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Abstract. We study the localization game on dense random graphs. In this game, a cop
x tries to locate a robber y by asking for the graph distance of y from every vertex in a
sequence of sets W1,W2, . . . ,Wℓ. We prove high probability upper and lower bounds for
the minimum size of each Wi that will guarantee that x will be able to locate y.

1. Introduction

In this paper we consider the following Localization Game related to the well studied Cops
and Robbers game; see Bonato and Nowakowski [2] for a survey on this game. A robber is
located at a vertex v of a graph G. In each round, a cop can ask for the graph distance
between v and vertices W = {w1, w2, . . . , wk}, where a new set of vertices W can be chosen
at the start of each round. The cop wins immediately if the W -signature of v, i.e. the
set of distances, dist(v, wi), i = 1, 2, . . . , k is sufficient to determine v. Otherwise, the
robber will move to a neighbor of v and the cop will try again with a (possibly) different
test set W . Given G, the localization number ζ(G) is the minimum k so that the cop can
eventually locate the robber, that means, the cop determines the exact location of the
robber from the test sets of size k. This game was introduced by Bosek et al. [3], who
studied the localization game on geometric and planar graphs, and also independently, by
Haslegrave et al. [6]. For some other related results see [4, 8, 9].

2. Results

The localization number is closely related to the metric dimension β(G). This is the
smallest integer k such that the cop can always win the game in one round. Clearly,
ζ(G) ≤ β(G).
In this note we will study the localization number of the random graph Gn,p with diameter
two. Here and throughout the whole paper ω = ω(n) = o(log n) denotes a function tending
arbitrarily slowly to infinity with n. We will also use the notation

q = 1− p and ρ = p2 + q2.

We write An ≲ Bn to mean that An ≤ (1 + o(1))Bn as n tends to infinity. We further
write An ≈ Bn if An = (1 + o(1))Bn as n tends to infinity. Finally, we say that an event
En occurs asymptotically almost surely, or a.a.s. for brevity, if limn→∞ Pr(En) = 1.
The metric dimension of Gn,p was studied by Bollobás et al. [1]. If we specialize their result
to large p then it can be expressed as:
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Theorem 2.1 ([1]). Suppose that(
2 log n+ ω

n

)1/2

≤ p ≤ 1− 3 log log n

log n
.

Then,
2 log np

log 1/ρ
≲ β(Gn,p) ≲

2 log n

log 1/ρ
a.a.s.. (1)

Note that the upper and lower bounds in (1) are asymptotically equal if p ≥ n−o(1).
It is well-known (see, e.g., [5]) that if np2 ≥ 2 log n + ω, then a.a.s. diam(Gn,p) ≤ 2. We
will condition on the diameter satisfying this. Graphs with diameter 2 enable some sim-
plifications. Indeed, if a vertex v has W -signature {d1, . . . , dk}, where W = {w1, . . . , wk},
where di = dist(v, wi), then

di =

{
1 iff {v, wi} ∈ E

2 iff {v, wi} /∈ E.

Consequently, the probability that two vertices u and v in Gn,p have the same W -signature,
W = {w1, . . . , wk}, such that u, v /∈ W is equal to

k∏
i=1

Pr(u, v ∈ N(wi) or u, v /∈ N(wi)) = ρk.

The upper bound on p in the below theorem is determined by a result of [1] about the
metric dimension of Gn,p.

Theorem 2.2. Let(
2 log n+ ω

n

)1/2

≤ p ≤ 1− 3 log log n

log n
and η =

log(1/p)

log n

and let c be a positive constant such that

0 < c < min

{
1

2

(
log n− 3 log log n

log 1/p
− 1

)
, 1

}
.

Then, a.a.s. (
1− 2η − 4 log log n

log n

)
2 log n

log 1/ρ
≤ ζ(Gn,p) ≤ (1− cη)

2 log n

log 1/ρ
.

2.1. Observations about Theorem 2.2.
First observe that if p ≥ logn

n1/3 , then

1

2

(
log n− 3 log log n

log 1/p
− 1

)
≥ 1

and so c can be any positive constant less than 1. Furthermore, for any p ≥
(
2 logn+ω

n

)1/2
we have

1

2

(
log n− 3 log log n

log 1/p
− 1

)
≥ 1

2

(
log n− 3 log log n

1
2
(log n− log(2 log n+ ω))

− 1

)
=

1

2
− o(1).

Hence, we can always take c ≥ 1
2
− o(1).
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If p = 1/nα for some constant 0 < α < 1/2, then,

η = α and c ≤

{
1− o(1) if 0 < α < 1

3
1
2α

− 1
2
− o(1) otherwise.

Moreover,

ρ = 1− 2p+ 2p2 and so log 1/ρ = 2p+O(p2) ≈ 2

nα
.

Hence, Theorem 2.2 implies the following corollary.

Corollary 2.3. Let p = 1/nα, where 0 < α < 1/2 is constant. Then, a.a.s.

(1− 2α)nα log n ≲ ζ(Gn,p) ≲

{
(1− α)nα log n if 0 < α < 1

3(
1+α
2

)
nα log n otherwise.

Notice that for 0 < α < 1
3
the upper bound on ζ(Gn,p) equals the lower bound from

Theorem 2.1. Therefore, it is plausible to conjecture that ζ(Gn,p) < β(Gn,p).
Now observe that if p = n−1/ω, then

2η =
2 log(1/p)

log n
=

2

ω
= o(1).

Thus, Theorem 2.2 implies:

Corollary 2.4. Let p = n−1/ω. Then,

ζ(Gn,p) ≈
2 log n

log 1/ρ
.

Clearly, this also holds for any constant p. In particular, for p = 1/2, we get:

Corollary 2.5. For almost all graphs G we have

ζ(G) ≈ 2 log n

log 2
= 2 log2(n).

2.2. Proof of Theorem 2.2 – lower bound.

Since we will deal with “mostly independent” random variables, we will use the following
form of Suen’s inequality (see, e.g. [7]).

Theorem 2.6 (Suen’s Inequality). Let θi, i ∈ I be indicator random variables which take
value 1 with probability pi. Let L be a dependency graph. Let X =

∑
i∈I θi, and µ =

E(X) =
∑

i∈I pi. Moreover, write i ∼ j if ij ∈ E(L), and let ∆ = 1
2

∑
i∼j E(θiθj) and

δ = maxi
∑

j∼i pj. Then,

Pr(X = 0) ≤ exp

{
−min

{
µ2

8∆
,
µ

2
,
µ

6δ

}}
.

We will also use the following simple fact.

Lemma 2.7. Let 0 < p < 1 and p+ q = 1. Then,

log(p3 + q3)

log ρ
≥ 3

2
.
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Proof. This inequality is equivalent to

log(p3 + q3)2 ≤ log(p2 + q2)3

and so to

(p3 + q3)2 ≤ (p2 + q2)3.

The latter is equivalent to

2p3q3 ≤ 3p4q2 + 3p2q4 = 3p2q2(p2 + q2) = 3p2q2(1− 2pq)

and consequently to

2pq ≤ 3(1− 2pq)

which is equivalent to

pq ≤ 3

8
.

But this is always true since pq ≤ 1
4
. □

The lower bound in Theorem 2.2 will follow from the following result.

Lemma 2.8. Let

log2 n

n1/2
< p ≤ 1− 1

log n
and ε =

2 log
(

log2 n
p

)
log n

and k =
2(1− ε) log n

log 1/ρ
.

Then a.a.s.,

ζ(Gn,p) ≥ k.

First observe that ε = 2η + 4 log logn
logn

and so the lower bound in Theorem 2.2 holds.

Proof. For a fixed vertex u and k-set S let Xu,S count the number of unordered pairs
w, v ∈ N(u) with the same signature induced by S. We prove that the probability that
there is a vertex u and a k-set S such that Xu,S = 0 is o(1). Consequently, this will imply
that a.a.s. for every vertex u and k-set S there are at least two neighbors of u with the
same signature in S. Hence, a.a.s. the localization number is at least k.
Clearly,

µ = E(Xu,S) =

(
n− k − 1

2

)
ρkp2 ≥ p2

4
exp{k log ρ+ 2 log n}

=
p2

4
exp{−2(1− ε) log n+ 2 log n} =

p2

4
n2ε.

Furthermore, since every triple of vertices in N(u) with the same signature contributes
three unordered pairs of variables to ∆, we get

∆ ≤ 3

(
n

3

)
(p3 + q3)kp3

≤ p3

2
exp

{
k log(p3 + q3) + 3 log n

}
=

p3

2
exp

{
−2(1− ε)(log n)

log(p3 + q3)

log ρ
+ 3 log n

}
.
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Now, by Lemma 2.7,

∆ ≤ p3

2
exp

{
−2(1− ε)(log n) · 3

2
+ 3 log n

}
=

p3

2
n3ε.

Similarly

δ ≤ 2nρkp2 = 2p2 exp (k log ρ+ log n) = 2p2n−1+2ε.

Thus,

µ2

8∆
≥ 1

64
pnε,

µ

2
≥ 1

8
(pnε)2 and

µ

6δ
≥ 1

48
n.

Since 0 < ε < 1 and pnε → ∞ (due to our choice of ε) the lower bound in the first
inequality is the smallest. Hence, by Theorem 2.6,

Pr(Xu,S = 0) ≤ exp

{
− 1

64
pnε

}
.

Now we use the union bound to show that the probability that there is a vertex u and a
k-set S such that Xu,S = 0 is o(1). Indeed, this probability is at most

n

(
n

k

)
exp

{
− 1

64
pnε

}
≤ exp

{
(k + 1) log n− 1

64
pnε

}
. (2)

Now observe that ρ = (p+ q)2 − 2pq = 1− 2pq and so

k =
2(1− ε) log n

log 1/ρ
= −2(1− ε) log n

log(1− 2pq)
≤ − 2 log n

log(1− 2pq)
.

Since 1− x ≤ e−x and 2pq < 1, we get that

k log n ≤ (log n)2

pq
.

Furthermore, since by assumption p ≤ 1− 1
logn

, we obtain q ≥ 1
logn

and so

k log n ≤ (log n)3

p
.

Also

pnε = peε logn =
(log n)4

p
.

Thus, the exponent in (2) tends to −∞. This completes the proof of Lemma 2.8. □

2.3. Proof of Theorem 2.2 – upper bound.
Let deg(v) denote the degree of vertex v in Gn,p and let codeg(v, w) denote the co-degree
of vertices v, w in Gn,p. We observe next that the Chernoff bounds imply that a.a.s.

deg(v) = np+O((np log n)1/2) for all v ∈ [n]. (3)

codeg(v, w) = np2 +O((np2 log n)1/2) for all v ∈ [n]. (4)

Lemma 2.9.
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(i) Let

e−
logn
ω ≤ p ≤ 1− 3 log log n

log n
.

Then, a.a.s.

ζ(Gn,p) ≲
2 log n

log 1/ρ
.

(ii) Let(
2 log n+ ω

n

)1/2

≤ p ≤ e−Ω(logn) and η =
log 1/p

log n
and k =

2(1− cη) log n

log 1/ρ
,

where

0 < c < min

{
1

2

(
log n− 3 log log n

log 1/p
− 1

)
, 1

}
.

Then, a.a.s.

ζ(Gn,p) ≤ k.

Proof. Part (i) follows immediately from Theorem 2.1.

We now prove (ii). Equations (3) and (4) plus our bound of two on the diameter are all we
need for this. So the analysis works for any graph satisfying these conditions. Let S1 be a
randomly chosen k-subset of V and let X1 be the number of pairs with the same signature
in S1. Then, if

D(v, w) = (N(v) \N(w)) ∪ (N(w) \N(v))

for v, w ∈ [n] then

E(X1) =
∑
v ̸=w

Pr((N(v) ∩ S1) = (N(w) ∩ S1))

=
∑
v ̸=w

Pr(S1 ∩D(v, w) = ∅)

≤ n2

(
1− 2p(1− p)

(
1 +O

(
log1/2 n

n1/2

)))k

(5)

= n2ρk

(
1 +O

(
k log1/2 n

n1/2

))
(6)

= (1 + o(1))n2cη. (7)

and by the Markov inequality we have X1 ≤ ωn2cη a.a.s.. (Going from (5) to (6) uses the
trivial identity 1− a(1− ε) = (1− a)

(
1 + aε

1−a

)
.) Thus, the set R of vertices with exactly

the same signature in S as the robber is a.a.s. of size at most ω1/2ncη. Let T2 consist
of R and the set of neighbors of R. The robber can move to somewhere in T2. Clearly,
|T2| ≤ 2ω1/2ncηpn a.a.s..
Now let S2 be another random k-subset of V , chosen independently of S1. Let X2 be the
number of pairs of vertices from T2 with the same signature in S2. Arguing as for (7), we
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see that

E(X2) ≤ (2ω1/2ncηpn)2ρk

(
1 +O

(
k log1/2 n

n1/2p

))
= (1 + o(1))(2ω1/2p)2 exp((2 + 2cη)(log n) + k log ρ) = (4 + o(1))ωp2n4cη

and by the Markov inequality we get that a.a.s we have X2 ≤ ω2p2n4cη. Thus, the number
of vertices with exactly the same signature as the robber in S2 is at most ωpn2cη. Let T3

consist of these vertices together with their neighbors. Clearly, |T3| ≤ 2ωp2n2cη+1.
We proceed inductively. Assume that |Ti| ≤ 2(ω1/2p)i−1n(i−1)cη+1. Now, arguing as above
with another independently chosen k-set Si+1, we have

E(Xi+1) ≤ (2 + o(1))((ω1/2p)i−1n(i−1)cη+1)2ρk = (2 + o(1))(ω1/2p)2(i−1)n2icη

and so by the Markov inequality,

Xi+1 ≤ ω(ω1/2p)2(i−1)n2icη a.a.s.. (8)

Thus, the number of vertices with exactly the same signature in Si+1 is at most
ω1/2(ω1/2p)i−1nicη. Hence,

|Ti+1| ≤ 2ω1/2(ω1/2p)i−1nicηpn = 2(ω1/2p)inicη+1,

completing the induction.
After ℓ rounds we get that with probability at least 1− ℓω−1 we have, using (8),

|Xℓ| ≤ ω(ω1/2p)2(ℓ−2)n2(ℓ−1)cη = ωℓ−1 exp {2(ℓ− 2) log p+ 2(ℓ− 1)cη log n)}
= ωℓ−1 exp {−2(ℓ− 2− c(ℓ− 1)) log(1/p)} . (9)

Clearly, (9) is o(1) for sufficiently large constant ℓ, since by assumption log(1/p) = Ω(log n).
□

3. Summary

We have separated the localization value ζ(Gn,p) from the metric dimension β(Gn,p) in the
range where the diameter of Gn,p is two a.a.s.. It would be interesting to continue the
analysis in the range of p for which the diameter of Gn,p is at least 3. It would also be of
interest to examine the localization game on random regular graphs.

Acknowledgment We are grateful to all referees for their detailed comments on an earlier
version of this paper.
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