
  

Abstract— Left ventricular assist device (LVAD) has been 

considered as a treatment option for end-stage congestive heart 

failure to assist an ailing heart to meet the circulatory demand. 

However, several important issues still challenge the long-term 

use of the LVAD as a bridge to transplantation or as a 

destination therapy. Specifically, the development of 

appropriate feedback controllers to adjust pump speed is 

crucial. The controller should automatically adjust the pump 

speed to meet different demands of blood without inducing 

suction. Suction means that the LVAD seeks to pump out more 

blood than that is available in the heart, which can collapse the 

failing heart and result in sudden death. In addition, 

hemodynamics involves variability due to patients’ 

heterogeneity and stochastic nature of cardiovascular system. 

The variability poses significant challenges for the control 

system design of an LVAD. A self-tuning controller is developed 

in this work, which can adjust the pump speed to meet the 

physiological demands for different levels of activity, while 

accounting for variations in hemodynamics. A stochastic state 

space model will be firstly developed using a generalized 

polynomial chaos (gPC) expansion, which describes interactions 

between the LVAD and the cardiovascular system. In addition, 

the model can further predict the variability in pump flow for a 

finite future control horizon based on the current available 

information of pump flow. The prediction of variance is used as 

a tuning criterion to update the controller gain in a real time 

manner. The efficiency of the self-tuning control algorithm in 

this work is validated with two different case scenarios, 

representing different levels of activity for heart failure patients. 

The results show that the controller can successfully adjust the 

pump speed while avoiding suction. 

I. INTRODUCTION 

Heart transplantation is well recognized as the best therapy 
for end-stage congestive heart failure (HF) patients [1]. Due to 
limited donor hearts, however, patients generally wait for a 
long period of time before finding a match, and approximately 
30% of them will die during the waiting of heart 
transplantation [2]. Mechanical circulatory assist device, i.e., 
the left ventricular assist device (LVAD), has been used as a 
treatment option for end-stage HF patients [3]. The goal of 
LVAD is to assist an ailing heart to meet circulatory demands 
of patients and provide them with as close to a normal lifestyle 
as possible before a compatible donor heart is available, or 
until the ailing heart recovers in some cases [4]. 

As a bridge to heart transplantation or as a destination 
therapy, LVAD can benefit HF patients to a greater extent and 

allow them to return to home and work environment. Patients 
may experience wide variations in the demands of blood flow 
as they become more active. To meet the varying physiological 
activities, LVAD must be able to adjust its speed. An 
important challenge is the development of appropriate control 
algorithm to regulate pump speed to meet different circulatory 
demands. For example, regurgitation may occur if the pump 
speed is too slow, causing the backflow from the aorta to the 
left ventricle. Also, suction can happen if the pump speed is 
too high, which means the LVAD seeks to draw more blood 
from the ventricle than the available blood in the heart. The 
control algorithm should avoid these extremes, while tuning 
the speed to meet the body’s demand during different physical 
activities. 

Several control algorithms have been reported to tune 
pump speed. A gain-scheduling controller was used to regulate 
pump speed by maintaining the pressure difference between 
the aorta and the left ventricle [5]. However, such a method 
cannot assure adequate cardiac output. Using the heart rate, a 
feedback control strategy was proposed [6], but the strategy 
cannot prevent suction. A Gaussian process was used to build 
a model to predict the viscosity for the control of LVAD. 
However, the accuracy of the model highly depends on the 
training set and has limited ability for responding to sudden 
changes in blood demands [7]. It is worth mentioning that all 
the aforementioned techniques require additional information 
such as ventricular pressure for control purposes, which is not 
easy to measure. However, it is reported that pump flow can 
be easily measured [2] or estimated [8]. Thus, we developed a 
control algorithm using pump flow data in this work to 
automatically adjust the pump speed. 

The cardiovascular system generally involves a multitude 
of interacting subsystems and networks. The dynamics often 
vary between different individuals and within the same patient 
over time. The inter- and/or intra-patient variability, i.e., 
uncertainty, poses a significant challenge to develop efficient 
control algorithms for LVADs. Sampling-based methods such 
as Monte Carlo (MC) simulations are one of the most popular 
techniques to deal with such uncertainty. However, MC can be 
computationally demanding, as it requires many simulations 
to ensure accurate results. Recently, the generalized 
polynomial chaos (gPC) expansion has been used in different 
engineering problems such as control [9], optimization [10], 
and stochastic modeling [11], which shows the superiority of 
gPC in terms of computation time. 

This paper aims to develop a feedback control algorithm, 
using information extracted from pump flow, to regulate pump 
speed, while taking into account uncertainty such as the time 
varying physical activity of patients. The control strategy can 
automatically adjust the pump speed to meet the blood demand 
and avoid the suction. The paper is organized as follows. The 
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nonlinear model of cardiovascular system implanted with a 
LVAD, and theoretical background of gPC are given in 
Section II. The control design is presented in Section III, 
followed by results in Section IV and conclusions in Section 
V. 

II. THEORETICAL BACKGROUND 

A. Cardiovascular-Pump Model 

Several dynamical models with varying complexity have 
been previously developed [2, 12, 13]. Following previous 
work in [2], it is assumed that pulmonary circulation and right 
ventricle are healthy in this work. Thus, their effect on the 
LVAD can be neglected. A previous reported circuit model 
with sixth-order nonlinear time-varying lumped parameters is 
used to simulate left ventricle hemodynamics and the LVAD, 
which is described as [2]: 

ẋ = A(t)x + P(t)p(x) + bu(t)  (1) 

 y = [0 0 0 0 0 1]x (2) 

where x is the states used in the cardiovascular-LVAD model, 
and y is the measured pump flow. Table I shows the 
description of each state in x. A(t) and P(t) are 6×6 and 6×2 
time-varying matrices, b  is a 6×1  constant vector, and p(x) 
represents the nonlinear behavior of mitral and aortic values. 

In addition, u(t)=ω2(t)  is the control variable, i.e., pump speed 
ω(t) that will be tuned to meet the physiological demands. This 
model was experimentally validated by comparing the 
hemodynamic waveforms obtained from the model to a patient 
[2]. The matrices, values of model parameters and their 
descriptions can be found in [2]. 

TABLE I.  DESCRIPTION OF STATES USED IN THE MODEL [2] 

Variables in [2] Definition of variables in [2]  

x1 Left ventricular pressure  

x2 Left atrial pressure 

x3 Arterial pressure 

x4 Aortic pressure 

x5 Total blood flow 

x6 LVAD pump flow 

For completeness, the model is briefly discussed here. A 
compliance CR is used to set the preload pressure in the left 
atrium. A resistor RM and a diode DM are used to describe the 
mitral valve, while a resistor RA and a diode DA are used for 
the aortic valve. The left ventricle C(t) is approximated with a 
time-varying compliance and CA is the aortic compliance. A 
four-element Windkessel model (Rc, Ls, Cs, and Rs) is used to 
represent the afterload in [2], where resistor Rs is the systemic 
vascular resistance (SVR). Physiologically, it varies according 
to the level of activity, e.g., SVR decreases when patients are 
exercising and has a larger value when patients are resting. 
Since the level of activity cannot be known with certainty, it 
will be assumed as a stochastic variable in this work, which is 
approximated with a gPC model as discussed later. The 
dynamic behavior of the left ventricle can be defined by an 
elastance function E(t) = 1/C(t) as [14, 2]: 

E(t) = (Emax -  Emin)E'(t') + Emin (3) 

where E'(t') is the normalized elastance, and Emax and Emin are 
the maximum and the minimum value of E(t), respectively. 
For ailing hearts, a smaller value of Emax is often used in the 
model [2]. Physiologically, it means that the pumping strength 
of a native failing heart is weaker than a healthy heart. 

Resistance Ri and inductor Li are used to represent the inlet 
cannula, which is a plastic rigid tube that connects the pump 
to the heart. The outlet cannula is described by resistance Ro 
and inductor Lo. A semiempirical model is used to describe the 
relationship between the pressure difference H across the 
pump, the pump speed as well as the pump flow as [2]: 

H = z0x6 + z1

dx6

dt
 + z2u2 (4) 

where z 0, z 1, and z 2 are LVAD-dependent parameters 
estimated from experiments [2]. Resistance Rk in the model is 
a time varying parameter that can define the phenomenon of 
suction, which can be mathematically described as [2]: 

Rk = {
0                    if  x1(t) > x1

𝑡

𝜗(x1(t) -x1
𝑡 )  if x1(t) ≤  x1

𝑡  (5) 

where 𝜗 and x1
𝑡  are weight and threshold pressure [2]. 

B. Generalized Polynomial Chaos (gPC) Expansion 

The gPC expansion approximates uncertainty as another 
random variable with a priori probability density distribution 
(PDF) [15]. In this work, Rs (SVR) in (1) is approximated with 
a gPC model, since it represents the level of activity and can 
vary over time. It is assumed that Rs consists of stochastic 
perturbations superimposed on a particular set of mean 
values. The mean values describe different levels of activity, 
while the perturbations around each mean value define the 
intra-patient variability over time. A schematic of different 
mean values of Rs and corresponding perturbations is shown 
in Fig. 1. 

 

Figure 1.  Illustration of time-varying systemic vascular resistance (SVR) 

Since the objective is to adjust the pump speed in order to 
meet the blood demands while avoiding suction, it is useful to 
evaluate the relationship between stochasticity in Rs and pump 
flow x6 as well as other physiological states in (1). First, Rs is 
approximated with a random variable ξ as [15]: 

Rs(t, ξ)= ∑ r̂i,k(t)Φk(ξ) ≈

∞

k=0

∑ r̂i,k(t)Φk
(ξ)

q

k=0

 (6) 

where ξ is a random variable used to approximate Rs, r̂i,k is the 

gPC coefficients calculated such that Rs follows a priori PDF 
of Rs, and Φk(ξ) is the polynomial basis functions. Due to 
uncertainty in Rs, each state in x can be estimated with a set 
of orthogonal polynomial basis functions 𝜑l(ξ)  as [15]: 

mean value #1 

mean value #2 
perturbations 
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where  is gPC coefficients calculated with model (1) and a 

Galerkin projection, which can project (1) onto each one of 
the polynomial chaos basis functions  as [15]: 

 (8) 

For practical application, (6) and (7) are often truncated to 
a finite number of terms, i.e., q and Q. The total number of 
terms in (7) is approximated as a function of an arbitrary order 

 in (6) that is necessary to estimate a priori PDF of Rs and the 
number of uncertainty (i.e.,  in this work) as [15]: 

 (9) 

The inner product between two vectors in (8) is defined as: 

 (10) 

where the integral is calculated over the domain defined by , 
and  is the weighting function, i.e., PDF of . Once the 
coefficients of gPC expansion of  in (7) are available, it is 
possible to rapidly estimate statistical moments such as the 
mean and the variance of x at any time interval  as [15]: 

 

(11) 

 

 
(12) 

 

From (11) and (12), the mean value of  can be calculated 

with gPC coefficient , while other higher order statistical 

moments such as variance can be computed with the other 

coefficients [15]. The gPC offers a rapid calculation of mean 

and variance of , which provides important information for 

the tuning of the controller as discussed below. 

III. FEEDBACK CONTROL UNDER UNCERTAINTY 

The cardiovascular-pump model has 3 parameters that can 
change with respect to physiological conditions of patients, 
i.e., Rs (SVR), heart rate, and the contractility strength of the 
native heart ( ). In this work, we focus on the changes in 
Rs, which indicates possible continuous changes in  
activity. In the presence of uncertainty, the control objective is 
to adjust an LVAD with respect to different activities to 
provide the desired cardiac outputs, while avoiding suction. 

The only mechanism to regulate the LVAD is to change 
the pump speed to meet possible time varying blood demands, 
which requires a reference (or measured variable) to infer the 
pump operating conditions. Since the current implantable 
sensing technologies has limited capability to provide accurate 
measurements of cardiac parameters [2, 5], we use pump flow 
to decide optimal LVAD speeds. The pump flow can be easily 
measured by ultrasonic flow transducers that are clamped on 
the pump cannula [16]. Using the measurements of pump flow, 
the control design will be explained as below. 

 

Figure 2.  Profile of pump flow of linearly incrased pump speed. In this 
example, Rs s/ml and the suction occurs when the pump 

speed is above 1.65×104 krpm 

For clarity, Fig. 2 shows the pump flow when the pump 
speed is linearly increased until suction happens. Similar to 
previously reported works [2, 8, 5], it was found that two 
signatures are useful to characterize the onset of suction, which 
includes: (i) a significant change between the minimum pump 
flow in two consecutive cardiac cycles, defined by the slope of 
a straight line fitted to the minimum pump flow speeds, and 
(ii) a large variation in the flow signal immediately after the 
occurrence of suction. In this current work, these two 
signatures will be used to adjust pump speed. Note that the 
results in Fig. 2 were obtained with deterministic values of Rs 
and heart rate. The effect of uncertainty in Rs and heart rate on 
pump flow will be studied in the future due to space limits. 

When the pump operates in a safe zone, it is clear from Fig. 
2 that the slope defined by two consecutive minimum pump 
flow measurements is positive. When the speed increases, the 
slope will decrease and approach zero. When suction occurs, a 
sudden change in the sign of the slope was observed, i.e., the 
slope switches from a positive value to a negative value. A sign 
change in the slope will be used as an indicator to adjust pump 
speed. Further, the variation in pump flow after the onset of 
suction can be used as a tuning criterion. As seen in Fig. 2, the 
pulsatility of pump flow in each cardiac cycle increases when 
a suction has occurred. Using flow signals and the gPC model, 
the variance of the pulsatility in pump flow can be rapidly 
estimated, which will be used to reconfigure the controller. 

 

Figure 3.  Schematic of the gain-scheduling feedback control of LVAD 

safe zone 

onset of suction 

slope 

5410



  

Using these signatures, a self-tuning feedback proportional 
(P) controller is developed in this work. Fig. 3 shows the 
general block of the feedback control strategy. The update law 
of the controller is defined as: 

ω(t+1) = ω(t) + Kp

dx6
m

dt
 (13) 

where Kp is the controller gain, x6
m is the minimum pump flow 

in each cardiac cycle, dx6
m

dt⁄  is the slope of the straight line 
fitted to two consecutive pump flow measurements, and ω(∙) 
is the pump speed. The controller gain Kp is defined as: 

Kp = {
c1               if dx6

m
dt⁄  ≥ 0

c1+ μσ         if dx6
m

dt⁄  <  0
 (14) 

where c1  is a fixed controller gain that controls the rate of 
speed adjustment before suction. The choice of c1 is patient 
specific. For example, a smaller value of c1 can be used for 
severe HF patients, since it will result in conservative 
adjustment in pump speed. Once a suction has been identified, 
the controller gain Kp will be re-adjusted to quickly bring the 
pump back to a safe operating zone. 

The sign change in the slope is a good indicator of suction. 
However, pump flow signals can be corrupted by 
measurement noise. To reduce the effect of the measurement 
noise on suction identification, a time moving window of the 
pump flow will be used, which involves a few data points of 
pump flow. The slope is then calculated for every two 
consecutive data points in the moving window, and then the 
suction can be determined by examining the constancy 
between consecutive slopes. Once a suction has been 
confirmed, the switch between two controller gains as given in 
(13) will be executed. 

Using the gPC model, the mean value and the variance of 
pump flow can be predicted for each cardiac cycle. Parameter 
σ in (13) is the time-varying variance calculated with the gPC 
model. The calculation of σ proceeds as follows. 

(i) A set of gPC models are generated with each of the 
mean values of Rs following the procedures descried in Section 
II. Note that values of Rs decrease during exercising and 
increase in hypertension, and these values can be calibrated 
with data or set up by clinicians as a priori [17]. 

(ii) At the end of the systole, the gPC coefficients for each 
state in (1) are stored to generate an offline lookup table, when 
different mean values of Rs are used. 

(iii) Using the gPC coefficients of pump flow x6, a family 
of PDF profiles can be formulated as shown in Fig. 4. This will 
be further used to identify a particular mean value of Rs, when 
the pump flow measurement is available. The PDF profiles are 
approximated by substituting samples generated in the domain 
defined by ξ  into the gPC model (7) and by a binning 
algorithm previously reported [18]. 

 

Figure 4.  Identification of Rs using the PDF profiles of pump flow 

(iv) When a measurement of pump flow is available, e.g., 
the star in Fig. 4, it will be referred to the PDF profiles. The 
mean value of Rs can be inferred by assessing the probability 
with respect to each of the PDF profiles. As seen in Fig. 4, two 

probabilities can be obtained, and Rs
2  can be identified and 

used to describe the level of activity, as the probability is 
maximal. 

(v) The gPC coefficients of the value of Rs will be selected 
from the lookup table, and further used to predict the gPC 
coefficients of each state in x based on the current data of the 
pump flow. For prediction, the mean value of pump flow in the 
lookup table will be replaced with the latest measurement of 
flow, while other coefficients remain the same. 

(vi) Based on these initial values, the gPC model can 
predict the gPC coefficients of all states in (1) for a finite future 
control horizon in a real-time manner, from which variance σ 
of pump flow can be calculated using (12). This will be further 
used to update the controller gain as shown in (14). 

These procedures for adjusting the controller gain will be 
repeated until the change in σ  is found to be within a 
predefined threshold ε. In addition, constraints of σ are used to 
control the tuning rate of pump speed to avoid overshoot or 
suction. It is important to note that a tuning weight μ is used to 
ensure c1 and μσ have the same magnitude to avoid abruptly 
adjustment in pump speed, which may have deleterious effect 
on the heart. 

IV. RESULTS AND DISCUSSION 

The objective of the feedback controller is to adjust pump 
speed to meet the physiological demands for different physical 
activities, while maintaining the pump speed lower than a level 
at which the suction may happen. To evaluate the efficiency, 
two case scenarios were investigated in this work, which are 
described in the following sections. 

A. Formulation of gPC models 

To show how gPC operates and to assess the performance 
of the feedback controller, three mean values of Rs (SVR) are 
used, i.e., 0.5 mm Hg/ml/s, 1 mm Hg/ml/s, and 2 mm Hg/ml/s, 
respectively. The increase in the mean value of Rs indicates a 
less-active physical activity, e.g., a patient is resting, and vice 
versa. In order to show time-varying physiological dynamics 
of patients, a 10% variation around each of these mean values 
is assumed in this work. Following the procedures in Section 
II, Fig. 5 shows the hemodynamic waveforms such as left 
ventricular pressure (LVP, x1), aortic pressure (AoP, x4), and 
aortic flow (AF, x6), where the mean of Rs is 1 mm Hg/ml/s 
and a 10% variation is assumed. The heart rate is 75 bpm and 
the contractility strength of the native heart (Emax) is 2 mm 
Hg/ml. The results were validated by Monte Carlo simulations, 
but the details are not given due to space limits. For MC and 
gPC, the mean values were compared to the simulation results 
obtained with deterministic models and the relative error was 
calculated. It was found that the relative error of MC and gPC 
has the same magnitude. 

In Fig. 5, the first column shows the gPC coefficients, 
while the second column shows the mean and the variance 
calculated with the coefficients. Note that for each mean value 
of Rs, the gPC coefficients will be stored in a lookup table, 
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1 
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which is further used to predict the hemodynamics over a finite 
future control horizon. Given the predicted values of each state 
in (1), the variance of the pump flow can be estimated, which 
can then be used to adjust the controller gain as explained in 
Section III. 

 

Figure 5.  Simulated hemodynamic waveforms in the presence of 

uncertainty (the level of activity is set to1 mmHg/ml/s) 

B. Constant Systemic Vascular Resistance 

In this case study, it is assumed that the activity level of a 
patient has remained unchanged for a period of time. Thus, a 
constant Rs (SVR) value is used to show the controller can 
adjust the pump speed while avoiding suction. Specifically, Rs 
is set to 1 mm Hg/ml/s, for which the suction can happen if the 
pump speed ω(t) reaches about 1.6×104 rpm. Fig. 6 shows the 
controlled pump speed and the corresponding mean values of 
the pump flow. As seen, to meet the physiological demands, 
the controller can adjust and maintain the pump speed at a 
desired level without inducing suction. The speed stabilizes 
around 1.47×104 rpm. Note that, due to the limited space, only 
the noise-free simulations are shown in Fig. 6. The heart rate 
in this case study is 75 bpm, and the contractility strength of 
the native heart (Emax) is set to 2 mmHg/ml. The variation 
(uncertainty) in Rs is assumed to be normally distributed, i.e., 
a mean value of 1 mmHg/ml/s and a 10% change around the 
mean value. Since there is no sign change in the slope 
calculated from the minimum values of pump flow, the 
controller gain is fixed at c1=0.76 in (14), i.e., the self-tuning 
procedure is not executed. 

C. Time-varying Systemic Vascular Resistance 

In the second case study, Rs changes over time in order to 
mimic changes in patient’s physiological activities. The time-
varying Rs can be mathematically defined as: 

Rs =

{
 
 

 
 

2 -  t/10             0 ≤ t ≤ 10

1                      10 ≤ t ≤30 
1+(t-30)/10    30 ≤ t ≤40
2                      40 ≤ t ≤55

    2-(𝑡-55)/10          55 ≤ t ≤65         

 (15) 

Note that only the mean values of Rs were used in (15) to 
define different levels of activity. As done in the first case 
study, the perturbations in Rs were assumed to be a 10% 
change around the corresponding mean values. The mean 
value of Rs was initially kept at 2 mm Hg/ml/s, then gradually 
decreased to 1 mm Hg/ml/s in 10 s and maintained at this level 
for 20 s. Starting from 30 s, Rs was increased to 2 mm Hg/ml/s 
in 10 s and maintained at this level for 15 s before decreased 
to 1 mmHg/ml/s again. The changes in Rs shows different 
levels of activities, e.g., the patient was initially resting (Rs=2) 
before started doing exercise such as walking (Rs=1). The 
response of the self-tuning controller is shown in Fig. 7. 

 

Figure 6.  Simulations results of a constant level of activity. (a) controlled 

pump speed and (b) pump flow corresponding to the pump speed in (a) 

As seen in Fig. 7 (a), the pump speed can be appropriately 
adjusted according to these dynamic changes in the activity. 
Such an adjustment can ensure sufficient cardiac outputs while 
preventing suction. Fig. 7 (b) shows the pump flow and the 
corresponding variance predicted at each time interval, which 
was used for the tuning of controller. Note that the controller 
gain in (14) was updated every 5 cardiac cycles to avoid any 
deleterious effect on the heart that might possibly result from 
the frequent change in the feedback controller. For 
comparison, a fixed controller gain without the self-tuning 
procedure was also used, and the simulation results are shown 
in Fig. 8. As compared to the self-tuning controller developed 
in this work, both controllers can adjust pump speeds to meet 

(a) (b) 

(c) (d) 

(e) (f) 

mean 

mean 

mean 

2nd gPC coefficient 

2
nd

 gPC coefficient 

2
nd

 gPC coefficient 

 

(a) 

(b) 
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physiological demands. However, it was found that the self-
tuning controller has smaller excursions, as compared to the 
fixed controller (see Fig. 7 (a) and Fig. 8). Note that larger 
excursions in pump speed can possibly induce unsmooth and 
sudden changes in the pump flow, which can be harmful to the 
failing heart. 

 

Figure 7.  Sumulation resuts of a time-varying Rs which represents a 

sequence of changes in the level of activity. (a) controlled pump speed and 

(b) pump flow corresponding to the pump speed shown in (a) 

 

Figure 8.  Simulation of a time-varying Rs with a fixed controller gain (c1) 

V. CONCLUSION 

In this paper, a stochastic cardiovascular-pump model is 

developed by combining a previously reported model with a 

generalized polynomial chaos (gPC) expansion. Based on the 

gPC model, a self-tuning feedback controller is developed to 

adjust the pump speed to meet the physiological demands at 

different levels of physical activity, while taking the patient’s 

variability into account. To show the efficiency of the new 

control algorithm, two case studies were investigated. It was 

found that the developed self-tuning controller can adjust the 

pump speed without inducing suction. As compared to a fixed 

controller gain, the self-tuning controller can provide better 

control performance. We would like to point out that different 

sources of uncertainty will be investigated in future work. 

REFERENCES 
 

[1]  N. Moazami, K. Fukamachi, M. Kobayashi, N. G. Smedira, K. J. 

Hoercher, A. L. S. Massiello, D. J. Horvath and R. C. Starling, "Axial 

and centrifugal continuous-flow rotary pumps: a translation from 

pump mechanics to clinical practice," The Journal of Heart and Lung 

Transplantation, vol. 32, no. 1, pp. 1-11, 2013.  

[2]  M. Simaan, A. Ferreira, S. Chen, J. Antaki and D. Galati, "A 
dynamical state state space representation and performance analysis 

of a feedback controlled rotary left ventricular assist device," IEEE 

Transactions on Control Systems Technology, vol. 17, no. 1, pp. 15-
28, 2009.  

[3]  Y. Wang, S. Koenig, Z. Wu, M. Slaughter and G. Giridharan, 

"Sensorless physiologic control, suction prevention, and flow 
balancing algorithm for rotary biventricular assist devices," IEEE 

Transactions on Control Systems Technology, no. 99, pp. 1-15, 2017.  

[4]  Y. Wu, P. Allaire, G. Tao and D. Olsen, "Modeling, estimation, and 
control of human circulator system with a left ventricular assist 

device," IEEE Transactions on Control Systems Tecnology, vol. 15, 

no. 4, pp. 754-767, 2007.  

[5]  Y. Wang, S. Koenig, M. Slaughter and G. Giridharan, "Rotary blood 

pump control strategy for preventing left ventricular suction," 

American Society for Artificial Internal Organs Journal, vol. 61, no. 
1, pp. 21-29, 2015.  

[6]  K. Ohuchi, D. Kikugawa, K. Takahashi, M. Uemura, M. Nakamura, 

T. Murakami, T. Sakamoto and S. Takatani, "Control strategy for 
rotary blood pumps," Artificial Organs, vol. 25, no. 5, pp. 366-370, 

2005.  

[7]  A. Petrou, M. Kanakis, S. Boes, P. Pergantis, M. Meboldt and M. 
Daners, "Viscosity prediction in a physiologically controlled 

ventricular assist device," IEEE Transactions on Biomedical 

Engineering, vol. 65, no. 10, pp. 2355-2364, 2018.  

[8]  A. Siewnicka and K. Janiszowski, "A model for estimating the blood 

flow of the POLVAD pulsatile ventricular assist device," IEEE 

Transactions on Biomedial Engineering, p. in press, 2018.  

[9]  Y. Du, H. Budman and T. Duever, "Integration of fault diagnosis and 

control based on a trade-off between fault detectability and closed 

loop performance," Journal of Process Control, vol. 38, pp. 42-53, 

2016.  

[10]  R. Hille and H. Budman, "Simultaneous identification and 
optimization of biochemical processes under model plant mismatch 

using output uncertainty bounds," Computers & Chemical 

Engineering, vol. 113, pp. 125-138, 2018.  

[11]  Z. Hu, D. Du and Y. Du, "Generalized polynominal chaos based 

uncertainty quantification and propagation in multiscale modeling of 

cardiac electrophysiology," Computers in Biology and Medicine, vol. 
102, pp. 57-74, 2018.  

[12]  E. Lim, S. Dokos, S. Cloherty, R. Salamonsen, D. Mason, J. Reizes 

and N. Lovell, "Parameter optimized model of cardiovascular rotary 
blood pump interactions," IEEE Transactions on Biomedical 

Engineering, vol. 57, no. 2, pp. 254-266, 2010.  

[13]  G. Gridharan, M. Skliar, D. B. Olsen and G. M. Pantalos, "Modeling 
and control of a brushless DC axial flow ventricular assist device," 

American Society for Artificial Internal Organs Journal, vol. 48, pp. 

272-289, 2002.  

[14]  H. Suga and K. Sagawa, "Instantaneous pressure volume 

relationships and their ratio in the excised, supported canine left 

ventricle," Circulation Research, vol. 35, no. 1, pp. 117-126, 1974.  

[15]  D. Xiu and G. E. Karniadakis, "The Wiener-Askey polynomial chaos 

for stochastic differential equations," SIAM Journal on Scientific 

Computing, vol. 24, no. 2, pp. 614-644, 2002.  

[16]  S. M. Kang, K. Her and S. W. Choi, "Outflow monitoring of a 

pneumatic ventricular assist device using external pressure sensors," 

Biomedical Engineirng Online, vol. 15, no. 1, pp. 100-122, 2016.  

[17]  C. Bartoli and R. Dowling, "The future of adult cardiac assist 

devices: novel systems and mechanical circulatory support 

strategies," Cardiology Clinics, vol. 29, no. 4, pp. 559-82, 2012.  

[18]  Y. Du, T. Duever and H. Budman, "Fault detection and diagnosis 

with parametric uncertainty using generalized polynomial chaos," 

Computers and Chemical Engienering , vol. 76, pp. 63-75, 2015.  
 

(b) 

(a) 

excursion 

 

excursion 

  

5413


