
  

Abstract— Physical exercise has been proven to be beneficial 

for both healthy subjects and cardiac patients. It can improve 

cardiovascular health and promote recovery from various heart 

conditions. Heart Rate (HR) is a cardiovascular variable, which 

can be easily monitored and provides important insights about 

cardiac functions during and after physical exercise. This study 

presents a HR-based modeling and control framework to 

monitor physiological changes during exercise, from which the 

exercise intensity is optimized to capitalize exercise outcomes. 

HR models were previously developed to investigate exercise 

physiology, but efficient model identification has not been 

extensively discussed in the literature. Most existing HR models 

are nonlinear state-space models, and traditional optimization 

techniques may fail to provide accurate model identification 

results. In this work, we propose to use particle filter (PF) to 

identify HR model parameters and further optimize the intensity 

of exercise, e.g., walking or running speed, based on the 

calibrated model. Specifically, sequential importance sampling 

and resampling (SISR) and smoothing were chosen to estimate 

state variables, and particle marginal Metropolis-Hastings 

method was used to identify model parameters from HR 

observations. In addition, using predictions calculated from the 

HR model, treadmill speed was optimized by minimizing the 

difference between predictions and the target HR. The modeling 

and control framework is validated with different case studies. 

The results demonstrate that the proposed method is a useful 

tool for personalized HR modeling and exercise control, which 

can benefit both regular exercise training and cardiac 

rehabilitation. 

I. INTRODUCTION 

Cardiovascular disease is the leading cause of death in the 
United States, and about 610,000 people die of heart disease 
every year, i.e., 1 in every 4 deaths [1, 2]. Regular physical 
activity helps decrease the chance of having a heart attack or 
stroke, and reduces the possibility of needing a coronary 
revascularization procedure [3]. Appropriate exercise training 
also benefits postoperative patients by promoting recovery. 
Cardiac output increases during physical exercise, which can 
consequently increase the volume of oxygen extracted from 
blood. However, it is important to monitor such changes to 
ensure normal and healthy cardiac responses with respect to 
different exercise intensities, thus preventing sudden cardiac 
events such as heart attack. Heart Rate (HR) is one of the 
cardiovascular variables that can be easily measured and used 
to gauge heart functions. Therefore, the analysis and modeling 
of HR during exercise has become an emerging topic. HR 
Models can provide a better understanding on exercise 
physiology, which reveals important insights for optimal 

exercise control for both healthy subjects and cardiac patients. 
Studies have showed that the HR profile during exercise and 
recovery can be used as a predictor for sudden death [4]. For 
example, a blunted increase of HR at 40-100% of maximal 
workload during exercise was associated with increased 
cardiovascular mortality [5]. In addition, an accurate model of 
HR can be useful for monitoring exercise and suggesting 
optimal exercise intensity for maximized training outcomes. 

Modeling of HR has been previously studied. Hajek et al 
studied the HR responses using feedforward and feedback 
components and estimated the model parameters in predefined 
small intervals for 15 healthy subjects [6]. Stirling et al 
developed a mathematical model to estimate HR responses 
during exercise, and used stochastic optimization algorithm to 
find optimal model parameters [7]. Zakynthinaki used two 
coupled ordinary differential equations (ODEs) to study HR 
during exercise. The model accounts for the rate of HR change 
and predicts HR responses based on exercise intensity, lactate 
accumulation, and subjects’ overall cardiovascular condition 
[3]. Note that, parameters used in Zakynthinaki’s model were 
determined empirically, and model identification was not 
discussed. Su et al built a HR model using Hammerstein 
system, which consists of a static nonlinearity cascade as the 
input of a linear system, and model parameters were identified 
using support vector regression with a regularized cost 
function [8]. In addition, Cheng et al introduced a nonlinear 
state-space model to predict the HR responses during and after 
treadmill walking exercise. As compared to other models, this 
model is efficient in describing both short and longer duration 
of exercises [9]. Cheng et al applied Levenberg–Marquardt 
method to estimate model parameters at different exercise 
intensities and HR responses. It is worth noting that state space 
model of HR response dominates the literature, which has been 
proven as an efficient approach to predict HR. However, few 
studies have discussed efficient parameter identification for 
state-space HR models. 

Parameter identification for state-space HR models is 
challenging due to the model complexity and nonlinearity. For 
example, HR calculated from two state variables is regulated 
by two nonlinear differential equations in Cheng et al’s model 
[9]. To obtain model parameters, estimation methods, such as 
least squares methods [10, 11], gradient-based methods [12, 
13], and bias compensation methods [14, 15], can be used, 
which minimize the difference between the predicted HR and 
observations. However, HR data used for model calibration 
generally contain a significant amount of uncertainty such as. 
noise and motion artifacts. Further, subjects are heterogeneous 
in baseline HR and exercise physiology. Without considering 
the uncertainty, model identification can be inefficient, which 
will result in inaccurate estimation of HR response and false 
control decision of exercise protocol design. Maximum 
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Likelihood Estimation (MLE) can be used to calibrate the 
model, while considering the measurement noise. However, 
the performance of MLE is suboptimal for state-space HR 
model, as the state variables and their initial values are often 
unknown. Kalman filter can be used in combination with MLE 
in order to obtain optimal parameters. However, Kalman filter 
is limited to linear Gaussian state-space model, thus providing 
less accurate results for nonlinear, non-Gaussian state-space 
HR model. As an alternative, Particle Filter (PF) is a sequential 
Monte Carlo method that estimate latent states in a dynamical 
system when only partial observations of HR are available in 
the presence of uncertainty. In this study, we propose to use 
particle method in combination with Bayesian parameter 
estimation to track HR variations and identify a set of optimal 
model parameters. Further, the calibrated model will be used 
to predict future HR and to identify best exercise intensities in 
order to meet exercise target and maximize training outcomes. 

The rest of this paper is organized as follows. Section II 
briefly discusses the models and methods. Section III provides 
the experimental results, which is followed by discussions and 
conclusion in Section V. 

II. METHOD 

A.  State-Space HR Response Model 

In this study, Cheng et al’s HR model is used to illustrate 
the proposed modeling and control framework [9]. To model 
HR variations with respect to different treadmill speeds, a 
nonlinear state-space control system was used [9]: 

 𝑥1̇(𝑡) = −𝑎1𝑥1(𝑡) + 𝑎2𝑥2(𝑡) + 𝑎3𝑢
2(𝑡) () 

 𝑥2̇(𝑡) = −𝑎4𝑥2(𝑡) + 𝜙(𝑡) () 

 𝑦(𝑡) = 𝑥1(𝑡)+ () 

𝜙(𝑡): =
𝑎5𝑥1(𝑡)

1 + exp⁡(−(𝑥1(𝑡) − 𝑎6))
 (4) 

where 𝒔(0) is the initial condition and 𝑎𝑖 , 𝑖 = 1,… ,5 is model 
parameter. 𝑦(𝑡) is the HR response and 𝑢(𝑡) is the treadmill 
speed. The 1st state variable 𝑥1(𝑡) describes the change of HR 
during exercise, while 𝑥2(𝑡) is the slower and more complex 
local peripheral effect [9]. For simplicity, we further write the 
state-space HR model as: 

𝑥𝑡 = 𝑓𝜽(𝑥𝑡−1) + 𝑤𝑡           (5) 

            𝑦𝑡 = 𝑔𝜽(𝑥𝑡) + ⁡𝑣𝑡         (6) 

where 𝜃={𝑎𝑖}, 𝑖 = 1, 2, …, 6, is the model parameters, 𝑓𝜽 is 
the nonlinear function that calculates the state value at 𝑡 given 
𝑥𝑡−1, 𝑔𝜽 is the function that calculates the observation at 𝑡 
given the state variable 𝑥𝑡 and noises, i.e.,  𝑤𝑡~𝒩(0, 𝑄), 
𝑣𝑡~⁡𝒩(0, 𝑅). 𝑄 and 𝑅 are covariances. Note that we assume 
HR data are corrupted with Gaussian noise in this study. 
However, other types of noise can be used, and the modeling 
and control follows the same procedure as explained below. 

B. Filtering 

In this study, we choose to use Bayesian method to infer 
model parameters with a set of observations. One challenge for 
accurate parameter estimation is to infer state variables in the 
nonlinear state-space model based on HR observations, i.e., 𝑦 
in (3). In this work, PF is used to obtain an estimation of the 

internal variable 𝑥={𝑥0,…, 𝑥𝑛}, given a set of known 
parameters and the observation 𝑦={𝑦0,…, 𝑦𝑛}. The detailed 
procedures are discussed as follows. 

Auxiliary particle filter, specifically sequential importance 
sampling and resampling (SISR), is used to estimate the states. 
The objective is to recursively characterize the joint posterior 
distributions {𝑝𝜃(𝑥𝑛|𝑦0:𝑛)}𝑛≥0 through a sequence of data of 
HR. The posterior density of 𝑥𝑛 given HR data 𝑦0:𝑛−1 and the 
state transition density 𝑝(𝑥𝑛|𝑥𝑛−1

⁡ ) can be calculated as [16]: 

𝑝𝜃(𝑥𝑛|𝑦0:𝑛−1) =∑𝑝(𝑥𝑛|𝑥𝑛−1
𝑖 )

𝑁

𝑖=1

𝜋𝑛−1
𝑖  (7) 

where 𝜋𝑛−1
𝑖  is the discrete probability mass of particles 𝑥𝑛−1

𝑖 , 
𝑁 is the number of particles. Considering the measurement 
density at 𝑦𝑛, this can be written as [16]: 

𝑝𝜃(𝑥𝑛|𝑦0:𝑛) ∝ 𝑝(𝑦𝑛|𝑥𝑛)∑𝑝(𝑥𝑛|𝑥𝑛−1
𝑖 )

𝑁

𝑖=1

𝜋𝑛−1
𝑖  (8) 

The samples of PF from (8) will produce new particles with 
weights of 𝜋. One can sample from 𝑝𝜃(𝑥𝑛|𝑦0:𝑛−1) by choosing 

𝑥𝑛−1
𝑖  with weights 𝜋𝑛−1

𝑖 , which can be obtained as [16]: 

𝑤𝑛−1
𝑖 = 𝑝(𝑦𝑛|𝑥𝑛−1

𝑖 ), 𝜋𝑛−1
𝑖 =⁡

𝑤𝑖

∑ 𝑤𝑗𝑁
𝑗=1

  (9) 

When n = 0, the weight can be obtained as [16]: 

𝑤0
⁡ ∝ 𝑝(𝑦0|𝑥0)𝜋0

⁡  

where 𝜋0
⁡  is a priori distribution of 𝑥0. The posterior 

distribution of 𝑥𝑛 at 𝑛 is determined by the weighted sample 

(𝑥𝑛
𝑖 , 𝜋𝑛

𝑖 ). The procedure of PF is summarized as follows [17]. 

For 𝑛 = 0, for all 𝑖 ∈{1,…,N}: 

1. Sample 𝑋0
𝑖~𝜋0

⁡ (𝑥0|𝑦0). 

2. Compute 𝑤1
𝑖 ∝ 𝑤0

⁡ (𝑋0
𝑖), 𝜋1

𝑖= 𝑤𝑗
𝑖/∑ 𝑤1

𝑗𝑁
𝑖=1 . 

3. Resample 𝑋̅0
𝑖~∑ 𝜋1

𝑖𝑁
𝑖=1 𝛿(𝑋0 − 𝑋0

𝑖). 
For 𝑛=1, 2, …, T, for all 𝑖 ∈{1,…,N}: 

1. Sample 𝑋𝑛
𝑖~𝑝𝜃(𝑥𝑛|𝑦𝑛 , 𝑋̅𝑛−1

𝑖 ), set 𝑋0:𝑛
𝑖 ← {𝑋̅𝑛−1

𝑖 , 𝑋𝑛
𝑖 } 

2. Compute 

𝑤𝑛+1
𝑖 ∝ w𝑛

𝑖 (𝑋𝑛−1:n
𝑖 ) 

𝜋𝑛+1
𝑖  = 𝑤𝑛+1

𝑖 /∑ 𝑤𝑛+1
𝑗𝑁

𝑖=1  

3. Resample 𝑋̅𝑛
𝑖~∑ 𝜋𝑛+1

𝑖𝑁
𝑖=1 𝛿(𝑋𝑛 − 𝑋𝑛

𝑖 ) 

C. Smoothing 

Smoothing is used to estimate the distribution of state 
variables at the particular time given all the HR data up to 
some later time. Since additional HR data are incorporated in 
the estimation, the trajectory obtained in this procedure would 
be smoother. Given the posterior density of 𝑝𝜃(𝑥𝑛|𝑦0:𝑛) 
described in previous section, the joint smoothing density 
𝑝𝜃(𝑥0:𝑇|𝑦0:𝑇) for 𝑇>n can be factorized as [18]: 

𝑝𝜃(𝑥0:𝑇|𝑦0:𝑇) = 𝑝𝜃(𝑥𝑇|𝑦0:𝑇)∏𝑝𝜃(𝑥𝑛|𝑦0:𝑛, 𝑥𝑛+1)

𝑇−1

𝑛=0

 (10) 

where 𝑝𝜃(𝑥𝑛|𝑦0:𝑛, 𝑥𝑛+1) is a backward transition density 
given by [18]: 



  

𝑝𝜃(𝑥𝑛|𝑦0:𝑛, 𝑥𝑛+1) = ⁡
𝑝𝜃(𝑥𝑛+1|𝑥𝑛)𝑝𝜃(𝑥𝑛|𝑦0:𝑛)

𝑝𝜃(𝑥𝑛+1|𝑦0:𝑛)
 (11) 

∝ ⁡𝑝𝜃(𝑥𝑛+1|𝑥𝑛)𝑝𝜃(𝑥𝑛|𝑦0:𝑛)  

Given the approximation of 𝑝𝜃(𝑥𝑛|𝑦0:𝑛) generated by the 
filtering in Eq. (8), one can find the following approximation: 

𝑝𝜃(𝑥𝑛|𝑦0:𝑛, 𝑥𝑛+1) 

≈ 𝑝𝜃(𝑥𝑛+1|𝑥𝑛
⁡ )𝑝(𝑦𝑛|𝑥𝑛)∑𝑝(𝑥𝑛|𝑥𝑛−1

𝑖 )

𝑁

𝑖=1

𝜋𝑛−1
𝑖  

(12) 

where the weight is modified as: 

𝜋𝑖 =⁡
𝑤𝑖𝑝(𝑥𝑛+1|𝑥𝑛

𝑖 )

∑ 𝑤𝑗𝑝(𝑥𝑛+1|𝑥𝑛
𝑗
)𝑁

𝑗=1

 (13) 

The detailed smoothing process is summarized as follows. 

Step 1. Sample {𝑥𝑛
𝑖 }𝑖=1
𝑁  via particle filtering. 

Step 2. For each set of 𝑥𝑛
𝑖  and 𝑛=𝑇-1, …, 1, resample 𝑥𝑛

𝑖  

from {𝑥𝑛
𝑖 }𝑖=1
𝑁  with weights 𝜋𝑖.  

The PF and smoothing provide estimations of state variables 
𝑥 given a set of HR data, which will be further used in section 
III for parameter estimation and treadmill speed design. 

D. Bayesian Parameter Estimation 

Bayesian parameter estimation approach assigns a suitable 
prior density 𝑝(𝜃) to 𝜃 and infers the model parameters based 
on the posterior density 𝑝(𝑥0:𝑇 , 𝜃|𝑦0:𝑇). The objective of the 
parameter estimation procedure is to maximize the log 
likelihood function as, 

max
𝜃
⁡log⁡𝐿(𝜃) ⁡= log⁡∏ 𝑝(𝑦𝑖|𝑥0:𝑖 , 𝑦0:𝑖−1)

𝑇
𝑖=0  (14) 

In this study, we propose to use particle MCMC to seek the 
distributions of model parameters. Specifically, Particle 
Marginal Metropolis-Hastings (PMMH) sampler was used to 
sample from the proposal density [17]: 

𝑞((𝑥0:𝑇
∗ ,⁡𝜃∗)|(𝑥0:𝑇, 𝜃)) = 𝑞(𝜃∗|𝜃)𝑝(𝑥0:𝑇

∗ |𝑥0:𝑇) (15) 

where 𝑞(𝜃∗|𝜃) is a proposal density to obtain the next choice 
of 𝜃∗ given 𝜃 at the current location. The acceptance ratio for 
the joint proposal can be defined as [17]: 

𝑚𝑖𝑛⁡(1,
𝑝𝜃∗(𝑦0:𝑇)𝑝(𝜃

∗)𝑞(𝜃|𝜃∗)

𝑝𝜃(𝑦0:𝑇)𝑝(𝜃)𝑞(𝜃
∗|𝜃)

) (16) 

Note it is difficult to directly compute 𝑝𝜃∗(𝑦0:𝑇) and 𝑝𝜃(𝑦0:𝑇) 
with an acceptable probability. We choose to use PMMH 
sampler to estimate two likelihood terms. The approximation 
steps are summarized as follows. 

First, given a set of model parameter 𝜃, the particle 
approximation of 𝑝̂𝜃(𝑦0:𝑇) will be obtained. 

Second, a proposal 𝜃∗ is calculated by sampling from the 
Gaussian distribution with a mean value equals to the last 
value and an adaptively estimated covariance matrix. 

Then, particle approximation 𝑝̂𝜽∗(𝑥0:𝑇
∗ |𝑦0:𝑇) and 𝑝̂𝜽∗(𝑦0:𝑇) 

are obtained using the PF and smoother discussed in the 
previous section. One of the N particles is chosen based on the 
weight values as 𝑋0:𝑇

∗ . The chance for accepting the current 𝜃∗ 
is approximated as: 

𝑚𝑖𝑛⁡(1,
𝑝̂𝜃∗(𝑦0:𝑇)𝑝(𝜃

∗)𝑞(𝜃|𝜃∗)

𝑝̂𝜃(𝑦0:𝑇)𝑝(𝜃)𝑞(𝜃
∗|𝜃)

) (17) 

The procedure repeats for M iterations until the likelihood 
function converges, and the posterior distribution of all 
parameters are characterized to obtain the optimal parameters. 

D.  Optimal Exercise Intensity 

Further, given the optimally calibrated model, an optimal 
exercise intensity is identified based on the model prediction 
𝑦̂ and a target heart rate 𝐻𝑅0. The optimal walking/running 
speed is determined via the optimization problem defined as 
follows: 

min
𝑢∗

⁡⁡{
1

𝑇
(𝑦̂ − 𝐻𝑅0)

2} (18) 

s.t.     𝑦̂ = 𝑔𝜃(𝑥𝑡) + ⁡𝑣𝑡  

𝑥𝑡=𝑓𝜃(𝑥𝑡−1) + 𝑤𝑡 

0 < 𝑢 < 12 

where 𝑦̂ is HR prediction between (𝑡0, 𝑡0+T), which can be 
calculated using Eqs. (1)-(6) in Section II A, 𝐻𝑅0 is a user 
defined target HR. 

III. SIMULATIONS AND DESIGN OF EXPERIMENTS 

A. Exercise Protocols 

Two exercise protocols were considered in this work for 
model identification and exercise control design, respectively. 
The protocols are described as follow. 

Protocol 1 – Subject was at rest for the first 2.5 minutes 
and started to walk at a speed of 5km/hour for 15.5 minutes, 
then returned to resting state for 12 minutes. The same protocol 
was repeated with different walking/running speeds, i.e., 6 
km/hour and 7 km/hour, respectively. The simulated data is 
shown in Fig. 1 (a). This protocol is determined following the 
previous study [9]. 

 

Protocol 2 – Subject was at rest for the first 2.5 minutes 

and started to walk at 5 km/hour for 15.5 minutes, then 

speeded up to more an intensive exercise, i.e., walking speed 

of 6km/hour for 15 minutes, and 7km/hour for another 15 

minutes, before returning to the resting state. The simulated 

HR is shown in Fig. 1 (b). 

Protocol 1 

Protocol 2 

5km/h 
6km/h 

7km/h 

(a) 

(b) 

Figure 1. Heart Rate at different exercise protocols 



  

B. Simulation Experiments 

HR was calculated using the state-space model given in 
Eqs. (1)-(6) with Euler method in a 0.1-minute time step. The 
state variables 𝑥1 and 𝑥2 were assumed to follow independent 
Gaussian distributions with zero means and covariances of 0.1 
and 0.001, respectively. The noise in HR was considered to 
follow a normal distribution with zero mean and covariance of 
1. Parameter estimation was performed following the steps 
discussed in Section II A-C, and 50 particles were used to 
compute state variables and search for model parameters. The 
optimization problem in exercise control was solved using 
genetic algorithm. All experiments were performed in 
MATLAB 2018b on a 64-bit Windows computer. 

IV. RESULTS 

A. Model Identification 

In this section, the state-space HR model was optimized to 
fit simulated HR observations. The model parameters were 
estimated using multiple sets of HR observations, i.e., 
simulated HR at 5km/hour, 6km/hour, and 7 km/hour for 30 
minutes (see Fig. 1 (a)). The noises in both state variables and 
HR observations were assumed to follow zero mean Gaussian 
distribution with different standard deviations, i.e., 𝜎𝑥1

⁡ =0.01, 

𝜎𝑥2
⁡ = 0.001, and 𝜎𝑦

⁡ =1. Given each set of observation, state 

variables 𝑥𝑡 at time 𝑡 was estimated through the PF and 
smoother with 50 particles. Initial values of the state variables 
were randomly generated from a normal distribution with 
mean value equals to 2 and variance equals to 1. It is worth 
mentioning that the filtering and smoothing are not sensitive 
to the changes in the initial value. The user can choose any 
values in a reasonable range. Given a set of parameters 𝜃, the 
likelihood 𝑝𝜽(𝑦0:𝑇) was calculated as the joint probability of 
all HR observations at 𝑡=0,…𝑇, which was further used in 
MCMC to determine the acceptance rate of the current 
attempt. Uniform prior distributions were assigned to all 
parameters with a lower bound of 1e-6 and upper bound equals 
to 5 times of the suggested parameters by [9]. The algorithm 
was initiated by sampling 𝜃 from the prior distribution and 
proceeded with MCMC moves. A multivariate Gaussian 
distribution was used as the proposal distribution and the 
covariance function was updated iteratively as the algorithm 
proceeded. The algorithm was executed with 𝑇=300 at 0.1 
minutes time step for 1000 burn-in iterations and 5000 
iterations. Estimated marginal posteriors for all model 
parameters 𝑝(𝜃|𝑦0:𝑇) obtained from particle marginal 
Metropolis-Hastings are given in Fig. 2. The black vertical 
lines in Fig. 2 show the actual parameters, while the blue 
curves show the marginal posterior density of each parameter. 
As seen, some of the posterior densities have a Gaussian shape, 
whereas some follow non-Gaussian distribution. The proposed 
method can capture the true parameters, i.e., the mean of each 
posterior density is close to the actual parameter. Further, the 
actual parameter, the posterior mean and standard deviation 
are given in Table I. 

TABLE I. SUMMARY OF PARAMETER ESTIMATION RESULTS 

Parameters 𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 𝑎6 

True 1.84 24.32 0.0636 0.00321 8.32 0.38 

Posterior Mean  1.93 24.99 0.0665 0.00331 8.33 0.38 

Posterior s.d. 0.28 4.07 0.0128 0.0006 1.51 0.058 

 
Figure 2. Estimated marginal posterior density of model parameters 

 

In addition, using the identified model parameters with 
particle MCMC, the modeled HR and state variables by Eq. 
(1)-(6) at 5km/hour, 6km/hour, and 7km/hour are shown in 
Fig. 3, which are also compared to the true HR and state 
variables. As seen in Fig. 3, the modeled HR matches with 
actual HR, which demonstrates the accuracy of the estimated 
parameters. We further quantify the model error by calculating 
the average sum squared error (SSE) as: SSE = 
(1/3𝑇)∑ ∑ (𝑦̂𝑢,𝑡 − 𝑦𝑢,𝑡)

2𝑇
𝑡=1

7
𝑢=5 . The average SSE between 

modeled HR and true HR for all the three speed is 1.38 beat 
per minute (BPM), and the average SSE between modeled 
state variables and true state values are SSEx1= 0.04 and SSEx1 

Figure 3. Modeled vs true heart rate (a), heart rate variations, 𝑥1 
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= 0.0001. The average SSEs for both two state variables are 

less than the standard deviation of noise, i.e., 𝜎𝑥1
⁡ =0.01, 𝜎𝑥2= 

0.001. Therefore, the identified model is acceptable and will 
be further used for the treadmill speed optimization in the 
following Section. 

B. Optimal Treadmill Speed Identification 

The treadmill speed optimization is accomplished in two 
steps, i.e., HR modeling and tracking, and optimal speed 
identification. We assume HR signals for 𝑡0 minutes prior the 
current time can be collected, but the state variables and the 
starting values are unknown. Given the optimally calibrated 
model, we first apply PF and smoother to estimate the state 
variables up to 𝑡0 minutes. Then, the optimal walking/running 
speed in the next 𝑇 minutes will be calculated through the 
optimization defined in Eq. 18. Further, the optimal speed will 
be given as an input to the HR model to predict the HR changes 
for the next 𝑇 minutes, which will be compared with the target 
HR for validation. The modeling and optimization results are 
shown as follows. 

HR tracking. We assume a subject started the exercise at 
unknow time, and HR signals are recorded at 𝑡=0 for 𝑡0=30 
minutes. The simulated observations are plotted in Fig. 4 (see 
the black lines in Fig. 4 for HR observations). The data was 
generated following the 2nd protocol given in Section III. The 
signals were recorded a few minutes after the exercise started. 
Given the HR data and the model obtained from the previous 
section, we first applied PF to track the HR variations. Random 
initial values of the state variables 𝑥1 and 𝑥2 were generated 

from two normal distributions, i.e., 𝑥1
0~𝑁(5, 102) and 

𝑥2
0~𝑁(0.02, 0.012). The parameters of the distributions were 

determined based on the possible ranges of the two variables. 
The HR signals, and the state variables 𝑥1 and 𝑥2 estimated 
with PF given random starting values are shown in Fig. 4, 
which are compared with the true values (black line). 

As see in Fig. 4 (a), the blue line shows the HR calculated 
from the PF and the HR model. It is found that the difference 
between modeled HR and true HR is large for the first 5 
minutes. This is due to the random guess on the initial values 
of state variables. After the first 5 minutes, the modeled HR 
approaches to the true observations, which demonstrates the 
efficiency of PF for tracking HR responses. Similar 
observations can be found for the two state variables 𝑥1 and 𝑥2 
(see the red and purple lines in Fig. 4 (a) and (b)). Additionally, 
larger errors in 𝑥2 are observed between 15 to 20 minutes, 
which is due to the change of treadmill speed, i.e., the running 
speed was increased from 5 km/hour to 6 km/hour at 15 
minutes. In addition, the modeled HR at 𝑡0=30 minutes was 
106.9 BPM, and the actual value is 106.5 BPM. The estimated 

state variables are: 𝑥̂1
𝑡0=8.038 BPM and 𝑥̂2

𝑡0=0.0594, 

respectively, which are close to the actual values, i.e., 

𝑥̂1
𝑡0=7.931 BPM and 𝑥̂2

𝑡0=0.088. Note that 100 particles were 

used to track the actual HR in this case study. The number of 
particles could affect the modeling accuracy, and increasing 
particle numbers can further improve the prediction accuracy. 
However, due to space limits, this is not discussed in this work. 
Given the estimations of state variables at 𝑡0, we further 
applied the HR model to predict future HR at different 
treadmill speeds and find the optimal speed that can elevate or 
lower HR to a target value 𝐻𝑅0.  

 

Optimal Treadmill Speed Identification. We further 
performed different experiments using three target HR values, 
i.e., 𝐻𝑅0= 100 BPM, 120 BPM, and 140 BPM, respectively. 
The objective is to raise or decrease the HR so that the average 
HR in the future 𝑇 minutes can be as close as possible to the 
target value. Given a target HR and state variables at 𝑡0=30 
minutes, HR in 𝑇 minutes were calculated using the model 
given in Eq. (1)-(6) and the optimal parameters identified in 
previous sections. The best speed was identified by 
minimizing the sum-squared error between HR predictions 
and the target HR (see Eq. 18) for all time steps between 𝑡0 to 
𝑡0+𝑇 minutes. We set 𝑇=15 minutes, and HR predictions were 
calculated for every 0.1 minute. Genetic algorithm was used to 
solve the optimization, because there are multiple local 
optimal solutions to the optimization problem, and both HR 
observations and model predictions involve noises and 
uncertainty, which consequently introduces noise into the 
objective function [19]. However, different optimization 
technique can be explored to find the optimal solution. 

The optimal solutions of 𝑢∗ with different target HRs are 

summarized in Table II. As seen, the best running speeds that 

raise HR to 120 BPM and 140 BPM are 6.62 km/hour and 

7.82 km/hour, respectively. The optimal speed that reduces 

the HR to 100 BPM is 5.29 km/hour. HR changes at the three 

treadmill speeds after 𝑡0 are shown in Fig. 5. As seen in Fig. 

5, the black line and the blue line between 𝑡=0 and 30 show 

the HR observations and the modeled HR, respectively. The 

HR control starts at 𝑡0=30 minutes when the initial speed is 6 

km/hour. When the treadmill speed is set to 7.82 km/hour, the 

HR raises rapidly in a few minutes to 130~140BPM. The 

increasing trend continues until time reaches about 45 

minutes, when the HR is increased to 150 BPM (see the green 

line in Fig. 5). In addition, when the treadmill speed is set to 

6.62 km/hour, HR increases rapidly to about 118 BPM in a 

Figure 4 HR observations vs modeled HR by particle filter and smoother 
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couple of minutes, and then continues to raise at a mild rate. 

By the end of 45minutes, HR reaches to about 130 BPM. 

Whereas, when speed is set to 5.28 km/hour, which is lower 

than the current speed, HR decreases to 100 BPM in a few 

minutes and stabilizes at 100 BPM until the end of the 

simulations. The performance of the proposed speed control 

algorithm is also quantitatively studied using two parameters, 

i.e. error between the average HR in time window 𝑇 and target 

HR (i.e., AveError), and average of the absolute error (i.e., 

Ave SAE). As see in Table II, AveErrors for the target HR of 

140, 120, and 100 BPM are 1.015, 2.836, and 1.951 BPM, 

respectively, and average SAE for the three targets are 6.60, 

4.40, and 2.45 BPM (see Table II). Lower AveError is 

observed for 𝐻𝑅0=140BPM, because HR response evenly 

distribute on both side of 140BPM at 30 ~ 45 minutes. This 

makes the average in the time window to be very close to the 

target value. In addition, lower SAE is observed for 

𝐻𝑅0=100BPM because HR shows smaller variance around 

100 BPM. The suboptimal performance of the controller at 

target HRs of 140BPM and 120BPM may be due to the fact 

that the controller does not consider the rate of speed changes 

and favors a solution that raises HR to the target value as fast 

as possible. To improve the performance, penalization can be 

included to regulate speed changes.  

TABLE II. SUMMARY OF OPTIMAL SPEED DESIGN WITH EQ. (17) 

𝑯𝑹𝟎 (BPM) Treadmill Speed (km/hour) AveError Ave SAE 

140  7.82 1.015 6.60 

120 6.62 2.836 4.40 

100 5.29 1.951 2.45 

 

V. CONCLUSION 

HR is one of the most important cardiovascular variables 

that can be easily measured and provide significant insights 

of cardiac functions during physical exercise. This paper 

presents a new modeling and control framework to optimally 

calibrate a state-space HR model, and further uses the model 

to suggest optimal exercise intensity in order to meet different 

training goals. Specifically, particle filter (PF) is used for both 

model calibration and optimal treadmill speed identification. 

The advantage of using PF is that it copes with nonlinear non-

Gaussian systems with unknown initial states. The proposed 

method is validated through simulation studies, which 

demonstrates its feasibility and efficiency for HR modeling, 

tracking, and optimal exercise intensity identification. This 

shows a great potential of the present method in advancing 

both cardiovascular health and cardiac healthcare. 
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