×D 7→ [0, 1], privacy
parameter ε > 0, and parameter k.

2: Construct the grid T = { v1k , . . . ,
vp
k }{v1,...,vp}, where {v1, . . . , vp} ∈ {0, 1, · · · , k}p.

3: for Each grid point v = ( v1k , . . . ,
vp
k ) ∈ T do

4: for Each Player i ∈ [n] do
5: Calculate `(v;xi).
6: end for
7: Run Algorithm 1 with ε = ε

(k+1)p and b = 1 and denote the output as L̃(v;D).
8: end for
9: for The Server do

10: Construct Bernstein polynomial, as in (2), for the perturbed empirical loss L̃(v;D). Denote
L̃(·, D) the corresponding function.

11: Compute θpriv = argminθ∈C L̃(θ;D).
12: end for

Theorem 3. For any ε > 0 and 0 < β < 1, Algorithm 2 is ε-LDP. Assume that the loss function
`(·, x) is (2h, T )-smooth for all x ∈ D, some positive integer h, and constant T . If n, ε and β satisfy

the condition of n = Ω
(

log 1
β
4p(h+1)

ε2D2
h

)

, then by setting k = O
(

(
Dh

√
pnε

2(h+1)p
√

log 1
β

)
1

h+p

)

, with probability

at least 1− β we have:

ErrD(θpriv) ≤ Õ
( log

h
2(h+p) ( 1β )D

p
p+h

h p
p

2(h+p) 2(h+1)p h
h+p

n
h

2(h+p) ε
h

h+p

)

, (3)

where Õ hides the log and T terms.
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From (3) we can see that in order to achieve error α, the sample complexity needs to be n =

Ω̃(log 1
βD

2p
h

h p
p
h 4(h+1)pε−2α−(2+ 2p

h
)). This implies the following special cases.

Corollary 1. If the loss function `(·, x) is (8, T )-smooth for all x ∈ D and some constant T , and
n, ε, β, k satisfy the condition in Theorem 3 with h = 4, then with probability at least 1 − β, the
sample complexity to achieve α error is n = Õ

(

α−(2+ p
2 )ε−2(45

√
D4p

1
4 )p

)

.

Note that the sample complexity for general convex loss functions in [19] is n = Ω̃
(

α−(p+1)ε−22p
)

,
which is considerably worse than ours when α ≤ O( 1p ).

Corollary 2. If the loss function `(·, x) is (∞, T )-smooth for all x ∈ D and some constant T , and
n, ε, β, k satisfy the condition in Theorem 3 with h = p, then with probability at least 1 − β, the

output θpriv of Algorithm 2 satisfies: ErrD(θpriv) ≤ Õ
(

log 1
β

1
4D

1
2
p p

1
4
√
2
(p+1)p

n
1
4 ε

1
2

)

, where Õ hides the log

and T terms. So, to achieve error α, with probability at least 1− β, we have sample complexity:

n = Ω̃
(

max{4p(p+1) log(
1

β
)D2

ppε
−2α−4,

log 1
β 4

p(p+1)

ε2D2
p

}
)

. (4)

It is worth noticing that from (3) we can see that when the term h
p grows, the term α de-

creases. Thus, for loss functions that are (∞, T )-smooth, we can get a smaller dependency
than the term α−4 in (4). For example, if we take h = 2p, then the sample complexity is

n = Ω(max{cp
2

2 log 1
βD2p

√
pε−2α−3,

log 1
β
cp

2

ε2D2
2p

}) for some constants c, c2. When h → ∞, the

dependency on the error becomes α−2, which is the optimal bound, even for convex functions.

Our analysis of the empirical excess risk does not use the convexity assumption. While this gives
a bound which is not optimal, even for p = 1, it also says that our result holds for non-convex loss
functions and constrained domain set, as long as they are smooth enough.

From (4), we can see that our sample complexity is lower than the one in [19] when α ≤ O( 1
16p ).

Note that to achieve the best performance for the ERM problem in low dimensional space, quite often
the error is set to be extremely small, e.g., α = 10−10 ∼ 10−14[10].

Using the convexity assumption of the loss function, and a lemma in [18], we can also give a bound
on the population excess risk, details are in Supplementary Material.

Corollary 1 and 2 provide answers to our motivative questions. That is, for loss functions which are
(8, T )-smooth, we can obtain a lower sample complexity; if they are (∞, T )-smooth, there is an ε-
LDP algorithm for the empirical and population excess risks achieving error αwith sample complexity
which is independent from the dimensionality p in the term α. This result does not contradict the
results in Smith et al. [19]. Indeed, the example used to show the unavoidable dependency between
the sample complexity and α−Ω(p), to achieve the α error, is actually non-smooth.

However, in our result of (∞, T )-smooth case, like in the one by Smith et al. [19], there is still a
dependency of the sample complexity in the term cp, for some constant c. There is still the question
about what condition would allow a sample complexity independent from this term. We leave this
question for future research and we focus instead on the efficiency and further applications of our
method.

5 More Efficient Algorithms

Algorithm 2 has computational time and communication complexity for each player which is expo-
nential in the dimensionality. This is clearly problematic for every realistic practical application. For
this reason, in this section, we study more efficient algorithms. In order for convenience, in this part
we only focus on the case of (∞, T )-smooth loss functions, it can be easily extended to general cases.

Consider the following lemma, showing an ε-LDP algorithm for computing p-dimensional average
(notice the extra conditions on n and p compared with Lemma 1).
Lemma 2. [16] Consider player i ∈ [n] holding data vi ∈ R

p with coordinate between 0 and b.

Then for 0 < β < 1, 0 < ε such that n ≥ 8p log( 8pβ ) and
√
n ≥ 12

ε

√

log 32
β , there is an ε-LDP
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algorithm, LDP-AVG, with probability at least 1− β, the output a ∈ R
p satisfying: maxj∈[p] |aj −

1
n

∑n
i=1[vi]j | ≤ O( bp√

nε

√

log p
β )

3. Moreover, the computation cost for each user is O(1).

By using this lemma and by discretizing the grid with some interval steps, we can design an
algorithm which requires O(1) computation time and O(log n)-bits communication per player
(see Supplementary Material). However, we would like to do even better and obtain constant
communication complexity. Instead of discretizing the grid, we apply a technique, firstly proposed by
Bassily and Smith [2], which permits to transform any ‘sampling resilient’ ε-LDP protocol into a
protocol with 1-bit communication complexity. Roughly speaking, a protocol is sampling resilient if
its output on any dataset S can be approximated well by its output on a random subset of half of the
players.

Since our algorithm only uses the LDP-AVG protocol, we can show that it is indeed sampling resilient.
Inspired by this result, we propose Algorithm 3 and obtain the following theorem.

Theorem 4. For 0 < ε ≤ ln 2 and 0 < β < 1, Algorithm 3 is ε-LDP. If the loss function `(·, x) is

(∞, T )-smooth for all x ∈ D and n = Ω(max{ log 1
β
4p(p+1)

ε2D2
p

, p(k + 1)p log(k + 1), 1
ε2 log

1
β }), then

by setting k = O
(

(
Dp

√
pnε

2(p+1)p
√

log 1
β

)
1
2p
)

, the results in Corollary 2 hold with probability at least 1− 4β.

Moreover, for each player the time complexity is O(1), and the communication complexity is 1-bit.

Algorithm 3 Player-Efficient Local Bernstein Mechanism with 1-bit communication per player

1: Input: Player i ∈ [n] holding data xi ∈ D, public loss function ` : [0, 1]p ×D 7→ [0, 1], privacy
parameter ε ≤ ln 2, and parameter k.

2: Preprocessing:
3: Generate n independent public strings
4: y1 = Lap( 1ε ), · · · , yn = Lap( 1ε ).
5: Construct the grid T = { v1k , . . . ,

vp
k }{v1,...,vp}, where {v1, . . . , vp} ∈ {0, 1, · · · , k}p.

6: Partition randomly [n] into d = (k + 1)p subsets I1, I2, · · · , Id, and associate each Ij to a grid
point T (j) ∈ T .

7: for Each Player i ∈ [n] do
8: Find Il such that i ∈ Il. Calculate vi = `(T (l);xi).

9: Compute pi = 1
2

Pr[vi+Lap( 1
ε
)=yi]

Pr[Lap( 1
ε
)=yi]

10: Sample a bit bi from Bernoulli(pi) and send it to the server.
11: end for
12: for The Server do
13: for i = 1 · · ·n do
14: Check if bi = 1, set z̃i = yi, otherwise z̃i = 0.
15: end for
16: for each l ∈ [d] do
17: Compute v` = n

|Il|
∑

i∈I` z̃i
18: Denote the corresponding grid point ( v1k , . . . ,

vp
k ) ∈ T of Il, then denote

L̂(( v1k , · · · ,
vp
k );D) = vl.

19: end for
20: Construct Bernstein polynomial for the perturbed empirical loss L̃ as in Algorithm 2. Denote

L̃(·, D) the corresponding function.
21: Compute θpriv = argminθ∈C L̃(θ;D).
22: end for

Now we study the algorithm from the server’s complexity perspective. The polynomial construction
time complexity is O(n), where the most inefficient part is finding θpriv = argminθ∈C L̃(θ,D).
In fact, this function may be non-convex; but unlike general non-convex functions, it can be α-
uniformly approximated by a convex function L̂(·;D) if the loss function is convex (by the proof of

3Note that here we use an weak version of their result
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Theorem 3), although we do not have access to it. Thus, we can see this problem as an instance of
Approximately-Convex Optimization, which has been studied recently by Risteski and Li [17].

Definition 7. [17] We say that a convex set C is µ-well-conditioned for µ ≥ 1, if there exists a

function F : Rp 7→ R such that C = {x|F (x) ≤ 0} and for every x ∈ ∂K : ‖∇2F (x)‖2

‖∇F (x)‖2
≤ µ.

Lemma 3 (Theorem 3.2 in [17]). Let ε,∆ be two real numbers such that ∆ ≤ max{ ε2

µ
√
p ,

ε
p}× 1

16348 .

Then, there exists an algorithm A such that for any given ∆-approximate convex function f̃ over a µ-
well-conditioned convex set C ⊆ R

p of diameter 1 (that is, there exists a 1-Lipschitz convex function
f : C 7→ R such that for every x ∈ C, |f(x)− f̃(x)| ≤ ∆), A returns a point x̃ ∈ C with probability
at least 1− δ in time Poly(p, 1ε , log

1
δ ) and with the following guarantee f̃(x̃) ≤ minx∈C f̃(x) + ε.

Based on Lemma 3 (for L̃(θ;D)) and Corollary 2, and taking ε = O(pα), we have the following.

Theorem 5. Under the conditions in Corollary 2, and assuming that n =
Ω̃(4p(p+1) log(1/β)D2

ppε
−2α−4), that the loss function `(·, x) is 1-Lipschitz and convex for

every x ∈ D, that the constraint set C is convex and ‖C‖2 ≤ 1, and satisfies µ-well-condition
property (see Definition 7), if the error α satisfies α ≤ C µ

p
√
p for some universal constant C, then

there is an algorithm A which runs in Poly(n, 1
α , log

1
β ) time4 for the server, and with probability

1 − 2β the output θ̃priv of A satisfies L̃(θ̃priv;D) ≤ minθ∈C L̃(θ;D) + O(pα), which means that
ErrD(θ̃priv) ≤ O(pα).

Combining with Theorem 4, 5 and Corollary 2, and taking α = α
p , we have our final result:

Theorem 6. Under the conditions of Corollary 2, Theorem 4 and 5, and for any C µ√
p > α > 0, if

we further set n = Ω̃(4p(p+1) log(1/β)D2
pp

5ε−2α−4), then there is an ε-LDP algorithm, with O(1)

running time and 1-bit communication per player, and Poly( 1
α , log

1
β ) running time for the server.

Furthermore, with probability at least 1− 5β, the output θ̃priv satisfies ErrD(θ̃priv) ≤ O(α).

6 High Dimensional Case

In previous sections, p is assumed to be either constant or low. In this section, we present a general
method for a family of loss functions, called generalized linear functions, in high dimensions.

A function `(w, x) is called a Generalized Linear Function (GLF) [18] if `(w, x) = f(〈w, y〉, z) for
x = (y, z), where y ∈ R

p is the data and z is the label. GLF is a rather general family of functions,
including many frequently encountered loss functions like logistic regression, hinge loss, linear
regression, etc. We assume that the dataset satisfies the conditions of ‖yi‖ ≤ 1 and ‖zi‖ ≤ 1 for all
i ∈ [n]. Also, f is assumed to be 1-Lipschitz, convex, ‖C‖2 ≤ 1 and isotropic 5.

Our algorithm is inspired by the one in [11]. We first conduct a dimension reduction for the whole
dataset. That is, D′ = {(Φy1, z1), · · · , (Φyn, zn)}, where Φ ∈ R

m×p. Then, we run a modified
version of the algorithm in [19] (since the algorithm in [19] assumes log n ≥ p). After obtaining
the private estimator w̄ ∈ R

m, we use a compressive sensing technique (by solving an optimization
problem [22]) to recover wpriv ∈ R

p. Our method is based on the following lemma in [4].

Lemma 4. Let Φ̃ ∈ R
m×p be an random matrix, whose rows are i.i.d mean-zero, isotropic, sub-

Gaussian random variable in R
d with ψ = ‖Φi‖ψ2

. Let Φ = 1√
m
Φ̃ and S be a set of points in

Rd. Then, there is a constant C > 0 such that for any 0 < γ, β < 1. Pr[supa∈S |‖Φa‖2 − ‖a‖2 ≤
γ‖a‖2] ≤ β, provided that m ≥ Cψ4

γ2 max{G2
S , log(1/β)}.

Theorem 7. Under the assumption above. For any ε ≤ 1
4 , Algorithm 4 is O(ε)-LDP. Moreover,

settingm = Θ(ψ
4(GC+

√
logn)2 log(n/β)
γ2 ), where γ = Θ(

ψ
√

(GC+
√
logn) log(1/β) 4

√
log(n/β)√

nε
), then with

4Note that since here we assume n is at least exponential in p, thus the algorithm is not fully polynomial.
5A convex set is isotropic if a random vector chosen uniformly from K according to the volume is isotropic.

A random vector a is isotropic if for all b ∈ R
p,E[〈a, b〉2] = ‖b‖2, such as polytope.
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Algorithm 4 DR-ERM-LDP

1: Input: Player i ∈ [n] holding data xi = (yi, zi) ∈ D, where ‖yi‖ ≤ 1, privacy parameter ε.
2: The server generates an random sub-Gaussian matrix Φ ∈ R

m×p in Lemma 3, and sends the
seed of this random matrix to all players.

3: for Each Player i do
4: Calculate x′i = (Φyi, zi)
5: Run the modified ε-local DP algorithm of [19](see Supplementary Material for more details)

for D′ = {x′i}ni=1 with constrained set C = ΦC and loss function f . The server get the output as
w̄ ∈ R

m.
6: end for
7: The server solves the following problem wpriv = argminw∈Rp ‖w‖C , subject to Φw = w̄.

probability at least 1−β, ErrD(wpriv) = Õ
(( log(1/β)ψ

√
(GC+

√
logn) 4

√
log(n/β)√

nε

)
1

1+m ), where ψ is the
subgaussian norm of the distribution of Φ, and GC is the Gaussian width of C.

Corollary 3. If Φ is a standard Gaussian random matrix, C is the `1 norm ball Bp1 or the distribution
simplex in R

p, and n � p ≤ ecn for some constant c, then the bound in Theorem 7 is just

Õ
(( log(1/β) 4

√
log p 4

√
log(n/β)√

nε

)
1

1+m
)

, where m = O(nε2 log p
√

log(n/β)). Note that the bound in

this case is always better than the one in Theorem 1, since it is always O(1).
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