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Abstract—Infrastructure cloud computing allows its clients
to allocate on-demand resources, typically consisting of a repre-
sentation of a compute node. In general however, there is a need
for allocating resources other than nodes and managing them
in more controlled ways than simply on demand. This paper
generalizes the familiar “compute power on demand” pattern
by introducing the abstraction of an allocatable resource,
describing its properties, and implementation for different
types of resources. We further describe architecture for a
generic allocatable resource management service that can be
extended to manage diverse types of resources as well as the
implementation of this architecture in the OpenStack Blazar
service to manage resources ranging from bare-metal compute
nodes to network segments. Finally, we provide a usage analysis
of this service on the Chameleon testbed and use it to illustrate
the effectiveness of resource management methods as well as
the need for incentives in usage arbitration.
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I. INTRODUCTION

Over the last decade or so, infrastructure Cloud comput-

ing [1] revolutionized how we think of resource procurement

by making available remote resources via isolated containers

for dynamic exclusive usage. Roughly the same time period

has seen the emergence of scalable (i.e., serving large

user communities) experimental systems like Grid’5000 [2],

GENI [3], Emulab [4], and FutureGrid [5]. These systems

implemented the concept of a scalable production testbed,

i.e., production services that provide and manage many tem-

porary “breakable environments”, composed of distributed

compute nodes, networks, and storage units, used for in-

dividual experimentation. In today’s cloud parlance, these

systems developed the concept of a “testbed as a service”:

while individual isolated testbeds are configured for experi-

mentation that may get out of hand, the services that yield

them are expected to be production quality. These testbeds

emphasized the need for interactive experimentation, as well

as co-scheduling of multiple resources of different kind, and

thus time controlled access to isolated resources.

The Chameleon testbed [6], [7] provides highly config-

urable access to large-scale resources. The hardware consists

of an investment in 15,000+ cores of homogeneous resources

(Intell Haswell nodes) to support large scale experimenta-

tion, along with smaller investment in diversity including

GPUs, FPGAs, storage-rich deployments, as weall as a range

of different architectures. These resources are spread over

two sites, University of Chicago and TACC, connected with

100G network. Users allocate them individually or in large

and complex ensembles and can reconfigure them at bare

metal level, boot from custom kernel if needed, or get access

to serial console. By basing its infrastructure largely on

OpenStack [8], a commodity open source Infrastructure-

as-a-Service implementation, Chameleon demonstrated that

mainstream cloud technology can be used for support-

ing Computer Science systems experimentation. At the

same time, Chameleon extended the concepts underlying

infrastructure clouds by systematizing the concept of an

allocatable resource, extending it beyond handling node

reservations to encompass other resources, and emphasized

generalized time management of cloud resources in support

of interactive and co-scheduled resource use, critical in

experimentation.

In this paper, we introduce the concept of an allocatable

resource as entity defining isolation and thus potential for

exclusive usage on cloud resources; we discuss its properties

and implementation for different types of resources. We then

describe an architecture for a generic allocatable resources

management service, as well as its implementation as the

OpenStack Blazar [9] service (originally called Climate,

since its inception in 2013 until mid-2014) which has

been accepted as a top level OpenStack component since

the fall of 2017. Blazar’s implementation is adaptable to

the management of diverse resources so that the service

can be used in configurable setting both in conjunction

with other OpenStack components (such as Nova [10] and

Neutron [11]), and on its own by developing independent

plugins for resources managed by services outside of Open-

Stack. Finally, we analyze our experiences with allocatable



resources on Chameleon demonstrating the value of advance

reservations where resources are supply-constrained as well

as the importance of incentives for their management.

This paper is organized as follows. In Section 2 we

introduce the concept of allocatable resource and discuss its

properties. In Section 3 we describe the architecture for a

generic allocatable resources management service followed

by a discussion of implementation of the Blazar OpenStack

service in Section 4. In Section 5 we provide insights gained

from allocatable resource usage on Chameleon. We describe

related work in Section 6 and conclude.

II. ALLOCATABLE RESOURCES

We define an allocatable resource as a well-defined object

within a system that the system’s clients can automatically

allocate for exclusive, metered usage, delimited by well-

defined time events. We will call the temporary exclusive

ownership of such resources a lease. Leases can be atomic

(associated with one resource only) or complex (associated

with multiple resources).

We discuss below the properties of allocatable resources:

Well-defined: It is essential that the description of an

allocatable resource can distinguish between any resources

that can be considered different within the system. For ex-

ample, if a cloud instance maps to multiple architectures, the

instance itself is an allocatable resource but its deployment

on a particular architecture is not. The allocatable resource

description is different than descriptions that a client may

input while interacting with the system which could be

expressed in terms of constraint such as “node with memory

of at least 2GB per core”; in this case, generality simply

facilitates interactions, ultimately resolving the generic de-

scription to a specific allocatable resource mapping. This is

particularly important in systems supporting experimentation

where claims are made in the context of a well-defined

model.

Exclusive usage: This property implies the ability to

define a unit of isolation between users. Historically, roughly

two definitions of this isolation were considered useful:

system isolation, which presents to the user an independent

system, and performance isolation which ensures that the

allocatable resources present consistent performance. One of

the most enabling examples of system isolation are virtual

machines (VMs) [12] which emulate an individual computer

system. Containers [13–15], similarly provide system isola-

tion though of a lesser degree (e.g., unlike VMs containers

may share a kernel). The GENI project defined the concept

of a slice [16] which encompasses a set of connected L2

circuits and the compute resources connected to them and

thus defines an isolated networking environment. System

isolation does not necessarily provide performance isolation,

i.e. assurance that a system will be associated with a well

defined quantum of resource such as guaranteed bandwidth.

This is generally hard to provide in shared environments,

and thus systems that require it (e.g., platforms supporting

Computer Science experimentation) often resort to defin-

ing allocatable resources at coarse grain to avoid sharing.

For example, to provide performance isolation Chameleon

defines compute allocatable resources as physical nodes,

rather than parts of a node (which would provide finer-grain

sharing but is hard to implement). The implementation of

isolation is typically associated with a certain cost/overhead.

For example, hypervisor hosting VMs will require resources

to implement its function, or bare metal nodes have to be

restored to default state between users which imposes an

overhead on the length of a lease. Allocatable resource is

thus whatever remains after the overhead has been con-

sumed.

Time-bounded, metered, automatic allocation: Re-

sources are allocatable if their availability can be bounded by

well-defined time events. The most general implementation

of this functionality allows clients to select specific time

events between which their lease will take place; this is

often referred to as advance reservations [17]. We note

that on-demand availability is a special case of advance

reservations where the start time defaults to the time at which

the request is made. Resources are available only on an on-

availability basis [18], e.g., at a time that cannot be reliably

bounded or constrained by the client, are not allocatable by

a client (though they may be allocatable by the provider

as is the case in e.g., batch systems). The clients should

also be able to change the placement of those events in

time throughout the lifetime of a lease, whether inactive

or active (i.e., without or with allocated resources). The

usage thus described should be monitored, metered, and

potentially limited according to those measures; the most

common example of this is the specific dollar amounts that

users pay under different cost models in commercial clouds,

but also applies to allocations and policy constraints on

usage in clouds operated within non-monetary economies

such as academic clouds. Allocations that do not conform to

policy/metering requirements (such as a credit or allocation

limit) should not be admitted into the system. Finally, the

requirement for automatic allocation is essential to ensure

that a system managing allocatable resources will scale.

A desirable characteristic of a system managing allocat-

able resources is to provide an availability calendar: it allows

users to assess the availability of a resource at any given

time, though only an actual lease request can provide the

transactional guarantee of a resource availability. Still, unless

the transactional volume in a system is very high for a

specific type of resource, the availability calendar can be

an effective additional tool in resource management.

Of the properties described above, the isolation units are

typically set by a system designer who selects implemen-

tation suitable to the system’s objectives. Providing well-

defined descriptions of those isolation units and managing

them in a way that satisfies the remaining conditions is the





Resources in the inventory are stored in the resource

database as individual records. A resource record consists of

its unique ID, its type, and then a set of key/value metadata

pairs that describe the resource in more detail, e.g. a node

might store its rack position and CPU architecture, while a

VLAN might store its 802.1Q tag. Leases are stored in the

lease database as a lease record, with a unique ID, start time

and end time, and one or more reservation records consisting

of a resource type and the set of constraints specified by the

user for that resource type. It is important to persist the

original constraints so that additional resources satisfying

them may be substituted later, or so that the user may adjust

the constraints later. Separating the concept of a lease and

a resource reservation provides the flexibility for one lease

to cover multiple types of resources at the same time, e.g. a

user can reserve both a set of nodes and a public IP address

by simply associating resource records with a given lease’s

reservation record. In addition to the lease and reservation

records, a set of lease lifecycle event records representing

each phase of enactment (lease start, before lease end, lease

end) are stored for each lease.

The resource assignment on lease creation may be early

(final mapping to specific resources created at the time

of reservation) or late (final mapping to specific resources

created by the time the lease becomes active); the former

leads to a simpler implementation, the latter provides more

flexibility and dynamicity in optimizing assignments for

various queries and adapting to resource changes. In either

case at creation time the database query should return a

non-empty list of possible options satisfying the constraints

or the lease will not be accepted; it is thus important that

the resource database supports efficient querying over an

arbitrary set of key/value pairs (resource metadata).

Unless an iterative negotiation style interaction with the

client [17] is desired and supported, a selection function is

then applied to pick a specific option. Depending on the

timing of resource assignment this function may optimize

constraint management across leases or optimize administra-

tive processes. For example, in our original implementation

the selection function would pick the first item off the list;

this led to significant churn on nodes that the resource query

returned first and thus uneven hardware wear; we subse-

quently modified the selection function to pick a random

resource which resulted in more uniform assignments across

resources. In general, the selection function can be used to

optimize other qualities like power usage. Once a unique

resource is identified, records are persisted in the database

and a resource reservation ID is returned.

Lease management may involve management for either

adaptation or optimization. For example, the system may

dynamically monitor resource inventory for its health status.

Unhealthy resources are marked as such, and any leases that

contain that resource (active or pending) enter a special “de-

graded” state. Based on policies and configuration, the lease

manager may automatically try to fix the lease (both active

and pending) by finding another resource that matches the

original constraint stored in the database, by disassociating

the resource from the lease. If no replacement resources are

found, the lease remains in the degraded state.

The lifecycle events associated with a lease set up during

lease creation are periodically checked and triggered at

appropriate times. Most of the events delegate to resource

plugins described in the next section to implement resource-

specific functions. For example, once the reservation is ready

to start, an event is triggered that causes the manager to

call the internal on_start operation implemented by the

enactment plug-in; as a result of this action the reservation

status changes from pending to active.

C. Resource plugins

The Lease Manager handles only functionality related to

managing resource reservations and assumes that enactment,

i.e., a method for allowing reservation owners to access their

reserved resources while their reservation is active, is imple-

mented by resource-specific enactment services. The main

assumption we make about those services is that they can

separate reservable resources from a pool of (potentially) on-

demand resources, making them usable only when obtained

through the Lease Manager. For example, when including

floating IPs as an allocatable resource via our system, the

operators must ensure that reservable floating IPs are not

included in their subnet’s allocation pools, which prevents

them from being allocated to users directly via Neutron – but

then the Lease Manager, using privileged service credentials,

can call out to Neutron to allocate floating IPs into a specific

project (in this case the project owning the reservation) and

remove them from the project when requested (i.e. when the

reservation ends).

Enactment plugins allow the resource manager to support

leases for different types of cloud resources, managed by dif-

ferent services (e.g., compute resources managed by Open-

Stack Nova [10] and network resources by Neutron [11]).

To interface with these services, each resource type requires

resource-specific enactment plugins, ensuring separation of

concerns.

The create, update, and delete inventory management

operations as shown in Figure 1 contain an almost direct

pass through to their plugin implementation. They contain

either custom-made tools for generating resource meta-data

or interface with a service that holds that information (e.g.,

it might fetch compute host information from OpenStack

Nova or services configuring it for Nova). Especially when

adapting resource management services that were not orig-

inally implemented to work with reservation systems, this

part of the plugin may also implement a method separating

reservable resources from the main pool of on-demand

resources (managed by a service like Nova), making them

usable only when reserved. In an OpenStack installation this



would result in dividing the pool of nodes into reservable

nodes and nodes available via on-demand only as before.

While creating and updating leases is handled entirely as a

generic reservation, the allocatable resource manager plugins

implement functions dealing with allocating and deallocating

actual resources to a lease. Those operations are as follows:

on start(resource reservation id)
before end(resource reservation id)
on end(resource reservation id)
update reservation(resource reservation id, values)

The on_start and on_end functions are called respec-

tively when a reservation (lease of a specific resource) starts

and ends and handle resource allocation and deallocation.

In addition, on_end is also called when a lease is deleted,

to trigger the end of an active reservation or perform re-

quired cleanup for pending reservations. The before_end

function can trigger an action at a configurable time before

the end of a reservation. For example, it can be used to

snapshot instances running on compute hosts before they

are terminated at the end of their reservations.

While updating a pending reservation can be handled

entirely via generic service logistics implementation, once a

reservation becomes active (i.e., is associated with allocated

resources) updating a reservation may trigger a call to

a plugin update_reservation function (e.g. adding

more compute nodes to an existing reservation).

IV. IMPLEMENTATION

In the context of the Chameleon project we defined three

types of allocatable resources: heterogeneous bare metal

machines, isolated network segments (VLANs) and public

IP addresses on the Chameleon testbed [6]. The compute

nodes are well-described by the Chameleon Resource Dis-

covery [19], down to serial numbers of individual compo-

nents. We chose to provide bare metal nodes as allocatable

resources in order to provide both system and performance

isolation; the sole ownership of the node ensures that users

can run performance tests without interference by others.

In contrast, the isolation property for network allocatable

resources (VLANs) provides only system isolation; this is

because we do not currently have a reliable implemen-

tation ensuring performance isolation for networks. The

IP addresses are allocated from a pre-assigned pool. For

all allocatable resources, Chameleon provides a resource

calendar that facilitates planning.

While the implementation of individual allocatable re-

sources varies, the ability to allocate, meter, and enforce

usage is implemented via the same service. The Lease

Manager is based on a separate OpenStack service called

Blazar [9], to which we are actively contributing. We addi-

tionally integrated or implemented separate resource plugins

for each use-case we required: bare metal node reservation

(via OpenStack Nova, the compute instance provisioning

service), VLAN 802.1Q tag reservation, and public IP reser-

vation (via OpenStack Neutron, the network provisioning

service).

A. Blazar: Allocatable Resource Manager

The Blazar system consists of two components: an API

component, which provides the lease interfaces over an

authenticated HTTP/JSON interface, and a manager com-

ponent, which provides lease, reservation, and resource

lifecycle management, as well as the delegation to various

resource plugins for enactment. The API and manager

components communicate over an RPC interface, where an

AMQP bus serves as the transport layer. Authentication to

the HTTP/JSON interfaces is performed via OpenStack’s

Keystone [20] authentication service. The interfaces are ex-

posed to end-users over the Internet on a TLS-encrypted con-

nection, which is terminated by a proxy running HAProxy.

The manager component handles user requests and trans-

lates them into actions against the backing resource and

reservation databases. Blazar does not lazy-assign resources;

when a user creates a lease, specific resources are selected

and assigned to the lease, making them unreservable by other

users for that time period.

We use the SQLAlchemy library [21] to create a thin

object-relational mapping (ORM) layer that the manager

uses to interact with database entities. Each resource type

has three database tables associated with it: a resources

table, which stores the resource records, a reservations table,

which stores a set of constraints specific to a reservation

for the resource and any parameters needed for enactment

of the reservation, and an allocations table, which stores

associations between the first two tables once resources are

allocated to a reservation. An optional fourth table called

extra capabilities can be used to store arbitrary key/value

pairs that further describe a resource. Users can leverage

these extra capabilities, combined with some attributes stan-

dard to the resource (and stored in the resources table), to

filter the resource inventory via their reservation constraints.

For the lease management, we have three tables: leases,

which stores the lease records, events, which stores the lease

lifecycle event records, and reservations, which serves as a

general table for all reservations across all resource types. A

record in a resource’s reservations table is associated with

a record in the general reservations table. This separation

is necessary due to a specific enactment plugin sometimes

needing additional parameters stored at lease creation time,

e.g. which network to assign a public IP from.

The manager queries the events table every few seconds

and triggers any unexecuted events whose time has come

via plugins described below.



B. Nova/Ironic Plugin: Nodes as Resources

The Nova plugin implements reservation of bare metal

nodes. In OpenStack, bare metal provisioning is a combined

effort between the Nova and Ironic [22] systems. When an

operator adds a bare metal node to the inventory, the operator

does so by specifying an Ironic node UUID. The plugin

retrieves specs such as how many CPUs are on the node

from Nova. These attributes are then mirrored in the resource

database. Operators can add additional metadata to the node,

e.g. rack placement or CPU vendor information, which is

stored in the extra capabilities table for this resource type.

At lease start, the plugin moves the reserved nodes to

a special Nova host group. Users must present a valid

reservation ID to Nova when launching an instance, and

Nova schedules their instance on one of the nodes in this

host group. Before the lease ends, the plugin will send a

notification email to the email address tied to the user’s

OpenStack account. This is important because when a lease

ends, the plugin will instruct Nova to terminate all running

instances on the bare metal nodes, and users may want to

ensure their data is moved off the node beforehand. The

plugin cleans up the host group after instance termination.

Any BIOS or firmware settings are reset as part of instance

termination; this is performed by Ironic.

C. Neutron Plugin: VLANs as Resources

One of the networking enactment plugins Chameleon uses

is the network segment plugin, which allows users to reserve

a VLAN 801.2Q tag. The Chameleon testbed infrastructure

resides on host institution networks both at TACC and at

the University of Chicago, and initially relied upon switches

provided by the host institution. For this reason, only a

limited number of 801.2Q tags were provided to Chameleon,

and demand for isolated networks could exceed capacity.

Additionally, network slices are built by Chameleon users

using special stitchable VLANs extending to the nearest

stitchport [23], and they are few in number (e.g., only 10 are

available at the University of Chicago site). To utilize the

plugin, an operator adds networks to the resource inventory

by specifying their 801.2Q tag. Additionally, operators con-

figure Neutron to no longer allow users to create networks

with a specific 801.2Q tag, as only the resource plugin

should be allowed to perform this action.

During lease creation, the VLAN resource plugin will

instruct Neutron to create a new OpenStack network with a

given 801.2Q tag. The network is associated with the users

account, and will appear in their dashboard for use, though

they wont be able to modify it. When the lease ends, the

network is simply deleted, making sure to first unhook the

network from any running instances.

D. Neutron Plugin: IPs as Resources

The second networking enactment plugins is responsible

for managing the IPv4 addresses allocated to Chameleon on

the public Internet. Metering public IPs is important as, in

our experience, users would often allocate more public IPs

to their account than needed, or likewise forget to release

them when finished. Over time, this can deplete the pool

of available IP addresses. To utilize this plugin, an operator

adds IP addresses to the resource inventory by specifying

their IPv4 address and Neutron network UUID. Normally,

Neutron provides an interface that allows users to request

an IP on a given network out of an allocation pool in an

on-demand fashion. To properly implement IPv4 addresses

as an allocatable resource, this interface must be disabled,

which can effectively be accomplished by configuring the

Neutron network to have an empty on-demand IP allocation

pool.

During lease creation, the IP resource plugin will instruct

Neutron to allocate a new Floating IP on the network. The

Floating IP is then associated with the user’s account, and

will appear in their dashboard for use. When the lease ends,

the Floating IP is deleted after ensuring it is no longer

assigned to any running instance. It is not currently possible

to prevent a user from deleting this Floating IP, but in

this event, the resource plugin simply does not attempt to

delete the IP at lease termination. This enactment plugin was

contributed by NTT.

V. ANALYSIS OF LEASE USAGE ON CHAMELEON

To understand how users were using leases we analyzed

the usage data from the Chameleon testbed between 2015-

07-17 and 2019-04-11. The usage is broken down over all

types of node resources on the Chameleon testbed described

in detail at [24]. We gradually added resources to the

Chameleon testbed (e.g., the Skylake nodes were added

slightly more than a year ago) so for each resource the

relevant usage is shown from the time it was added. We

also removed all maintenance leases as well as all operations

leases from the pool to focus exclusively on user behav-

ior. The usage data was collected from OpenStack Blazar

(reservation service) and Nova (compute service) databases,

and all the DevOps data (data belongs to the internal

development and maintenance projects) was excluded.

We first asked to what extent Chameleon users took

advantage of the fact that testbed resources are allocatable

rather than merely using resources that happened to be

available when the user started the experiment. To assess

that we counted the number of advance reservations used

for each type of allocatable node resources on Chameleon

(reservations for floating IP addresses and VLANs were

introduced very recently and have not yet generated reliable

usage information). We considered the lead time with which

each reservation was made and mapped them into four

categories: (1) on-demand, (2) up to a day in advance

(reservations with short lead time), (3) up to a week in

advance, and (4) more than a week in advance (reservations

with long lead time). The results are shown in Figure 2
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2009.

[27] J. Chung, R. Kettimuthu, N. Pho, R. Clark, and H. Owen,
“Orchestrating Intercontinental Advance Reservations with
Software-defined Exchanges,” Future Generation Computer
Systems, vol. 95, pp. 534–547, 2019.

[28] N. Charbonneau, V. M. Vokkarane, C. Guok, and I. Monga,
“Advance Reservation Frameworks in Hybrid IP-WDM
Networks,” IEEE Communications Magazine, vol. 49, no. 5,
pp. 132–139, 2011.
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