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Abstract

We consider the problem of computing a Euclidean shortest path in the presence of removable

obstacles in the plane. In particular, we have a collection of pairwise-disjoint polygonal obstacles,

each of which may be removed at some cost ci > 0. Given a cost budget C > 0, and a pair of

points s, t, which obstacles should be removed to minimize the path length from s to t in the

remaining workspace? We show that this problem is NP -hard even if the obstacles are vertical

line segments. Our main result is a fully-polynomial time approximation scheme (FPTAS) for

the case of convex polygons. Specifically, we compute an (1 + ǫ)-approximate shortest path in

time O
(

nh

ǫ2 log n log n

ǫ

)

with removal cost at most (1 + ǫ)C, where h is the number of obstacles,

n is the total number of obstacle vertices, and ǫ ∈ (0, 1) is a user-specified parameter. Our

approximation scheme also solves a shortest path problem for a stochastic model of obstacles,

where each obstacle’s presence is an independent event with a known probability. Finally, we

also present a data structure that can answer s–t path queries in polylogarithmic time, for any

pair of points s, t in the plane.
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1 Introduction

We consider a variant of the classical shortest-path problem in the presence of polygonal

obstacles, in which the motion planner has the ability to remove some of the obstacles to

reduce the s–t path length. Formally, let P = {P1, . . . , Ph} be a set of h pairwise-disjoint

polygonal obstacles in R
2 with n vertices, and let ci > 0 be the cost of removing the obstacle
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5:2 Computing Shortest Paths in the Plane with Removable Obstacles

Pi for i = 1, . . . , h. For a path π in R
2, we define its cost, denoted by c(π), to be the sum

of the costs of obstacles intersecting π, and its length, denoted by ‖π‖, to be its Euclidean

length. Given two points s, t ∈ R
2 and a budget C > 0, we wish to compute a path from s

to t of minimum length whose cost is at most C.

This obstacle-removing shortest path generalizes the classical obstacle-avoiding shortest

path problem, by giving the planner an option of essentially “tunneling” through obstacles

at some cost. Besides an interesting problem in its own right, it is also a natural formulation

of tradeoffs in some motion planning settings. For instance, it might be beneficial to remove

a few critical blockages in a workspace to significantly shorten an often traveled path, just as

an urban commuter may strategically pay money to use certain toll roads or bridges to avoid

traffic obstacles. In general, our model with removable obstacles is useful for applications

where one can adapt the environment to enable better paths such as urban planning or robot

motion planning in a warehouse setting. The problem also generalizes the recent work on

obstacle-violating paths [18, 25], in which the planner is allowed to enter the forbidden space

(obstacles) a fixed number of time. For instance, in [25], a shortest s–t path inside a simple

polygon is desired, but the path is allowed to travel outside the polygon once. In [18], a

shortest path among disjoint convex polygonal obstacles is desired, but is allowed to travel

through at most k obstacles. The latter problem is also an obstacle-removing shortest path

where at most k obstacles can be removed, namely, each obstacle removal has cost 1 and

planner’s budget is k. We will call this the cardinality version of the obstacle-removal to

distinguish it from our cost-based model of obstacle removal.

The obstacle removal problem also has a natural connection to path planning under

uncertainty. Imagine, for instance, a workspace with n obstacles, the presence of each obstacle

is a random event. That is, the presence of the ith obstacle is determined by a Bernoulli

trial with (independent) probability βi. A natural approach to planning a s–t path in such a

workspace is to search for a path that is both short and obstacle-free with high probability.

Given a desired probability of success β, we can ask: what is the shortest path from s to t

that is obstacle free with probability at least β. This problem is easily transformed into our

obstacle removal problem where the obstacle probabilities are mapped to obstacle removal

cost, and β is mapped to the cost budget C.

Our results. We first show that the obstacle-removing shortest path problem is NP-hard

for polygonal obstacles in the plane, even if obstacles are vertical line segments by reducing

the well-known Partition problem to it. This is in contrast with the cardinality version of

the problem, which can be solved exactly in O(k2n log n) time [18].

Our main result is a fully-polynomial time approximation scheme (FPTAS) when each

obstacle is a convex polygon. We first define the notion of the viability graph G, which is

an extension of the well-known visibility graph [11,13], for geometric paths that can cross

obstacles. Using the viability graph, we present a simple algorithm that returns a path with

length at most the optimal1 but cost at most (1 + ǫ)C. The approximation algorithm, while

simple, has a worst-case time complexity Θ( n3

ǫ polylog(n)). Then, we develop a framework

for a more efficient and practical approximation algorithm, which also results in a number of

related results. Specifically, for any constant ǫ > 0, we can compute a (1 + ǫ)-approximate

shortest path whose total removal cost is at most (1 + ǫ)C in time O
(

nh
ǫ2 log n log n

ǫ

)

, where

h is the number of obstacles and n is the total number of vertices in the obstacles. The main

idea behind the improvement is to construct a sparse viability graph, with only O( n
ǫ log n)

1 The optimal length is always with respect to the budget C.
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edges. This approximation scheme immediately gives a corresponding result for the uncertain

model of obstacles (see Section 5).

The approximation scheme, as a byproduct, also solves the exact L1 norm shortest path

problem in the cardinality model of obstacle removal: that is, in O(kn log2 n) time, we can

decide which k obstacles to remove for the shortest s–t path, which is roughly a factor of k

faster than the L2-norm result of [18]. Alternatively, we can also decide which k obstacles to

remove so that the shortest s–t path has length at most (1 + ǫ) times optimal in O( kn
ǫ log2 n)

time. This is again faster than the result from [18] for constant ǫ, if k = Ω(log n).

We also construct query data structures for answering approximate obstacle removal

shortest path queries. If the source s is fixed (one point queries), we construct a data

structure of size O( nh
ǫ2 log n) such that, given a query point t, it returns a s–t path of length

(1 + ǫ) times the optimal with cost at most (1 + ǫ)C in time O( 1
ǫ log2 n +kst), where kst is the

number of edges in the path. The data structure size can be improved to O( n
ǫ2 log n log h

ǫ ) if

we only return the length of the path. If both points s, t are given in the query (two point

queries), the data structure has size O( n2h
ǫ3 log2 n), and the query time is O( 1

ǫ2 log2 n + kst).

The size of the data structure can also be improved to O(n2

ǫ3 log2 n log h
ǫ ) if we only return

the length of the path.

Related work. The problem of computing a shortest path in the presence of polygonal

obstacles in the plane is a very well studied problem in computational geometry. See the

books [16, 31], survey paper [27], recent papers [5, 8, 9, 10, 20], and references therein for a

sample of results. In the classical shortest path problem, obstacles are impenetrable, that is,

the shortest path must avoid all the obstacles. Our problem considers a more general scenario

where the obstacles can be removed by paying some cost and falls in the broad category of

geometric optimization problems where some constraints can be violated [2, 17,26,30].

Our problem is also closely related to the problem of computing a shortest path through

weighted polygonal regions [23, 24, 28] where the length of a path is defined as the weighted

sum of Euclidean or L1 lengths of the subpaths within each region. However, in our setting

there is only a one-time fixed cost for passing through a region, and therefore does not

depend on the length of the subpath that lies inside the region.

The stochastic formulation of our problem is also related to some shortest path problems

under uncertainty [14, 15, 22, 29]. However, these results assume existence of a graph

whose edges have either an existence probability or a distribution over their lengths. In

contrast, our definition is purely geometric where the existence of obstacles is an uncertain

event. Our problem can also be seen as a variant of geometric bi-criteria shortest path

problem [1,4,33,34,35], as our objective is to compute the shortest path with a constraint

on the total cost of obstacles that we remove.

Finally, for most geometric shortest path problems, there are efficient data structures to

answer shortest path queries. For instance, the shortest path map [19] has linear size and

can answer Euclidean shortest path queries with a fixed source in O(log n) time. If both

s, t are part of the query, quadratic space data structures [7,21] exist for L1 shortest path

queries and super quadratic space data structures [12] for L2 shortest path queries. Similar

results exist for rectilinear shortest path queries among disjoint weighted rectilinear and

convex obstacles [6, 7], and for bi-criteria shortest path problems [4, 33,35].

Overall, our algorithms entail new techniques because (i) in our problems, paths are

allowed to pass through obstacles, (ii) the cost function in our bi-criteria optimization can

be quite general and not necessarily a metric.
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‖uv‖, where c(u, v) is the cost of the segment uv. In the worst-case G has Θ(n2) edges. It is

important to note that the cost of a path πst in a viability graph is defined as the sum of

the costs of its edges, whereas the cost of πst in the plane is defined as sum of costs of all

obstacles that it goes through. Moreover, the cost of a path in the plane is at most its cost

in the viability graph. If the path crosses each obstacle at most once (which is the case for

shortest path among convex obstacles), these two costs are the same.

The following algorithm shows how to compute an approximately optimal path in this

viability graph. The main idea is that we construct copies of the vertices and the edges of G

to convert the multi-objective problem to a single-objective problem.

Let κ = min
(

C
mini ci

, h
)

. To simplify the approximation error analysis, we first scale

all the costs by κ/C, so that the new target cost is κ. We now construct an auxiliary

graph G′ = (V ′, E′), with O
(

⌈

2κ|V |
ǫ

⌉

)

nodes and O
(

⌈

2κ|E|
ǫ

⌉

)

edges, whose edges only have

the length parameter but not the cost parameter, as follows. We create
⌈

2κ
ǫ

⌉

+ 1 copies

v0, v ǫ

2
, vǫ, v 3

2
ǫ . . . , vκ, for each v ∈ V . Then, for each edge (u, v) ∈ E with cost c and for each

0 ≤ i ≤ ⌈2κ/ǫ⌉, we add the edge (ui ǫ

2
, vj ǫ

2
), where j ≤ ⌈2κ/ǫ⌉ is the maximum integer with

j ǫ
2 ≤ i ǫ

2 + c. All these edge copies have the same length as edge (u, v)—the cost parameter

is now implicitly encoded in the edge copies. Finally we add two new vertices s and t in G′

and connect them to all si and ti respectively with zero length edges, for 0 ≤ i ≤ ⌈2κ/ǫ⌉.

We now find the minimum length path π from s to t in G′, say, using Dijkstra’s algorithm,

and argue that π is our approximation path.

◮ Theorem 3. Let P be a set of h convex obstacles with n vertices, s, t be two obstacle

vertices, and C ∈ R be a parameter. Let L∗ also be the length of the shortest s–t path with

cost at most C, and let G = (V, E) be a viability graph induced by this workspace. If there

exists a path π∗ of length at most αL∗ with α ≥ 1 and cost at most C in the graph G, then

a s–t path π with length at most αL∗ and cost at most (1 + ǫ)C can be computed in time

O
(

κ
ǫ (|E| + |V | log |V |

ǫ )
)

, where κ = min
(

C
mini ci

, h
)

and 0 < ǫ < 1 is a parameter.

Proof. First, we construct the auxiliary graph G′ as described above. Next, we construct

a path π′ in G′ corresponding to the path π∗ in G by mapping edges of π∗ to edges in G′.

More precisely, let e = (s, v) be the first edge in π∗ and let ce be its cost. Now let c = 0

and c′ be the value obtained by rounding down ce to the nearest multiple of ǫ
2 . We map e

to the edge (sc, vc′) in G′. Setting c = c′, we repeat the process for all edges in π∗. This

gives us the path π′ in G′ that has the length same as that of π∗ (at most αL∗). Clearly, the

s–t path π computed using Dijkstra’s algorithm on G′ must also have length at most αL∗.

Moreover, since (scaled) rounded cost of any s–t path in G′ is at most κ, the rounded cost of

π is also at most κ. Now we only need to bound its original (pre-rounded) cost.

Let CR be the true (pre-rounded) cost of the path π in the plane and CA its rounded

cost in G′. The approximation error in the cost (due to rounding) is at most ǫ/2 for each

obstacle that π passes through, and so if k̄ is the number of obstacles π crosses, we have the

upper bound CR ≤ CA + k̄ǫ/2. Since CA ≤ κ, we have CR ≤ κ + k̄ǫ/2. We can bound k̄

by considering the following two cases. If κ = C/ mini ci, the minimum cost of an obstacle

is 1, and so for each obstacle crossed, the path π incurs a cost of least 1 − ǫ/2. Therefore,

k̄ ≤ κ
1−ǫ/2 and CR ≤ κ + κ

1−ǫ/2 · ǫ/2 ≤ 1
1−ǫ/2 κ ≤ (1 + ǫ)κ. Otherwise, we have κ = h, which

trivially implies k̄ ≤ κ since h is the total number of obstacles.

In conclusion, we have CR ≤ (1 + ǫ)κ, whose pre-scaled value is (1+ǫ)κ
(κ/C) = (1 + ǫ)C, as

claimed. Finally, the time complexity is dominated by an invocation of Dijkstra’s algorithm

on the graph G′, which has O(|V |κ/ǫ) nodes and O(|E|κ/ǫ) edges. ◭

SWAT 2018
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If G is the viability graph constructed in this section then it always contains the shortest

s–t path with cost at most C, i.e. α = 1. Hence, by applying Theorem 3 to G we get a path

of at most the optimum length and cost at most (1 + ǫ)C in Ω( n3

ǫ ) time.

In the next section, we show that if we also allow an (1 + ǫ) approximation of the path

length, we can improve the running time by roughly an order of magnitude.

4 A Faster (1 + ǫ)-Approximation Algorithm

In this section, we describe our algorithm for sparsifying the graph G = (V, E). We augment

the graph by adding some vertices so that the number of viability edges can be sharply

reduced, while approximately preserving the path lengths within the cost budget. Throughout

the following discussion, we will respect the cost budget C, and only allow the path lengths

to increase slightly. With that in mind, we use the notation dG(u, v) to denote the length of

the shortest path in G from u to v whose cost is at most C. In this section we only use the

definition of the cost of a path with respect to a viability graph. Recall that the cost of a

path in a graph is the sum of the costs of the edges in the path.

Our sparse graph Hǫ = (Xǫ, Tǫ) is defined for any ǫ > 0, with V ⊆ Xǫ, and satisfies the

following two conditions:

1. dG(u, v) ≤ dHǫ
(u, v) ≤ (1 + ǫ)dG(u, v) for all pairs u, v ∈ V .

2. The number of vertices and edges is O( n
ǫ log n), that is, |Xǫ|, |Tǫ| = O( n

ǫ log n).

We construct Hǫ in two stages. In the first stage we construct a graph H = (X, Γ) with

X ⊇ V , |X|, |Γ| = O(n log n), and dG(u, v) ≤ dH(u, v) ≤
√

2dG(u, v) for all u, v ∈ V . Next,

we make O(1/ǫ) “copies” of H and combine them to construct Hǫ. Once the graphs H and

Hǫ are constructed, we use the machinery of the previous section, namely Theorem 3, to

efficiently find the approximately optimal shortest path within the cost budget.

Recall that all the obstacles in our input are convex, and therefore the shortest path in G

does not cross the boundary of an obstacle more than twice. To avoid degenerate cases, we

assume that all obstacle vertices are in general position, namely, no three vertices are collinear

and all obstacles have non-zero area. We can, therefore, simplify the problem by replacing all

the obstacles by their constituent boundary segments, where each obstacle vertex is assigned

to its incident segment in the clockwise order. We now allocate the “obstacle removal” cost

to these segments as follows: if ci is the removal cost of obstacle i, then we allocate cost ci/2

to each boundary segment of obstacle i. This ensures that any shortest path crossing the

ith obstacle incurs a cost of ci, while allowing us to reason about the geometry of just line

segment obstacles.

We describe the construction of the sparse viability graph by explaining how to sparsify

the “neighborhood” of an obstacle vertex, say, p. That is, we show which additional vertices

are added and which viability edges are incident to p in the final sparse graph H. To simplify

the discussion, we assume that p is at the origin, and we only discuss the edges incident to p

that lie in the positive (north-east) quadrant; the remaining three quadrants are processed

in the same way.

4.1 An O(1)-Approximation Algorithm

In this subsection we describe the construction of H = (X, Γ) such that |X|, |Γ| = O(n log n),

and dG(u, v) ≤ dH(u, v) ≤
√

2dG(u, v) for all u, v ∈ V .

For a segment pq we use ‖pq‖1 to denote its L1-length, i.e., ‖pq‖1 = |xp − xq| + |yp − yq|,
where p = (xp, yp) and q = (xq, yq). For a polygonal path π = p0p1 . . . pk, we use ‖π‖1 to
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clip off the region of R′
pq that lies above lw. More precisely, this gives us the quadrilateral

R′′
pq = R′

pq \ A(lw), where we use A(s) for the region above segment s. Finally, we define

the convex polygon Tpq = R′′
pq \ (A(s′

p) ∪ A(s′
q)), where s′

p, s′
q are the subsegements of sp, sq

respectively that lie inside the quadrilateral R′′
pq.

From the set of obstacle vertices that lie inside or on the boundary of Tpq, we choose the

vertex r to be the one that minimizes the area of the triangle ∆prq, or equivalently, be the

one that has the minimum distance from the segment pq. Observe that the boundary of

region Tpq contains the obstacle vertex w, so we will always find one such r. It is easy to

see that the triangle ∆prq is a subset of Tpq and does not contain an obstacle vertex or else

it would not have the minimum area. It remains to show that there cannot be an obstacle

segment that crosses both pr and rq. To this end, let lr be a line parallel to pq passing

through r. Observe that the region T ′
pq = Tpq \ A(lr), i.e., the region in Tpq that lies below

lr, cannot contain an obstacle vertex by the choice of r. So any obstacle segment sj that

crosses both pr and rq must intersect ∂R′
pq at either the vertical segment between p and sp

or the horizontal segment between sq and q which is a contradiction. (See also Figure 4.) ◭

Finally, we prove the main result of this section.

◮ Lemma 7. Let (p, q) be an edge in G with cost c(p, q). There is a path πpq ∈ H such that

‖πpq‖1 = ‖pq‖1 and c(πpq) ≤ c(p, q). Moreover, the path πpq lies in the region Rpq.

Proof. We prove this by induction on the number of obstacle vertices in the region Rpq. Our

base case is when the region Rpq does not contain an obstacle vertex. Applying Lemma 5

gives us the desired path πpq in H. For the inductive step, let j be the number of obstacle

vertices in the region Rpq and assume that the lemma holds for all edges (u, v) such that the

region Ruv contains i < j obstacle vertices. Using Lemma 6 we find an intermediate vertex r

such that ‖pr‖1 + ‖rq‖1 = ‖pq‖1 and c(p, r) + c(r, q) ≤ c(p, q). This gives us two disjoint sub-

regions Rpr ⊂ Rpq and Rrq ⊂ Rpq each with at least one less obstacle vertex than the region

Rpq. By our induction hypothesis, we get the disjoint subpaths πpr from p to r and πrq from

r to q in H. We then join these two paths at vertex r to obtain path πpq that lies within the

region Rpq. Moreover, we have that ‖πpq‖1 = ‖πpr‖1 + ‖πrq‖1 = ‖pr‖1 + ‖rq‖1 = ‖pq‖1

and c(πpq) = c(πpr) + c(πrq) ≤ c(p, r) + c(r, q) ≤ c(p, q). ◭

4.3 An (1 + ǫ)-Approximation Algorithm

We now describe how to use the preceding construction to define our final sparse graph Hǫ.

A direction in R
2 can be represented as a unit vector u ∈ S

1. Let N ⊂ S
1 be a set of O(1/ǫ)

unit vectors such that the angle between two consecutive points of N is at most ǫ. For each

u ∈ N, we construct a graph Hu by running the algorithm in Section 4.1 but regarding u

to be the y axis — i.e., by rotating the plane so that u becomes parallel to the y-axis and

measure L1-distance in the rotated plane. Set Hǫ =
⋃

u∈N
Hu. Notice that the number of

vertices and edges in Hǫ is O( n
ǫ log n). The following lemma follows easily by the discussion

above.

◮ Lemma 8. For any pair u, v ∈ V , we have that dHǫ
(u, v) ≤ (1 + ǫ)dG(u, v).

From the above lemma, it follows that the graph Hǫ preserves pairwise shortest path

distances within a factor of (1 + ǫ) and at most the same cost with graph G. Let L∗ be the

length of the shortest s–t path in the plane that has cost at most C. Since there exists a s–t

path of length at most L∗ and cost at most C in the viability graph G, there exists a s–t

path in Hǫ of length (1 + ǫ)L∗ and the same cost. Applying Theorem 3 with α = (1 + ǫ) on

Hǫ gives the following result.
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◮ Theorem 9. Let P be a set of h convex polygonal obstacles with n vertices, s, t be two

obstacle vertices and C ∈ R be a parameter. If L∗ is the length of the shortest s–t path with

cost at most C, a s–t path with length at most (1 + ǫ)L∗ and cost at most (1 + ǫ)C can be

computed in O( nh
ǫ2 log n log n

ǫ ) time.

5 Shortest Path Queries

We now describe a near-linear space data structure to answer approximate distance queries

from a fixed obstacle vertex s subject to the obstacle removal budget in O( 1
ǫ log2 n) time.

The data structure is then extended to handle two-point shortest path queries in O( 1
ǫ2 log2 n)

time with near-quadratic space.

The key idea relies on the following observation. Without loss of generality, assume that

the points s and t lie in the exterior of all obstacles and let us also assume that s, t were part

of the input. Now consider the shortest s–t path in the graph Hǫ and let t′ be the vertex

preceding t in this path. It is easy to see that t′ must be a Steiner vertex (projection or

bypass) as there are no direct edges in Hǫ between two input vertices that do not lie on the

same obstacle. All such edges must cross some split line at Steiner vertices. Therefore, the

last edge (t′, t) in the path is the segment obtained by projecting t on some split line ℓ. Now,

suppose we have precomputed the paths to all Steiner vertices on all split lines, then we can

find the shortest path to t by simply finding the neighbor of t′ on ℓ. Using Lemma 4, we

know that t can be projected on O( 1
ǫ log n) split lines, which gives O( 1

ǫ log n) choices for ℓ.

Preprocessing. We apply the algorithm preceding Theorem 3 on the graph Hǫ that we

constructed in the previous section. More precisely, first we multiply the cost of all obstacles

by h/C so that the target cost becomes h. Next we create an auxiliary graph H ′
ǫ with O( h

ǫ )

copies of each vertex in Hǫ. Running Dijkstra’s algorithm on H ′
ǫ with source s computes

a shortest path to each vertex in H ′
ǫ. Now for each vertex v in Hǫ, we maintain arrays

distv, predv each with size 1 + h
ǫ = O( h

ǫ ). We store the length of the shortest path found by

Dijkstra’s algorithm from s to viǫ (i-th copy of vertex v) at distv(i) and its predecessor in

predv(i). In addition, for each direction u ∈ N that we defined in the previous section we

maintain two data structures:

A segment tree [3] based data structure Su that we also used in Section 4.1 to compute

the cost of an axis aligned segment in O(log n) time.

A balanced search tree Tu over all the vertical (resp. horizontal) split lines, which is

basically the recursion tree corresponding to the algorithm from Section 4.1. More

precisely, the root of Tu is the split line ℓm (at the median x-coordinate xm), and the left

and right children are the split lines added during recursive processing of points to the

left and right of ℓm respectively.

Moreover, for every split line ℓ, we maintain a search tree over all the Steiner vertices that

lie on ℓ. Overall, our data structure consists of all arrays distv, predv, O( n
ǫ ) search trees, and

O( 1
ǫ ) segment trees Su. The size of the data structure is O( nh

ǫ2 log n) and the preprocessing

time is O( nh
ǫ2 log n log n

ǫ ).

Query. The query procedure consists of two parts. Given the target query point t, we first

find a subset of O( 1
ǫ log n) split lines L that we need to search. Next, for each line ℓ ∈ L,

we find the Steiner vertex t′ created by projecting t on ℓ and then find the path to t using

one of the two neighbors of t′ on ℓ. Let v denote a neighbor of t′ on ℓ. Finally, we take the

shortest of all O( 1
ǫ log n) candidate paths.
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Two point queries. Now we briefly explain how to extend the above data structure to

handle two point queries. That is, both s, t are part of the query. During the preprocessing,

we store distance values distuv (similarly preduv) for every pair of vertices u, v in Hǫ for all

cost values 0, ǫ, 2ǫ, . . . , h. The idea now is to find the neighbor u of s on some split line ℓs

and neighbor v of t on split line ℓt. We compute the cost of paths πsv and πvt as before and

set the length of this candidate s–t path to be distuv(j) + ‖πsu‖1 + ‖πvt‖1. Here j is the

smallest integer such that h − c(πsu) − c(πvt) ≤ jǫ. We take the minimum across O( 1
ǫ2 log2 n)

choices of u and v.

◮ Theorem 11. Let P be a set of h convex polygonal obstacles with n vertices, and C ∈ R be

a parameter. A data structure of O( n2h
ǫ3 log2 n) size can be constructed in O( n2h

ǫ3 log2 n log n
ǫ )

time such that, given two query points s, t ∈ R
2, a path πst can be returned with cost at most

(1 + ǫ)C and length at most (1 + ǫ) times the optimal in O( 1
ǫ2 log2 n + kst) time, where kst is

the number of edges of πst. The length of the path πst can be returned in O( 1
ǫ2 log2 n) time

using a data structure of size O( n2

ǫ3 log2 n log h
ǫ ).

6 Stochastic Shortest Path

In this section, we consider a stochastic model of obstacles where the existence of each

obstacle Pi ∈ P is an independent event with known probability βi. That is, Pi is part of the

input with probability βi and is not part of the input with probability 1 − βi. We define the

probability of path πst as
∏

Pi∈S(1 − βi) where S ⊆ P is the set of obstacles that this path

goes through (assuming they did not exist). In such a setting, our goal is to compute the

approximate shortest path that has probability more than a given threshold β ∈ (e−1, 1].

Let Lβ denote the length of the shortest path from s to t with probability at least β. We

convert the multiplicative costs to additive costs by setting ci = − ln(1 − βi) for each obstacle

and setting C = − ln β. Using Theorem 9, we find a path πst with length L(πst) ≤ (1 + ǫ)Lβ

and cost c(πst) ≤ (1 + ǫ)C. It can be shown that πst has probability at least (1 − ǫ)β.

◮ Theorem 12. Let P be a set of h convex polygonal obstacles with n vertices, where each

obstacle Pi ∈ P exists independently with a probability βi, s, t be two obstacle vertices and

β ∈ (e−1, 1] be a parameter. If Lβ is the length of the shortest s–t path with probability at

least β, a s–t path with length at most (1 + ǫ)Lβ and probability at least (1 − ǫ)β can be

computed in O( nh
ǫ2 log n log n

ǫ ) time.

Most likely path. We now consider the following question – given a bound L on the length

of the path, what is the s–t path with maximum probability? We need a bound on the

path length or else there is always a path of probability 1. To answer this question, we can

again take negative logarithms of probabilities to transform into an additive cost model and

construct the graph Hǫ as before. Now instead of applying Theorem 3 on Hǫ, we construct

a new graph H∗
ǫ that is exactly the same as Hǫ, but with length and cost parameters on

edges interchanged. More precisely, for an edge e ∈ Hǫ with length le and cost ce, we have

an edge e∗ ∈ H∗
ǫ with length ce and cost le. Next we apply Theorem 3 on the graph H∗

ǫ

with C = (1 + ǫ)L, and scale all costs with a parameter O( n
Cǫ log n), such that the target

cost is scaled to O(n
ǫ log n). We choose this value because a shortest path in Hǫ can have

O( n
ǫ log n) edges. This gives us the following result.

◮ Theorem 13. Let P be a set of h convex obstacles with n vertices, s, t be two obstacle

vertices, and L ∈ R be a parameter. If βM is the maximum probability of a path from s to t

with length at most L, a path πst with length at most (1 + ǫ)L and probability at least βM

can be computed in O( n2

ǫ3 log2 n log n
ǫ ) time.
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