
Wide-area Software Defined Networking

Experiments using Chameleon

Mert Cevik and Paul Ruth

Renaissance Computing Institute

{mcevik,pruth}@renci.org

Kate Keahey

Argonne National Laboratory

keahey@anl.gov

Pierre Riteau

StackHPC

pierre@stackhpc.com

Abstract—Recent advancements have expanded Chameleon’s
support for networking experiments by enabling deeply pro-
grammable networks spanning wide-areas and controlled by
the user. New capabilities include: 1) bring-your-own-controller
(BYOC) software defined networking (SDN) and 2) Layer 2
stitching to external testbeds and facilities including stitching
between the two Chameleon sites.

This paper presents the new networking capabilities of
Chameleon along with corresponding experiments that evaluate
limitations and features of using SDN in a wide-area environment.
The experiments serve both as an evaluation of SDN in a
wide-area environment and as a guide for designing advanced
networking experiments on Chameleon.

I. INTRODUCTION

The Chameleon testbed represents an experimental instru-

ment for Computer Science operating on the principles that

users are allowed deeply reconfigurable access to environ-

ments that are isolated in ways relevant to the experiments

each platform supports. Chameleon allows users to scale

Big Compute and Big Data experiments to large amounts

of compute and storage in different configurations using

heterogeneous hardware. Recent advancements have expanded

Chameleon’s support for networking experiments by enabling

deeply programmable networks spanning wide-areas and con-

trolled by the user.

The two main networking capabilities that have been added

to Chameleon are: 1) bring-your-own-controller (BYOC) soft-

ware defined networking (SDN) and 2) Layer 2 stitching to

external testbeds and facilities including stitching between the

two Chameleon sites. BYOC networking allows users to allo-

cate isolated hardware OpenFlow network switches controlled

by custom or off-the-shelf controllers deployed and managed

by the user. The use of OpenFlow allows users to have

deep access to the network and deploy complex experiments

beyond what is possible with traditional switched networks.

In addition, these switches can be stitched using isolated

layer 2 circuits (up to 100 Gbps) transiting wide-area circuit

providers, such as Internet2 AL2S [1] and ESnet OSCARS [2].

Stitched networks allow users to connect programmable switch

hardware between Chameleon sites (University of Chicago

and Texas Advanced Computing Center (TACC)), as well as

connect Chameleon switch hardware to other testbeds (e.g.

GENI [3]), facilities, or even a user’s home institution.

Although these new capabilities provide deeply pro-

grammable networking, users must carefully implement their

experiments to achieve their desired results. Specifically, users

should be aware of host tuning options for high-latency

connections, as well as the effect of OpenFlow controller

placement with respect to switch location.

In a typical OpenFlow deployment the switch has a subset

of the controller’s flow rules in its tables at any given time.

When a packet arrives that does not match any flows known

to the switch, the packet is forwarded to the controller which

processes the packet and pushes a new flow rule back to the

switch. The switch installs the flow in one of its tables and

uses that flow to process future matching packets.

As the latency between the controller and the switch

increases, the time necessary to configure the switch also

increases. Even relatively small latency in switch configuration

can result in dropped or delayed packets, which will negatively

affect the performance of the network. Ideally, BYOC exper-

iments should be designed to have the OpenFlow controller

co-located with the switch and deployed within a Chameleon

host at the same site as the network. However, co-location

is not possible for many experiments (e.g. a single controller

used for multiple distributed switches). In these cases, it is

important to understand the effect of controller latency on an

experiment.

This paper presents new networking capabilities of

Chameleon along with corresponding experiments that eval-

uate limitations and features of using SDN in a wide-area

environment. The experiments serve both as an evaluation of

SDN in a wide-area environment and as a guide for designing

advanced networking experiments on Chameleon. Specifically,

we evaluate the effect placement of controllers with respect

to SDN switches has on OpenFlow flow insertion times,

TCP bandwidth, and the performance of wide-area multi-path

routing.

II. BACKGROUND

Chameleon is largely built using OpenStack [4], a widely

supported, open source, cloud computing software. This sec-

tion presents the building blocks used to enable the BYOC

and stitching experiments: OpenStack, Corsa DP2000 series

switches, and dynamic wide-area Layer 2 circuits.

A. OpenStack

OpenStack is composed of several services which manage

compute, storage, and networking resources, as well as provide

deeply programmable switching platform that expose indepen-

dent virtualized forwarding contexts (VFCs), seen in Figure 1,

that operate at line-rate (up to 100 Gbps). Each VFC acts as

an independent OpenFlow switch with its own controller and

can forward traffic between a subset of the physical ports (or

logical ports defined by a VLAN tag).

Multiple isolated tenants can be supported on the switch

by creating independent VFCs for each tenant and attaching

each tenant’s nodes and VLANs only to their VFC. Deep pro-

grammability by the tenant can be achieved by attaching each

VFC to a tenant-managed OpenFlow controller. Chameleon

uses the Corsa’s VFC abstraction to isolate tenant networks

while providing tenant-controlled OpenFlow programmability.

C. Dynamic Wide-area Layer 2 Circuits

Recent advances made by wide-area network transit

providers have enabled IT staff to connect campuses and

other facilities using on-demand wide-area Layer 2 circuits.

These next generation wide-area networking capabilities are

increasingly necessary as we see more large-scale big data

science collaborations. Example systems include Internet2’s

Advanced Layer 2 Services (AL2S) and DOE’s ESnet.

Each of these providers capabilities can be accessed inter-

actively or programmatically using well defined interfaces.

ESnet uses the On-demand Secure Circuits and Advance

Reservation System (OSCARS) while Internet2 AL2S uses

the Open Exchange Software Suite (OESS). Before using such

services, a campus or facility must be connected appropriately

and a dynamic connection point must be named with a URN.

After this initial configuration, campus or facility staff can

create VLANs between their URN and the URN of any other

authorized campus with a similar connection.

These dynamic Layer 2 circuits are commonly used to cre-

ate temporary, high-bandwidth, dedicated, wide-area VLANs

between facilities in order to transfer large amounts of data or

to create complex wide-area network topologies for computer

networking experiments (e.g. using GENI). Work presented in

this paper describes how IT staff can connect tenant resources

on Chameleon to their campuses and facilities using the

dynamic advanced Layer 2 circuits.

III. IMPLEMENTATION

This section describes the general configuration and infras-

tructure required to enable BYOC and stitching to OpenStack

clusters.

A. OpenStack Configuration: Layer2 Network Stitching

Previous sections discussed how dynamic Layer 2 circuit

providers are used by GENI to stitch between cloud resources

and to external campuses and facilities. Stitching Layer 2

circuits between OpenStack and external resources requires

extending OpenStack Neutron networks outside the cluster

to dynamic meeting points accessible by external domains.

Figure 1 show how Chameleon follows ExoGENI [10] by

referring to these meeting points as stitchports or sometimes

stitchable VLANs.

OpenStack bare metal clusters use either a flat network

shared by all tenants or VLANs to create isolated Layer 2

networks for each tenant. Each isolated network is configured

with its own subnet and router providing layer 3 service

for nodes connected to the network. Typically, an OpenStack

cluster has a single pool of VLANs from which tenants request

VLAN isolated networks.

Enabling external stitching in OpenStack relies on the same

network isolation abstraction but extends a subset of the

available VLANs to specific meeting points outside of the

OpenStack cluster. If these VLANs extend to dynamic meeting

points (e.g. Internet2 AL2S URNs), external facilities can be

stitched to the OpenStack networks.

Each OpenStack cloud can access several stitchable meeting

points, as well as have VLANs limited to the local site.

The provider network abstraction is used to allow tenants

to choose between VLANs and specific stitchable VLANs.

Separate pools of VLANs are plumbed to each external

stitching point. A separate provider network is created to

manage each pool of VLANs. Each provider is assigned a

separate virtual interface and VLAN range. Tenants can create

isolated Neutron networks using standard OpenStack tools and

specify the provider network to provision a VLAN that extends

to a specific destination (e.g. ExoGENI).

There can be multiple stitching VLAN providers if there

are multiple stitching paths (e.g. one for stitching to each

testbed). As long as each of these virtual providers are assigned

a disjoint set of VLANs, tenants that require stitchable VLANs

will only need to request a VLAN from the provider network

that manages access to the desired external stitchport.

Creating an OpenStack network mapped to a specific

provider is normally reserved to administrators (as described in

Section II-A). Using provider networks for stitching requires

reconfiguring the policy to allow regular users to do so as well.

User Interface: In order to use Chameleon stitchable

VLANs, a tenant must follow the existing CLI workflow (with

slight modifications) for creating isolated tenant networks. The

only change is that the provider network must be specified

to be from the desired pool (e.g. exogeni). Upon creation

of the network the CLI reports the provider:segmentation_id

which is the VLAN that was assigned. Currently, there are

10 stitchable VLANs from each Chameleon site connecting

to ExoGENI. Users must use the segmentation_id allocated

by Chameleon to create an ExoGENI slice to complete the

stitch. The remainder of the Chameleon workflow remains

unchanged. An example CLI command is:

openstack network create \

--provider-network-type exogeni \

--provider-physical-network vlan \

myTenantNetwork

provider:segmentation_id | 3290

B. OpenStack Configuration: Corsa and BYOC

In a previous section we discussed OpenStack Neutron

and the NGS plugin used by Chameleon to configure the

B. Experiment 2: Effect of Flow Timeout on TCP Bandwidth

Many OpenFlow configurations periodically induce dropped

flows and subsequent flow re-installation. There are situations

that require flows to be dropped and re-installed. Often this is

a result of timeouts required for each rule that indicate when

the switch should automatically remove the rule. After a rule

times out, the next packet that would have matched that rule

will instead be forwarded to the controller, which will re-install

a new rule (possibly the same rule). The switch installs the

flow in one of its tables and uses that flow to process future

matching packets. As the latency between the controller and

the switch increases so does the time necessary to configure the

switch, negatively affecting the performance of the network.

Increased reinstall time generally results in increased numbers

of dropped packets.

TCP is particularly affected by dropped packets. In this

experiment we use iperf3 to send a 180-second single

TCP stream bandwidth test between two nodes in the same

Chameleon rack. The controller is configured with a hard

timeout that triggers a flow rule re-install periodically. For

each artificial and natural latency we vary the hard timeout

and record the bandwidth using iperf3. For each case, hosts

were tuned using the ESnet’s suggested tuning [11]. Tests

with high latency and/or low timeout achieve much lower

bandwidth. Figure 5 can be used to design experiments that

require bandwidth.

C. Experiment 3: Wide-area Path Change

The final experiment involves two BYOC switches, one

on each Chameleon site, that are stitched together with two

separate Internet2 AL2S circuits (i.e. two paths). Nodes at

each sites are connected to the switches and can send traffic to

each other. The controller is configured to send traffic between

each site along one path at a time. When the controller sees

specific traffic characteristics, it will switch the path used by all

traffic. In the experiment we use ARP packets for specific IPs

to trigger a path change. Other multi-path experiments might

use congestion or traffic type to modify the path choice.

The experiment measures the time required to switch be-

tween two paths in reaction to an observed traffic characteris-

tic. We vary the latency as in the other experiments and present

the time required between when the characteristic traffic (ARP

packets for a specific IP) is introduced and when traffic starts

to use the other path.

Figure 6 shows the results. The minimum amount of time

is seen with low latency configurations and requires 275 ms,

while the longest amount of time required for a natural latency

is the ExoGENI VM in Amsterdam, which requires 564 ms

to switch the path.

V. CONCLUSIONS

This paper has presented work enabling BYOC and stitching

of experiments across Chameleon, ExoGENI, and campus

facilities. Further it evaluated controller placement with respect

to switch location and provided useful information for users

to design successful networking experiments on Chameleon.

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 100 200 300 400 500 600

T
im

e
 [

m
s
]

Latency [ms]

Time Required to Switch Between Paths

Simulated Latency
RCI (Chapel Hill, NC)

SL (Chicago, IL)
UFL (Gainsville, FL)

UH (Houston, TX)
WSU (Detroit, MI)

UAF (Fairbanks, AK)
UVA (Amsterdam, Holland)

Figure 6. Time necessary to switch between two parallel stitched paths.
The line represents a co-located controller with simulated latency between
the minimum possible (<1ms) and 512 ms. Individual dots show naturally
occurring latency between the switch and controllers running on various
ExoGENI nodes.

ACKNOWLEDGMENT

Results presented in this paper were obtained using the

Chameleon testbed supported by the National Science Foun-

dation. This material is based upon work supported by the

U.S. Department of Energy, Office of Science, under contract

number DE-AC02-06CH11357.

REFERENCES

[1] Internet2 contributors, “Advanced layer2 service (al2s),” http://noc.net.
internet2.edu/i2network/advanced-layer-2-service.html.

[2] C. Guok, D. W. Robertson, M. R. Thompson, J. Lee, B. Tierney,
and W. E. Johnston, “Intra and interdomain circuit provisioning
using the oscars reservation system.” in BROADNETS. IEEE,
2006. [Online]. Available: http://dblp.uni-trier.de/db/conf/broadnets/
broadnets2006.html#GuokRTLTJ06

[3] R. McGeer, M. Berman, C. Elliott, and R. Ricci, Eds., The GENI Book.
Cham: Springer International Publishing, 2016. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-33769-2

[4] OpenStack contributors, “OpenStack is open source software for creating
private and public clouds,” https://www.openstack.org, 2019.

[5] Neutron contributors, “OpenStack Docs: OpenStack Networking Guide,”
https://docs.openstack.org/neutron/latest/admin/, 2019.

[6] Ironic contributors, “Ironic documentation,” https://docs.openstack.org/
ironic/latest/, 2019.

[7] ——, “OpenStack Docs: Multi-tenancy in the Bare Metal service.” https:
//docs.openstack.org/ironic/latest/admin/multitenancy.html, 2019.

[8] Networking-generic-switch contributors, “Networking-generic-
switch Neutron ML2 driver,” http://git.openstack.org/cgit/openstack/
networking-generic-switch/tree/README.rst, 2019.

[9] Corsa, “Corsa DP2000 Product Family,” https://www.corsa.com/
products/, 2018.

[10] I. Baldin, J. S. Chase, Y. Xin, A. Mandal, P. Ruth, C. Castillo,
V. Orlikowski, C. Heermann, and J. Mills, “Exogeni: A multi-domain
infrastructure-as-a-service testbed.” in The GENI Book, R. McGeer,
M. Berman, C. Elliott, and R. Ricci, Eds. Springer, 2016, pp. 279–
315. [Online]. Available: http://dblp.uni-trier.de/db/books/collections/
MBER2016.html#BaldinCXMRCOHM16

[11] ESnet contributors, “Esnet fasterdata knowledge base,” http://fasterdata.
es.net/.

