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Abstract— Physical exercise has been proven to be beneficial
for both healthy subjects and cardiac patients. It can improve
cardiovascular health and promote recovery from various heart
conditions. Heart Rate (HR) is a cardiovascular variable, which
can be easily monitored and provides important insights about
cardiac functions during and after physical exercise. This study
presents a HR-based modeling and control framework to
monitor physiological changes during exercise, from which the
exercise intensity is optimized to capitalize exercise outcomes.
HR models were previously developed to investigate exercise
physiology, but efficient model identification has not been
extensively discussed in the literature. Most existing HR models
are nonlinear state-space models, and traditional optimization
techniques may fail to provide accurate model identification
results. In this work, we propose to use particle filter (PF) to
identify HR model parameters and further optimize the intensity
of exercise, e.g., walking or running speed, based on the
calibrated model. Specifically, sequential importance sampling
and resampling (SISR) and smoothing were chosen to estimate
state variables, and particle marginal Metropolis-Hastings
method was used to identify model parameters from HR
observations. In addition, using predictions calculated from the
HR model, treadmill speed was optimized by minimizing the
difference between predictions and the target HR. The modeling
and control framework is validated with different case studies.
The results demonstrate that the proposed method is a useful
tool for personalized HR modeling and exercise control, which
can benefit both regular exercise training and cardiac
rehabilitation.

I. INTRODUCTION

Cardiovascular disease is the leading cause of death in the
United States, and about 610,000 people die of heart disease
every year, i.e., 1 in every 4 deaths [1, 2]. Regular physical
activity helps decrease the chance of having a heart attack or
stroke, and reduces the possibility of needing a coronary
revascularization procedure [3]. Appropriate exercise training
also benefits postoperative patients by promoting recovery.
Cardiac output increases during physical exercise, which can
consequently increase the volume of oxygen extracted from
blood. However, it is important to monitor such changes to
ensure normal and healthy cardiac responses with respect to
different exercise intensities, thus preventing sudden cardiac
events such as heart attack. Heart Rate (HR) is one of the
cardiovascular variables that can be easily measured and used
to gauge heart functions. Therefore, the analysis and modeling
of HR during exercise has become an emerging topic. HR
Models can provide a better understanding on exercise
physiology, which reveals important insights for optimal
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exercise control for both healthy subjects and cardiac patients.
Studies have showed that the HR profile during exercise and
recovery can be used as a predictor for sudden death [4]. For
example, a blunted increase of HR at 40-100% of maximal
workload during exercise was associated with increased
cardiovascular mortality [5]. In addition, an accurate model of
HR can be useful for monitoring exercise and suggesting
optimal exercise intensity for maximized training outcomes.

Modeling of HR has been previously studied. Hajek et al
studied the HR responses using feedforward and feedback
components and estimated the model parameters in predefined
small intervals for 15 healthy subjects [6]. Stirling et al
developed a mathematical model to estimate HR responses
during exercise, and used stochastic optimization algorithm to
find optimal model parameters [7]. Zakynthinaki used two
coupled ordinary differential equations (ODEs) to study HR
during exercise. The model accounts for the rate of HR change
and predicts HR responses based on exercise intensity, lactate
accumulation, and subjects’ overall cardiovascular condition
[3]. Note that, parameters used in Zakynthinaki’s model were
determined empirically, and model identification was not
discussed. Su et al built a HR model using Hammerstein
system, which consists of a static nonlinearity cascade as the
input of a linear system, and model parameters were identified
using support vector regression with a regularized cost
function [8]. In addition, Cheng et al introduced a nonlinear
state-space model to predict the HR responses during and after
treadmill walking exercise. As compared to other models, this
model is efficient in describing both short and longer duration
of exercises [9]. Cheng et al applied Levenberg—Marquardt
method to estimate model parameters at different exercise
intensities and HR responses. It is worth noting that state space
model of HR response dominates the literature, which has been
proven as an efficient approach to predict HR. However, few
studies have discussed efficient parameter identification for
state-space HR models.

Parameter identification for state-space HR models is
challenging due to the model complexity and nonlinearity. For
example, HR calculated from two state variables is regulated
by two nonlinear differential equations in Cheng et al’s model
[9]. To obtain model parameters, estimation methods, such as
least squares methods [10, 11], gradient-based methods [12,
13], and bias compensation methods [14, 15], can be used,
which minimize the difference between the predicted HR and
observations. However, HR data used for model calibration
generally contain a significant amount of uncertainty such as.
noise and motion artifacts. Further, subjects are heterogeneous
in baseline HR and exercise physiology. Without considering
the uncertainty, model identification can be inefficient, which
will result in inaccurate estimation of HR response and false
control decision of exercise protocol design. Maximum



Likelihood Estimation (MLE) can be used to calibrate the
model, while considering the measurement noise. However,
the performance of MLE is suboptimal for state-space HR
model, as the state variables and their initial values are often
unknown. Kalman filter can be used in combination with MLE
in order to obtain optimal parameters. However, Kalman filter
is limited to linear Gaussian state-space model, thus providing
less accurate results for nonlinear, non-Gaussian state-space
HR model. As an alternative, Particle Filter (PF) is a sequential
Monte Carlo method that estimate latent states in a dynamical
system when only partial observations of HR are available in
the presence of uncertainty. In this study, we propose to use
particle method in combination with Bayesian parameter
estimation to track HR variations and identify a set of optimal
model parameters. Further, the calibrated model will be used
to predict future HR and to identify best exercise intensities in
order to meet exercise target and maximize training outcomes.

The rest of this paper is organized as follows. Section II
briefly discusses the models and methods. Section III provides
the experimental results, which is followed by discussions and
conclusion in Section V.

II. METHOD

A. State-Space HR Response Model

In this study, Cheng et al’s HR model is used to illustrate
the proposed modeling and control framework [9]. To model
HR wvariations with respect to different treadmill speeds, a
nonlinear state-space control system was used [9]:

X1 (t) = —ayx;(8) + azx, (b) + azu®(t), 1)
X (t) = —aux, () + ¢(t), @)
y(t) = 4x,(£)+74, (3)
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where s(0) is the initial condition and a;,i = 1, ...,5 is model
parameter. y(t) is the HR response and u(t) is the treadmill
speed. The 1% state variable x; (t) describes the change of HR
during exercise, while x,(t) is the slower and more complex
local peripheral effect [9]. For simplicity, we further write the
state-space HR model as:

xe = fo(xe-1) +w; (5)
Ve =go(xe) + v; (6)
where 8={a;}, i =1, 2, ..., 6, is the model parameters, fp is

the nonlinear function that calculates the state value at t given
X:_1, 9o 1s the function that calculates the observation at t
given the state variable x; and noises, i.e., w;~N(0, Q),
v~ N (0, R). Q and R are covariances. Note that we assume
HR data are corrupted with Gaussian noise in this study.
However, other types of noise can be used, and the modeling
and control follows the same procedure as explained below.

B. Filtering

In this study, we choose to use Bayesian method to infer
model parameters with a set of observations. One challenge for
accurate parameter estimation is to infer state variables in the
nonlinear state-space model based on HR observations, i.e., y
in (3). In this work, PF is used to obtain an estimation of the

internal variable x={x,,..., x,}, given a set of known
parameters and the observation y={y,,..., ¥, }. The detailed
procedures are discussed as follows.

Auxiliary particle filter, specifically sequential importance
sampling and resampling (SISR), is used to estimate the states.
The objective is to recursively characterize the joint posterior
distributions {pg (%, |Vo.n) In=o through a sequence of data of
HR. The posterior density of x,, given HR data y,.,,_; and the
state transition density p(x,|x,,_,) can be calculated as [16]:

N
P (XnlYom-1) = Z p(%n|2h_1) Ths 7)
i=1
where 1), _, is the discrete probability mass of particles x}_,,

N is the number of particles. Considering the measurement
density at y,,, this can be written as [16]:

N
Po (X Yom) % p(ylxn) Z p(taln-)mos  (®)
i=1

The samples of PF from (8) will produce new particles with
weights of 7. One can sample from pg (2, |¥o:n—1) by choosing
X}, with weights 1},_;, which can be obtained as [16]:
_w

i, wi

)

Wi_1 = PVnlXno1), Thoq =
When n = 0, the weight can be obtained as [16]:

Wy X p(¥olxo) o

where m, is a priori distribution of x,. The posterior
distribution of x;, at n is determined by the weighted sample
(x;,, 75,). The procedure of PF is summarized as follows [17].

Forn =0, foralli €{1,....N}:
1. Sample X§~mo(x0]¥o)-
2. Compute wi o wy(X¢), mi=w// XL, wy.
3.Resample Xi~ YN, i §(X, — Xb).
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C. Smoothing

Smoothing is used to estimate the distribution of state
variables at the particular time given all the HR data up to
some later time. Since additional HR data are incorporated in
the estimation, the trajectory obtained in this procedure would
be smoother. Given the posterior density of pg(x,|Voxn)
described in previous section, the joint smoothing density
Po (Xo.7|Y0o.7) for T>n can be factorized as [18]:

T-1
po (Xo.r|Yo.r) = Po (xr|Yo.1) Hpe (en Yo Xn+1)  (10)
n=0

where pg (X%, |Yom Xns1) 1S a backward transition density
given by [18]:
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Given the approximation of pg(x,|Yo.n) generated by the
filtering in Eq. (8), one can find the following approximation:

Po (an’o:w xn+1) =
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N
; ; 12
~ P Cnsa )P Onl) Y p(aalei) ey
i=1
where the weight is modified as:
: wip (X i1 | XL
ol = Lp( n+1| n) (13)

0 wip (s l2)
The detailed smoothing process is summarized as follows.

Step 1. Sample {x}}_, via particle filtering.
Step 2 For each set of x,il' and n=T-1, ..., 1, resample x,il
from {x:}; with weights rr".

The PF and smoothing provide estimations of state variables
x given a set of HR data, which will be further used in section
III for parameter estimation and treadmill speed design.

D. Bayesian Parameter Estimation

Bayesian parameter estimation approach assigns a suitable
prior density p(6) to 6 and infers the model parameters based
on the posterior density p(xy.7, 8|Yo.r). The objective of the
parameter estimation procedure is to maximize the log
likelihood function as,

(14

In this study, we propose to use particle MCMC to seek the
distributions of model parameters. Specifically, Particle
Marginal Metropolis-Hastings (PMMH) sampler was used to
sample from the proposal density [17]:

q((xo.r> 07)|(xo.7, 8)) = q(0710)p(xo.7/X0:7) (15)

where q(07|0) is a proposal density to obtain the next choice
of 8 given 0 at the current location. The acceptance ratio for
the joint proposal can be defined as [17]:

( Pe*(yo:r)P(H*)q(QIH*))
" pe(Yor)D(0)q(6%16)

Note it is difficult to directly compute pg+(yo.r) and pg (Vo.1)
with an acceptable probability. We choose to use PMMH
sampler to estimate two likelihood terms. The approximation
steps are summarized as follows.

First, given a set of model parameter 8, the particle
approximation of Pg (y,.7) will be obtained.

max log L(0) = log [Ti-o P(vil*0:i» Yo:i-1)

(16)

Second, a proposal 8 is calculated by sampling from the
Gaussian distribution with a mean value equals to the last
value and an adaptively estimated covariance matrix.

Then, particle approximation Pg+ (x4.7|Vo.r) and Pe+(Vo.r)
are obtained using the PF and smoother discussed in the
previous section. One of the N particles is chosen based on the
weight values as Xg.7. The chance for accepting the current 6*
is approximated as:

(17)

<1 ﬁe*(yo;r)p(ﬂ*)q(elﬂ*))
" Po(o.r)P(6)q(6%16)

The procedure repeats for M iterations until the likelihood
function converges, and the posterior distribution of all
parameters are characterized to obtain the optimal parameters.

D. Optimal Exercise Intensity

Further, given the optimally calibrated model, an optimal
exercise intensity is identified based on the model prediction
¥ and a target heart rate HR,. The optimal walking/running
speed is determined via the optimization problem defined as
follows:

min {% (9 — HR¢)?} (18)

s.t. V=ge(x) + v,
xe=fo(xe—1) + we
O<u<12

where y is HR prediction between (t,, t,+7), which can be
calculated using Egs. (1)-(6) in Section II A, HR,, is a user
defined target HR.

III. SIMULATIONS AND DESIGN OF EXPERIMENTS

A. Exercise Protocols

Two exercise protocols were considered in this work for
model identification and exercise control design, respectively.
The protocols are described as follow.

Protocol 1 — Subject was at rest for the first 2.5 minutes
and started to walk at a speed of Skm/hour for 15.5 minutes,
then returned to resting state for 12 minutes. The same protocol
was repeated with different walking/running speeds, i.e., 6
km/hour and 7 km/hour, respectively. The simulated data is
shown in Fig. 1 (a). This protocol is determined following the
previous study [9].
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Figure 1. Heart Rate at different exercise protocols

Protocol 2 — Subject was at rest for the first 2.5 minutes
and started to walk at 5 km/hour for 15.5 minutes, then
speeded up to more an intensive exercise, i.e., walking speed
of 6km/hour for 15 minutes, and 7km/hour for another 15
minutes, before returning to the resting state. The simulated
HR is shown in Fig. 1 (b).



B. Simulation Experiments

HR was calculated using the state-space model given in
Eqgs. (1)-(6) with Euler method in a 0.1-minute time step. The
state variables x; and x, were assumed to follow independent
Gaussian distributions with zero means and covariances of 0.1
and 0.001, respectively. The noise in HR was considered to
follow a normal distribution with zero mean and covariance of
1. Parameter estimation was performed following the steps
discussed in Section II A-C, and 50 particles were used to
compute state variables and search for model parameters. The
optimization problem in exercise control was solved using
genetic algorithm. All experiments were performed in
MATLAB 2018b on a 64-bit Windows computer.

IV. RESULTS

A. Model Identification

In this section, the state-space HR model was optimized to
fit simulated HR observations. The model parameters were
estimated using multiple sets of HR observations, i.e.,
simulated HR at Skm/hour, 6km/hour, and 7 km/hour for 30
minutes (see Fig. 1 (a)). The noises in both state variables and
HR observations were assumed to follow zero mean Gaussian
distribution with different standard deviations, i.e., g,,=0.01,
0x,= 0.001, and o, =1. Given each set of observation, state
variables x; at time t was estimated through the PF and
smoother with 50 particles. Initial values of the state variables
were randomly generated from a normal distribution with
mean value equals to 2 and variance equals to 1. It is worth
mentioning that the filtering and smoothing are not sensitive
to the changes in the initial value. The user can choose any
values in a reasonable range. Given a set of parameters 8, the
likelihood pg (y.7) Was calculated as the joint probability of
all HR observations at t=0,...T, which was further used in
MCMC to determine the acceptance rate of the current
attempt. Uniform prior distributions were assigned to all
parameters with a lower bound of 1e-6 and upper bound equals
to 5 times of the suggested parameters by [9]. The algorithm
was initiated by sampling 8 from the prior distribution and
proceeded with MCMC moves. A multivariate Gaussian
distribution was used as the proposal distribution and the
covariance function was updated iteratively as the algorithm
proceeded. The algorithm was executed with T=300 at 0.1
minutes time step for 1000 burn-in iterations and 5000
iterations. Estimated marginal posteriors for all model
parameters p(6|y,.r) obtained from particle marginal
Metropolis-Hastings are given in Fig. 2. The black vertical
lines in Fig. 2 show the actual parameters, while the blue
curves show the marginal posterior density of each parameter.
As seen, some of the posterior densities have a Gaussian shape,
whereas some follow non-Gaussian distribution. The proposed
method can capture the true parameters, i.e., the mean of each
posterior density is close to the actual parameter. Further, the
actual parameter, the posterior mean and standard deviation
are given in Table I.

TABLE I. SUMMARY OF PARAMETER ESTIMATION RESULTS

Parameters a, a, as a, as Qg
True 1.84 | 24.32 | 0.0636 |0.00321| 8.32 0.38
Posterior Mean 1.93 | 24.99 | 0.0665 |0.00331| 8.33 0.38
Posterior s.d. 0.28 4.07 |0.0128 | 0.0006 | 1.51 | 0.058
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Figure 2. Estimated marginal posterior density of model parameters
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In addition, using the identified model parameters with
particle MCMC, the modeled HR and state variables by Eq.
(1)-(6) at Skm/hour, 6km/hour, and 7km/hour are shown in
Fig. 3, which are also compared to the true HR and state
variables. As seen in Fig. 3, the modeled HR matches with
actual HR, which demonstrates the accuracy of the estimated
parameters. We further quantify the model error by calculating
the average sum squared error (SSE) as: SSE =
(13T Y75 X7=1(Pue — Yur)?. The average SSE between
modeled HR and true HR for all the three speed is 1.38 beat
per minute (BPM), and the average SSE between modeled
state variables and true state values are SSE,;/= 0.04 and SSE;



= 0.0001. The average SSEs for both two state variables are
less than the standard deviation of noise, i.e., 0, =0.01, 0y, =
0.001. Therefore, the identified model is acceptable and will
be further used for the treadmill speed optimization in the
following Section.

B. Optimal Treadmill Speed Identification

The treadmill speed optimization is accomplished in two
steps, i.e., HR modeling and tracking, and optimal speed
identification. We assume HR signals for ¢, minutes prior the
current time can be collected, but the state variables and the
starting values are unknown. Given the optimally calibrated
model, we first apply PF and smoother to estimate the state
variables up to t, minutes. Then, the optimal walking/running
speed in the next T minutes will be calculated through the
optimization defined in Eq. 18. Further, the optimal speed will
be given as an input to the HR model to predict the HR changes
for the next T minutes, which will be compared with the target
HR for validation. The modeling and optimization results are
shown as follows.

HR tracking. We assume a subject started the exercise at
unknow time, and HR signals are recorded at t=0 for t,=30
minutes. The simulated observations are plotted in Fig. 4 (see
the black lines in Fig. 4 for HR observations). The data was
generated following the 2" protocol given in Section III. The
signals were recorded a few minutes after the exercise started.
Given the HR data and the model obtained from the previous
section, we first applied PF to track the HR variations. Random
initial values of the state variables x; and x, were generated
from two normal distributions, i.e., x?~N(5, 10%) and
x9~N(0.02, 0.01%). The parameters of the distributions were
determined based on the possible ranges of the two variables.
The HR signals, and the state variables x; and x, estimated
with PF given random starting values are shown in Fig. 4,
which are compared with the true values (black line).

As see in Fig. 4 (a), the blue line shows the HR calculated
from the PF and the HR model. It is found that the difference
between modeled HR and true HR is large for the first 5
minutes. This is due to the random guess on the initial values
of state variables. After the first 5 minutes, the modeled HR
approaches to the true observations, which demonstrates the
efficiency of PF for tracking HR responses. Similar
observations can be found for the two state variables x; and x,
(see the red and purple lines in Fig. 4 (a) and (b)). Additionally,
larger errors in x, are observed between 15 to 20 minutes,
which is due to the change of treadmill speed, i.e., the running
speed was increased from 5 km/hour to 6 km/hour at 15
minutes. In addition, the modeled HR at t;=30 minutes was
106.9 BPM, and the actual value is 106.5 BPM. The estimated
state variables are: J?lt =8.038 BPM and 3?2020.0594,
respectively, which are close to the actual values, i.e.,
££°=7.931 BPM and £°=0.088. Note that 100 particles were
used to track the actual HR in this case study. The number of
particles could affect the modeling accuracy, and increasing
particle numbers can further improve the prediction accuracy.
However, due to space limits, this is not discussed in this work.
Given the estimations of state variables at t,, we further
applied the HR model to predict future HR at different
treadmill speeds and find the optimal speed that can elevate or
lower HR to a target value HR,.
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Figure 4 HR observations vs modeled HR by particle filter and smoother

Optimal Treadmill Speed Identification. We further
performed different experiments using three target HR values,
i.e., HRy= 100 BPM, 120 BPM, and 140 BPM, respectively.
The objective is to raise or decrease the HR so that the average
HR in the future T minutes can be as close as possible to the
target value. Given a target HR and state variables at £,=30
minutes, HR in T minutes were calculated using the model
given in Eq. (1)-(6) and the optimal parameters identified in
previous sections. The best speed was identified by
minimizing the sum-squared error between HR predictions
and the target HR (see Eq. 18) for all time steps between ¢t to
to+T minutes. We set T=15 minutes, and HR predictions were
calculated for every 0.1 minute. Genetic algorithm was used to
solve the optimization, because there are multiple local
optimal solutions to the optimization problem, and both HR
observations and model predictions involve noises and
uncertainty, which consequently introduces noise into the
objective function [19]. However, different optimization
technique can be explored to find the optimal solution.

The optimal solutions of u* with different target HRs are
summarized in Table II. As seen, the best running speeds that
raise HR to 120 BPM and 140 BPM are 6.62 km/hour and
7.82 km/hour, respectively. The optimal speed that reduces
the HR to 100 BPM is 5.29 km/hour. HR changes at the three
treadmill speeds after t, are shown in Fig. 5. As seen in Fig.
5, the black line and the blue line between t=0 and 30 show
the HR observations and the modeled HR, respectively. The
HR control starts at t,=30 minutes when the initial speed is 6
km/hour. When the treadmill speed is set to 7.82 km/hour, the
HR raises rapidly in a few minutes to 130~140BPM. The
increasing trend continues until time reaches about 45
minutes, when the HR is increased to 150 BPM (see the green
line in Fig. 5). In addition, when the treadmill speed is set to
6.62 km/hour, HR increases rapidly to about 118 BPM in a



couple of minutes, and then continues to raise at a mild rate.
By the end of 45minutes, HR reaches to about 130 BPM.
Whereas, when speed is set to 5.28 km/hour, which is lower
than the current speed, HR decreases to 100 BPM in a few
minutes and stabilizes at 100 BPM until the end of the
simulations. The performance of the proposed speed control
algorithm is also quantitatively studied using two parameters,
i.e. error between the average HR in time window T and target
HR (i.e., AveError), and average of the absolute error (i.e.,
Ave SAE). As see in Table 11, AveErrors for the target HR of
140, 120, and 100 BPM are 1.015, 2.836, and 1.951 BPM,
respectively, and average SAE for the three targets are 6.60,
4.40, and 2.45 BPM (see Table II). Lower AveError is
observed for HR,=140BPM, because HR response evenly
distribute on both side of 140BPM at 30 ~ 45 minutes. This
makes the average in the time window to be very close to the
target value. In addition, lower SAE is observed for
HR,=100BPM because HR shows smaller variance around
100 BPM. The suboptimal performance of the controller at
target HRs of 140BPM and 120BPM may be due to the fact
that the controller does not consider the rate of speed changes
and favors a solution that raises HR to the target value as fast
as possible. To improve the performance, penalization can be
included to regulate speed changes.

TABLE II. SUMMARY OF OPTIMAL SPEED DESIGN WITH EQ. (17)

HR, (BPM) [Treadmill Speed (km/hour)| AveError Ave SAE
140 7.82 1.015 6.60
120 6.62 2.836 4.40
100 5.29 1.951 2.45
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Figure 5. HR at optimal treadmill speeds identified at three target HR,,

V. CONCLUSION

HR is one of the most important cardiovascular variables
that can be easily measured and provide significant insights
of cardiac functions during physical exercise. This paper
presents a new modeling and control framework to optimally
calibrate a state-space HR model, and further uses the model
to suggest optimal exercise intensity in order to meet different
training goals. Specifically, particle filter (PF) is used for both
model calibration and optimal treadmill speed identification.
The advantage of using PF is that it copes with nonlinear non-
Gaussian systems with unknown initial states. The proposed

method is validated through simulation studies, which
demonstrates its feasibility and efficiency for HR modeling,
tracking, and optimal exercise intensity identification. This
shows a great potential of the present method in advancing
both cardiovascular health and cardiac healthcare.
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