Science and Technology Infusion Climate Bulletin

NOAA'’s National Weather Service

43" NOAA Annual Climate Diagnostics and Prediction Workshop
Santa Barbara, CA, 23-25 October 2018

Oceanic Water Cycle, Sea Surface Salinity, and the
Implications for Extreme Precipitation in the US Midwest

Laifang Li', Raymond W. Schmitt?, Caroline C. Ummenhofer?, and Adwait Sahasrabhojanee?
'Earth and Ocean Science, Nicholas School of the Environment, Duke University, Durham, NC
’Department of Physical Oceanography, Woods Hole Oceanographic Institution, Woods Hole, MA
’Northeastern University, Boston, MA

1. Introduction

Moisture originating from the ocean surface is an ultimate source for precipitation on land. Over the global
oceans, the largest moisture source regions are located over the subtropics where the excessive evaporation over
precipitation has to be balanced by a net export of moisture (Schmitt 1995; Trenberth e al. 2011; Durack 2015).
About a third of the subtropical moisture is transported and converged over the land area to sustain the terrestrial
precipitation.

This ocean-to-land moisture transport leaves an imprint on sea surface salinity (SSS). Without an internal
source of salt, surface freshwater flux associated with the oceanic water cycle is the only forcing mechanisms
on SSS variation. Thus, the changes in SSS, interpreted as “Nature’s rain gauge”, reflect the variation of the
oceanic water cycle (Curry et al. 2003; Durack and Wijffel 2010; Durack ef al. 2012; Schmitt 2015).

The close relationship between the SSS and oceanic water cycle and the reliance of terrestrial precipitation
on water input from the oceans indicate that SSS variation over moisture source regions can be potentially
utilized as a predictor of precipitation on land. This study presents evidence that the springtime SSS over the
subtropical North Atlantic can be indicative of summer precipitation over the US Midwest. We further show
that the linkage between the preseason SSS and Midwest summer precipitation is through the memory of the
soil moisture and a combination of thermodynamic
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Fig. 2 US precipitation anomalies (shaded; mm day') as (a), (c) composite and (b), (d) regressed upon MAM NW
SSS index: (top) MAM and (bottom) JJA precipitation. The composite maps show precipitation difference
between the top and bottom 10% SSS cases. The regions with composite/regression precipitation anomalies
significant at the 0.05 level are hatched.

We construct a set of subtropical sea surface salinity (SSS) indices using the data archived by the EN4.2.1
(Good et al. 2013). We first define the subtropical ocean as an area of net divergence of atmospheric moisture
(Fig. 1). Next, the subtropical ocean is further divided into four areas according to the direction of the divergent
component of moisture flux. For example, the northwest (NW) is where the divergent component of moisture
flux is directed northwest toward the North America (Fig. 1). The SSS within the northwest subdomain is
averaged and the domain average defines the NW SSS index. The same definition applies to the NE, SW, and
SE SSS indices (Fig. 1, and Li et al. 2016).

We applied Random Forest (RF), a machine-learning algorithm (Breiman 2001), to predict precipitation on
land based on preseason salinity over the subtropical North Atlantic. In this study, we train the RF algorithm
with 11 predictors, including SSS, the persistence of regional precipitation, and nine climate indices
representing the oceanic and atmospheric modes of variability. All climate variables are averaged over MAM
to match the SSS predictor. The performance of the RF prediction is evaluated based on the coefficients of
determination: R? = 1 — 5S,,5/SSto: (i.e., the portion of variance explained by the prediction model); SS;o; =

N (Pr; — Pr)? is the total variance of observed precipitation; and SS,..s = >, [f (X); — Pr;]? quantifies the
sum of precipitation variance unexplained by the RF prediction [f(X)].

3. Results
3.1 Relationships between pre-season salinity and US Midwest precipitation

Since the divergent component of moisture flux indicates where subtropical moisture will converge, the
above defined SSS indices reflect not only the changes in surface freshwater flux but also potential geographical
areas that will be influenced by the subtropical moisture flux. We focus on rainfall evolution over the US
following the springtime NW SSS in that the moisture flux from this portion of the subtropical oceans tends to
converge over the US (Fig. 1).
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Fig. 3 Schematic figure showing the way soil moisture bridges
the 3-mon time lag between spring SSS and Midwest
summer precinitation (see Li ef al. 2018 for detail).

The processes linking the springtime SSS

and precipitation in the southern United States and how they finally affect summer precipitation in the Midwest
is evaluated and summarized in Fig. 3 (see details in Li ef al. 2016, 2018). Initially, the increased moisture
transport from ocean to land elevated soil moisture content in the Southern and Central US during the spring
season. In the subsequent seasons, the high soil moisture content is preserved due to the 3-6-month land surface
memory. The high soil moisture content serves as a moisture source to the local atmospheric column by
increasing boundary layer humidity in the Southern and Central US. With the prevailing southerly wind in the
summer, more moisture will be converged into the US Midwest, which is thermodynamically favorable for
heavier precipitation (Meehl and Washington 1988; Delworth and Manabe 1989; Ek and Holtslag 2004). In
addition, the spatial distribution of soil moisture influences precipitation through atmospheric dynamics, i.e. the
intensity of the Great Plains Low-level jet (GPLLJ). Specifically, the increased soil moisture in the Central US
enhances the west-to-east soil moisture gradient along the slope of the Rocky Mountains. The soil moisture
content gradient increases the zonal pressure gradient and forces the GPLLIJ to intensify to balance the enhanced
pressure gradient (Fast and McCorcle 1990, 1991). The intensified GPLLJ brings more Gulf of Mexico moisture
northward, favors moisture flux convergence in the Midwest, and thus contributes to high precipitation
dynamically.

3.2 Improved rainfall prediction for the US Midwest

The physical linkage between springtime NW SSS and summer precipitation in the US Midwest suggests
that pre-season SSS can be a physically meaningful predictor for Midwest precipitation (Fig. 3). We thus
implemented the springtime NW SSS into the RF algorithm to predict summer precipitation over the US
Midwest. According to the RF algorithm, the NW SSS is ranked as the most important rainfall predictor
compared to the other 10 predictors: the importance factor of NW SSS is 0.98, but it drops to 0.53 for Nifio 3.4,
the second most important predictor (Fig. 4a). Using the top four predictors shown in Fig. 4a, we constructed
an RF prediction model for Midwest summer precipitation. Fig. 4b shows that the four predictors together
explain 41% of the observed precipitation variance, and the observed precipitation is within the 95% confidence
interval (CI) of the predictions. The prediction without the NW SSS, however, largely underestimates the
variability of Midwest precipitation, especially the extremely wet summer in 1993 and 2008 (Weaver et al.
2009). At the same time, the R? between the observation and prediction decreases to 0.16 (Fig. 4c).

3.3 Implications for extreme precipitation

The RF algorithm suggests that salty subtropical North Atlantic in the spring can be an indicator of extreme
summer precipitation in the Midwest (Fig. 4). Assuming a linear relationship between SSS and precipitation,
the positive SSS anomaly in 1993 will be followed by a 0.7 mm day ' increase in Midwest summer precipitation,
which alone explains 37% of the observed precipitation anomalies. In contrast, the previously identified ENSO
predictor (Mei and Wang 2011) can only explain 8%, insufficient to account for the observed 1993 extreme
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According to the direction of the divergent Fig. 4. (a) Importance of 11 predictors used in the RF model;
component of moisture flux, we defined a set of (b) Prediction using top four predictors and (c) that
SSS indices (Fig. 1). We found that springtime without the NW SSS. In (b) and (¢), the red (black) curves
SSS over the NW part of the subtropical North are the observations (predictions). The blue-shaded are the
Atlantic is significantly correlated with summer 95% CI of the predictions.

precipitation over the US Midwest (Fig. 2). The

linkage between springtime SSS and Midwest summer precipitation is established through the ocean—land
moisture transport, land surface—atmospheric coupling, and its impact on atmospheric dynamics and
thermodynamics (Fig. 3).

The close relationship between springtime SSS and US Midwest summer precipitation indicates that salinity
variations can provide predictive values for the US Midwest. By applying the RF algorithm to Midwest summer
rainfall predictions, we show that NWSSS in the subtropical North Atlantic can generate higher prediction skill
than previously identified for ENSO variability (Fig. 4). Thus, a knowledge of springtime SSS in the subtropical
North Atlantic will be valuable for predicting summer precipitation over the US Midwest, an agricultural region
vulnerable to floods and droughts.
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