
This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JXCDC.2019.2923745, IEEE Journal
on Exploratory Solid-State Computational Devices and Circuits

JxCDC-0095-Feb-2019.R2 1

Abstract—This paper presents a Ferroelectric FET (FeFET)

based processing-in-memory (PIM) architecture to accelerate
inference of deep neural networks (DNNs). We propose a digital
in-memory vector-matrix multiplication (VMM) engine design
utilizing the FeFET crossbar to enables bit-parallel computation
and eliminate analog-to-digital conversion in prior mixed-signal
PIM designs. A dedicated hierarchical network-on-chip (H-NoC)
is developed for input broadcasting and on-the-fly partial results
processing, reducing the data transmission volume and latency.
Simulations in 28nm CMOS technology show 115x and 6.3x higher
computing efficiency (GOPs/W) over desktop GPU (Nvidia GTX
1080Ti) and ReRAM based design, respectively.

Index Terms—Ferroelectric FET, Processing in memory, DNN

I. INTRODUCTION
HE wide-spread adoption of deep neural networks (DNNs)
in solving complex problems in various domains have
inspired the design of many dedicated hardware

accelerators [1-3]. However, as DNN models become deeper
and require more parameters, the time/energy cost of moving
data between memory and logic starts limiting the efficiency of
the computing. Memory rich architecture integrates large
amount of on-chip memory to reduce the DRAM access [2, 3].
Near-memory-processing (NMP) architecture embeds logic
engines within off-chip memory to reduce the cost of data-
movement [4, 5]. A more aggressive approach is to directly
perform computation inside memory, often referred to as the
processing-in-memory (PIM) architectures [6-11]. The PIM
architectures are designed to perform vector-matrix-
multiplication (VMM) within the memory (i.e. VMM-in-
memory). The current summation at the bit-line is used to
perform multiplication-accumulation (MAC) operation,
resulting in very high throughput. The resistive random access
memory (ReRAM) crossbar based in memory VMM engine
design has shown promise of high energy-efficiency, thanks to
the zero-leakage storage, high-density (1T cells), and non-
volatility of ReRAM devices [6-8]. However, recent studies
have noted challenges associated with ReRAM’s high write
power, long read latency, and challenges in driving large

This material is based on work supported in part by National Science

Foundation (NSF) (#1810005). All authors are with School Electrical and

crossbar arrays with many parallel ReRAM devices [11].
Moreover, due to the nature of analog computation for current
summation, analog/digital conversion (ADC and DAC) is
necessary for data conversion, leading to high power/area
overhead. As an alternative, some prior PIM based designs
utilize DRAM [9] or SRAM [10] to performs basic logic
operation (such as NOR and AND) inside the memory rather
than current summation, therefore, avoiding ADC/DAC.
However, such approaches suffer from large leakage current
and reduced compute density due to their low level logic
abstraction.

This paper presents a ferroelectric FET (FeFET) based PIM
architecture for in-memory vector-matrix computation to
accelerate DNN inference. Our design is built on three core
concepts:
• We employ FeFET as the basic memory cell. Compared

with ReRAM, FeFET presents much less read latency (less
RC delay) and ultra-low programming energy while keeps
similar density and non-volatility.

• We exploit gate-driven operation of FeFET to design all-
digital VMM engine, eliminating ADC/DAC while ensuring
high throughput.

• We present a scalable micro-architecture by connecting
multiple VMM engines using a hierarchical network-on-chip
(H-NoC) with in-router accumulator, reducing the data
transmission volume and latency.

A chip-scale architecture is developed using our VMM-in-
memory fabric coupled with specialized functional blocks, on-
chip storage. A dedicated execution flow and software-
hardware interface is developed to improve the system
flexibility. The proposed system is implemented in 28nm
CMOS technology. The area, power, and frequency of
operation are simulated using post-layout analyses of blocks
and network. The cycle-level simulation is used for application
level performance analyses for different Convolutional and
Recurrent Neural Network (CNN and RNN) models. Our
design demonstrates 115x and 6.3x higher computing
efficiency (GOPs/W) over GPU (Nvidia GTX 1080Ti) and
ReRAM based PIM design, respectively.

Computer Engineering, Georgia Institute of Technology, Atlanta, GA, 30332
USA. Corresponding author: Yun Long. Email: yunlong@gatech.edu.

A Ferroelectric FET based Processing-in-
Memory Architecture for DNN Acceleration
Yun Long, Student member, IEEE, Daehyun Kim, Student member, IEEE, Edward Lee, Student

member, IEEE, Priyabrata Saha, Student member, IEEE, Burhan Ahmad Mudassar, Student member,
IEEE, Xueyuan She, Student member, IEEE, Asif Islam Khan, Senior member, IEEE, and Saibal

Mukhopadhyay, Fellow, IEEE

T

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JXCDC.2019.2923745, IEEE Journal
on Exploratory Solid-State Computational Devices and Circuits

JxCDC-0095-Feb-2019.R2 2

II. FEFET BACKGROUND
Various memory techniques have been explored for PIM

based designs including DRAM [9], eDRAM [2, 3], SRAM
[10], ReRAM [6, 7]. Among these memory techniques,
ReRAM attracted lots of research attentions recently and shows
promise for very high energy-efficiency. However, recent
studies also note challenges associated with ReRAM’s high
write power, long read latency, and power/area overhead for
driving large arrays [11].

To address the challenges presented in ReRAM, we propose
to use FeFET as an alternative memory solution for PIM
architecture. FeFET is a transistor in which the ferroelectric
oxide layer is included in the gate dielectric stack, as shown in
Fig. 1. A ferroelectric oxide is an insulator which exhibits a
spontaneous electric polarization in the absence of electric field.
The direction of the polarization can be switched by applying a
voltage larger than the coercive voltage on the gate terminal of
FeFET [12]. When the polarization is pointing downwards,
channel is in inversion, bringing the transistor into the 'ON' state
(i.e. low Vth state). Similarly, if the polarization is pointing
upwards, channel is in accumulation which gives the transistor
'OFF' state (i.e. high Vth state).

It has already been demonstrated that Hafnium oxide FeFET
has good temperature stability, writing endurance, data
retention and switching speed/energy [12-14]. The ultra-low
writing energy due to the unique electrical field effect switching
mechanism is the most prominent feature which distinguish
FeFET from other emerging technologies. Further, unlike
ReRAM which presents as resistive loads for reading, FeFET is
gate-driven (i.e. capacitive load), eliminating the large RC
delay in ReRAM case and reducing the read latency.

Besides utilizing FeFET as non-volatile memory [12-14],
there have been a few recent works exploring FeFET based
logic (AND, OR, etc.) design [15], oscillator design [16],
spiking neural network [17], and binary neural network
acceleration (using 4 FeFET cells for XNOR logic) [18]. These
works focus on device/crossbar modeling and lack of
system/architecture level design.

III. FEFET CROSSBAR DESIGN
With FeFET crossbar as the core memory element, each cell

in the crossbar performs a 1-bit multiplication. Fig. 2(a) shows
the configuration of the FeFET crossbar, where gate, drain,
source of the transistors are connected to WL, BL and source
line (SL), respectively. Fig. 2(b) shows the corresponding

layout view of a 256x256 crossbar under 28nm technology (the
layout is based on normal MOSFET). The left side of Fig. 2(c)
shows the measured Ids-Vgs characteristics [13]. Two distinct
threshold voltage (-0.2V and 0.9V) are observed and the on/off
ratio is more than 105. One should note that with our FeFET
crossbar configuration, device can be programmed in a row-
wise fashion [19].

For computation, weights are stored as transistor channel
conductance (i.e. threshold voltage) and input vectors are used
to drive WLs (i.e. transistor gate). We employ the FeFET based
AND logic [15] to perform the 1-bit multiplication. One-bit of
weight is encoded as high 𝑉𝑡ℎ or low 𝑉𝑡ℎ, representing either 0
or 1, respectively; similarly, 1 bit of input vector can be encoded
as high or low WL voltage (𝑉𝑔𝑠). When the input bit is 0 (i.e.
low 𝑉𝑔𝑠), the current is always 0 with either high 𝑉𝑡ℎ or low 𝑉𝑡ℎ
since the transistor is turned off. On the other hand, if the input
bit is 1 (i.e. high 𝑉𝑔𝑠), the transistor is still off when 𝑉𝑡ℎ is high
but turns on when 𝑉𝑡ℎ is low. The large on/off ratio of FeFET,
thanks to its steep sub-threshold slope (<60 mV/Dec) [20],
creates large difference between the output '1' current and
output '0' current.

A key advantage of our design is that now the WL connects
to transistor's gate, which is a capacitive load. Therefore, there
is no word line voltage drop issue (RC delay) as in the ReRAM
scenario. Moreover, the drain voltage is fixed at 1V, which is
the system supply voltage. One should note that the read disturb
effect (minor polarization loop caused by reading operation) is
less concerned and not explored in our desgin since both the
pulse width and amplitude of the gate voltage is much smaller
than the switching voltage reported in recent works [13, 21].

IV. VMM ENGINE MICRO-ARCHITECTURE
In this section, we present two configurations of the all-

digital VMM engine to realize an ADC free design.

Fig. 2. (a) Configuration of FeFET crossbar. (b) Layout view of a 256x256
crossbar under 28nm technology. (c) Measured Ids-Vgs characteristics from a
FeFET device. Measurement data are extracted from [13] with the transistor
size 30nm x 80nm. FeFET based 1-bit multiplication (i.e. AND logic).

(a)

𝑉𝑔𝑠

High 𝑉𝑡ℎ

Low 𝑉𝑡ℎ

(b)

Input (𝑉𝑔) Weight (𝑉𝑡ℎ) Output (𝑠)

'0' (low 𝑉𝑔) '0' (high 𝑉𝑡ℎ) '0' (𝑠)

'0' (low 𝑉𝑔) '1' (low 𝑉𝑡ℎ) '0' (𝑠)

'1' (high 𝑉𝑔) '0' (high 𝑉𝑡ℎ) '0' (𝑠)

'1' (high 𝑉𝑔) '1’ (low 𝑉𝑡ℎ) '1' (𝑠)

(c)

Truth table for FeFET based AND logic

Large on/off ratio

𝑉

𝑉

WL

WL

BL BL SLSL

61.4um

18
.0

 u
m

256x256
FeFET crossbar

Fig. 1. (a) FeFET structure and its on/off state.

High 𝑉𝑡ℎ state Low 𝑉𝑡ℎ state

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JXCDC.2019.2923745, IEEE Journal
on Exploratory Solid-State Computational Devices and Circuits

JxCDC-0095-Feb-2019.R2 3

A. Configuration 1: SA and Counter based TDC
We propose a pre-charge/discharge approach based VMM

engine design as shown in Fig. 3(a). First, the BL is pre-charged
to the supply voltage 𝑉 . Then, during computing, depending
on how many devices in the same column are turned on, the BL
voltage drops with different speed. The comparator (sense-
amplifier based) is used to sample the difference between the
reference voltage 𝑉𝑅𝐸𝐹 and 𝑉𝐵𝐿 periodically (controlled by a
clock signal clk). When clk is low, the output is 0 (reset). When
clk is high, the output of comparator is 1 if 𝑉𝐵𝐿 > 𝑉𝑅𝐸𝐹 , or 0 if
𝑉𝐵𝐿 < 𝑉𝑅𝐸𝐹 . Therefore, within 1 clock cycle, if 𝑉𝐵𝐿 is larger than
the reference voltage, the comparator generates a pulse; if not,
the output of comparator remains 0. A counter accumulates the
number of pulses from comparator. Basically, with a simple
sense amplifier and counter, we realize the time to digital
converting (TDC). Simulation in 28nm CMOS shows that our
design consumes 2.7x less power than using ADC [7], while
achieving same speed.

B. Configuration 2: Row-by-Row read and accumulation
The ADC (or TDC in configuration 1) is inevitable if

multiple WLs are simultaneously activated. To eliminate it, we
propose to activate single WL per clock cycle. As shown in Fig.
3(b), The first part of WL peripheral is a clock-driven one-hot
vector unit. At the first clock cycle, the enable signal for the top
WL (𝑒𝑛) is turned on. Then, at the second clock cycle, 𝑒𝑛
disabled and 𝑒𝑛 is enabled, and so on. The second part of WL
peripheral is a logic gate which performs AND operation
between the enable signal (𝑒𝑛𝑖) and input vector (𝑎𝑖). Only
when both 𝑒𝑛𝑖 and 𝑎𝑖 are high, the value stored in
corresponding memory cells 𝑏𝑖 are sensed out. At BL
peripheral, sense amplifier (SA) is employed to sense out the
value (either 0 or 1) and send it to the counter at each clock
cycle. Essentially, the MAC operation is performed with 𝑁
cycles where 𝑁 is the number of rows in the memory array.

While sacrificing the parallelism of analog computing, our
design is faster than ADC based approach. This is due to the
fact that for prior ADC based design, the speed of ADC is the
major throughput bottleneck. For example, in ISAAC [7], a 1.3
Giga-samples-per-second (GSps) SAR ADC is employed and
shared by a memory crossbar. It takes 100ns to convert the
analog values for a 28 × 28 (the crossbar size in ISAAC)
memory array. In our design, it also takes 128 clock cycles to

perform the same computing (loop through all the rows). For a
 28 × 28 FeFET array (2KB), our simulation indicates the
internal clock frequency can go up to 4GHz (reading frequency,
not programming) in 28nm technology, resulting 25.6 ns to
perform the MAC operation, ~4x faster than ADC based
solution.

C. Comparison of the two configurations
While the proposed two configurations have very different

reading/sensing scheme, the circuit level implementation are
similar. To be more specific, the sensing is realized by a sense
amplifier (called comparator in configuration 1) and a counter.
In essence, with the same system implementation, we can
realize these two configurations simply by changing the control
signal (i.e. the WL activations) patterns.

In terms of speed, the latency for configuration 1 is
determined by the clock frequency (reference voltage 𝑉𝑅𝐸𝐹
needs change accordingly) of the comparator and counter. For
a FeFET crossbar with 𝑁 rows, the counter needs to wait at
least 𝑁 clock cycle to ensure the output has N levels. Similarly,
the latency for configuration 2 is determined by the memory
clock as the sensing is performed row-by-row. For a 𝑁 rows
crossbar, 𝑁 clock cycles are necessary to get the final output.

In terms of accuracy, configuration 2 is preferred. In
configuration 1, even though the sensing is digital, the BL
discharge is still in analog domain. Further, the device
variation, cell leakage, nonlinearity of BL discharge and
temperature/voltage fluctuation can introduce computing error.
On the other hand, the MAC in configuration 2 is in digital
domain, providing much better fidelity in terms of computing
accuracy.

V. DATA COMMUNICATION NETWORK

A. VMM engine for large scale matrix operation
Fig. 4 illustrates the methodology to partition a large matrix-

matrix multiplication across multiple VMM engines. Assuming
the 1 VMM engine can hold parameters of size s×s, the weight
matrix is then partitioned into several small segments with the
granularity of s×s. In total, n×m VMM engine will be used (Fig.
4). Similarly, the input matrix is first transposed, partitioned
and sequentially fed into the corresponding VMM engines.

From Fig. 4, we observe that each input segment is shared
across multiple VMM engines horizontally (e.g. VMM11,

Fig. 3. (a) Configuration 1: SA + counter based TDC VMM engine design. (b) Configuration 2: Row-by-row read and accumulation based VMM engine design.

 AND

𝑎

𝑎

𝑎

O
ne

-h
ot

 v
ec

to
r

SA

co
un

te
r

SA

co
un

te
r

SA

co
un

te
r

(b)

𝑒𝑛

𝑒𝑛

𝑒𝑛

𝑒𝑛

𝑒𝑛
𝑒𝑛

𝑉

GND

Pre-charge

C 𝑉𝐵𝐿

𝑉𝐵𝐿 𝑉𝑅𝐸𝐹

Counter

Digital
output

 𝑡

Delay time

Ctrl

Discharge

comparator

N pluses

clk

When , (reset)

When , 𝑉𝐵𝐿 𝑉𝑅𝐸𝐹

𝑉

(a)

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JXCDC.2019.2923745, IEEE Journal
on Exploratory Solid-State Computational Devices and Circuits

JxCDC-0095-Feb-2019.R2 4

VMM12, till VMM1m). We call it as row-wise input sharing.
On the other side, partial results generated from the same
column of multiple VMM engines should be summed together
vertically (e.g. VMM11, VMM21, till VMMn1 in Fig. 4) since
they belong to the same column in the original weight matrix.
We call it as column-wise output summation.

B. Hierarchical Network-on-Chip (H-NoC) Design
We propose a hierarchical NoC to address the discrepency

between row-wise input sharing and column-wise output
summation (Fig. 5). At the bottom level, 4 VMM engines share
a router. Then, 4 such routers are connected to a router in the
higher level. Since the VMM engines organized in a
hierarchical fashion, a system with 𝑁 level of routers can
accommodate up to 4𝑁 VMM engines. Fig. 5(b) shows the
router design, containing five input/output ports and
corresponding I/O buffers. A 5 × 5 switching matrix is
equipped to route input/output ports and the routing is based on

store-and-forward (SAF) approach. Distinguished from
conventional router designs, we insert a computing block (i.e.
accumulator) inside the router to enable on-the-fly partial
results summation. The benefits of H-NoC are in two-fold.

First, H-NoC realizes efficient row-wise input sharing.
Fig. 5(c) illustrates three different data forwarding patterns. The
first example shows the one-to-one forwarding. The top-level
router decodes the first 4-bit of a packet (each bit represents the
on/off of top-left, top-right, bottom-right, bottom-left output
ports, e.g. '1000' means the packet goes to its top-left branch)
and sent the packet to its sub-level router. Then the sub-level
router decodes the next 4-bits and repeats until the packet
arrives the designated VMM engine at the top-left corner.
Besides one-to-one forwarding, the packet can be broadcast. As
shown in the last example of Fig. 5(c), since the first 4-bit
address is '1111', the top-level router broadcasts the packet to
its sub-level routers in four directions. This process repeats and
finally a single packet is assigned to 16 distributed VMM
engines simultaneously.

A case study is used to illustrate how the row-wise input
sharing benefits from the input broadcasting. As shown in Fig
6(a), a large weight matrix is first partitioned into several
segments (we show 2 × 8 6 segments, more details about
matrix partition and mapping are discussed in supplementary
materials). Then, we map W11, W21, W31, W41 to 4 VMM engines
sharing the same router node ❹. Then, input vectors are sent
to corresponding VMM engines (input sharing and reuse). For
example: I4 (in blue) should go to two VMM engines which
store W41 and W42. Conventionally, this requires two packets
and two cycles since there are two destination VMM engines.
With H-NoC, this can be done with a single packet and one
cycle. As shown in Fig. 6(b), router ❶ decode the first 4-bit
address (1100) and then broadcasts I4 to its sub-level router at
top-left and top-right directions (i.e. sends packet to routers ❷
and ❸). These two routers then decode the next 4-bits (1000)
and sent the packet to their top-left router ❹ and ❻. Finally,
the packet goes to the bottom-right leaf VMM engines of router
❹ and ❻.

Second, H-NoC is dedicated for efficient column-wise
partial results summation. Enabled by the in-router
accumulator, the results summation is performed on-the-fly, i.e.
output summation happens during data transmitting. Again, we
use the case in Fig. 6 as an example. It takes two steps to get the

Fig. 6: A case study to illustrate how data are mapped via H-NoC. We use
different color and shade to help tracking the input and weight mapping.

(a) (b)

Weight matrix

Input vector
 𝑖 𝑖

𝑖

Input partition is broadcast to
multiple VMM engines

 𝑡 𝑡 𝑖 𝑖

𝑖

Address: 1100 1000 0010

Fig. 5: (a) Hierarchical network-on-chip. (b) Router design with accumulator
integrated. (c) Three different data forwarding patterns and corresponding
addresses, including one-to-one forwarding and broadcasting.

VMM engine Router

in
out

in
out

in
out

in
out

Bottom-left

Top-left

in
out

Accumulator

Switching
matrix

Hierarchical NOC
Router with accumulator inside

(a) (b)

‘1000 1000 1000’ ‘1100 1000 0010’ ‘1111 1111 1000’
Destination VMM enginesVMM enginesRouters

(c)

Bottom-right

Top-right

Fig. 4: Matrix partition and mapping to multiple VMM engines. Different color
and shade are used to help tracking the input and weight mapping.

 ×

𝑛 ×

𝑛
×

×

Input

Weight
(transpose)

Send
sequentially

VMM11

VMMn1 VMMn2

VMM22

𝑠

𝑠

VMM12 VMM1m

VMM2m

VMMnm

VMM21

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JXCDC.2019.2923745, IEEE Journal
on Exploratory Solid-State Computational Devices and Circuits

JxCDC-0095-Feb-2019.R2 5

summation (𝑡 𝑡 ∑ 𝑖 ∙ 𝑖

𝑖). First, router ❹ and ❺

works independently and parallelly, each receiving four partial
results from the connected VMM engines and summing the
partial data utilizing the built-in accumulator (i.e. 𝑝 𝑡𝑖
∑ 𝑖 ∙ 𝑖

𝑖 and 𝑝 𝑡𝑖 ∑ 𝑖 ∙ 𝑖

𝑖). Router ❷ then

accumulates the partial results from ❹ and ❺ and sends the
final summation to global buffer. Therefore, rather than sending
each partial result to the global buffer as separate packets, only
1 packet is sent to the global buffer leveraging the on-the-
fly/parallel processing enabled by H-NOC.

Depending on how many VMM engines are involved for one
matrix computing, this process repeats until all the partial
results are summed together. As routers in the same level are
working in parallel, the worst-case latency is limited to
4 × n ber of ro ter level , since it takes 4 clock cycles for
a router to accumulate partial results from its 4 branches.

VI. CHIP-SCALE ARCHITECTURE

A. System Architecture
Fig. 7(a) shows the system architecture with VMM engines

interconnected with H-NoC. We implement several fixed
function units to support computation that cannot be accelerated
within the VMM-engines, such as element-wise multiplication
and activation functions. This ensures our design has the
flexibility to support various CNN and RNN models. For
example, multiplier array and adder array are used for element-
wise multiplication and addition, respectively. Additionally,
they combined together can be used to compute the Taylor
series of some special functions such as sigmoid. Since our
design accelerate DNN inference, both adder and multiplier
have 16-bit fixed point precision. Pooling processor is used to
perform average or max pooling and ReLU is for ReLU layer.
There are several other fixed function units, such as max value
search and divider (used in batch normalization layer). The last
component in the system architecture is the micro-processor
which fetches/decodes the instructions and coordinates the data
accessing and transmission.

B. Execution Flow
The first layer of AlexNet is used as an example to illustrate

the execution flow (Fig. 7(b)). The input feature maps to this
layer is 224 × 244 × 3 × , representing the image width,

height, RGB channels, and mini-batch size, respectively. The
Convolutional kernel size is 3 × × × 96, corresponding
to the number of input channels, kernel width/height, and output
channels, respectively. The micro-processor calculates how
many memory sub-arrays are required to perform the
computation. Assuming the memory sub-array size is 256 ×
256 , each set of the convolution kernel (i.e. 3 × ×)
contains 363 weight parameters, and thus, ⌈363/256⌉ 2
crossbar arrays to perform the dot-production for one kernel.
Further, kernels can be padded horizontally to achieve
parallelism. Since there are 96 kernels, in total we need
96 × 8 ÷ 256 × 2 6 memory sub-arrays, given that each
element is a 8-bit number (256 devices in a row can hold 32 8-
bit numbers). Then, the micro-processor will wrap the received
data into discrete packets (the first few bits of a packet contains
the routing address) and dispatch them to the target memory
sub-array locations via H-NoC. After the computing is done,
results are collected back and sent to the activation/pooling
function units through system bus.

Eventually, the output feature maps are generated and stored
to the memory for temporary storage since they will be used as
inputs for the next layer. Preferably, these data are stored in on-
chip memory if there are available space; alternatively, if all the
on-chip memory sub-arrays are programmed with weights, the
micro-processor will offload the temporary data off-chip.
Typically, a single layer parameter size is less than 2MB, the
offload of temporary data rarely happens for our benchmark
CNNs and RNNs

C. Software/hardware interface
A software/hardware interface is designed to bridge the gap

between software and hardware, letting users easily deploy their
applications without specific hardware knowledge. As shown
in Fig. 7(c), the runtime system takes DNN definition file (as
well as pre-trained model if available) as input, sets the
computing model and running precision, and performs layer-
wise interpretation to translate the high-level DNN model
definition to the instructions we developed for the proposed
system. There are three types of instructions: control, layers,
and parameter specification. Instructions are 64-bit with the
first 6-bit as Opcode. Control instructions are used to define
computing precision, set running mode (only inference
available now, supporting training is our future work) and write

Fig. 7: The chip-scale architecture of the FeFET-based PIM design: (a) system architecture, and (b, c) execution flow.

Memory arrays and H-NoC

DMA + Read/write buffer

Memory interface to high-bandwidth DRAM

Micro-
processor

Address
register

Multiplier array

Pooling processor

Adder array

ReLU

Others (divider, find_max)

Memory subarray Router

Input

DNN_model.py

DNN_model.pb

DNN definition file

Trained parameters

Model compiling

PIM-ISA instructions

Set computing mode
Set precision
Layer by layer analyses
• Parameter matrix address
• Output matrix address
• Kernel/feature map size

224

11

11

55

55

96
 k

er
ne

ls

3 input channels 96 output channels

11

11

3

224

Conv

9 memory sub-arrays in total

11
x1

1x
3=

36
3 25

6
10

7

25
6

Sequentially input

Partial sum

output
Set mode inference
Set precision 8-bit
For (layer in DNN) do

Conv des_add, input_add, w_add
Spec Input_size, Kernel_size

Input vector: 11x11x3

Un-used

(a) (b) (c)

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JXCDC.2019.2923745, IEEE Journal
on Exploratory Solid-State Computational Devices and Circuits

JxCDC-0095-Feb-2019.R2 6

address register. Layers instructions define the layer and where
the weight and activation should be fetched from. Parameter
specification instructions are always attached to the layer
instructions, specifying more information about the layer
defined by the previous instruction. For example, to define the
computation of a convolutional layer, we need two instructions,
one for layer specification which defines the layer type and
where we should read the weight and input from (i.e. weight
and input address); the other one defines the convolutional
kernel size, input/output feature map depths, etc. Details about
instruction design and more examples are available at
supplementary materials.

VII. SIMULATION RESULTS

A. Prototype design
The prototype design contains 2048 VMM engines organizing

with a 6 levels H-NoC. Each VMM engine contains a 256x256
FeFET memory crossbar together with the peripheral circuitry.
In addition, at system level, we implemented several functional
blocks such as multiplier/adder arrays, pooling processor, and
ReLU units. We performed SPICE simulation with 28nm
CMOS technology (normal MOSFET model with calibrated
threshold voltage and transistor size to mimic the I-V
characteristic of real FeFET measurement data [13]) using
extracted netlist of the crossbar together with the WL drivers
and SAs to estimate power and latency of the memory sub-
array. The SPICE simulation is then coupled with synthesized
digital blocks (such as counters, H-NoC, functional blocks and
controller) to form a completed chip-level modeling. While
setting the system clock to be 1GHz, the FeFET memory sub-
array can run at a higher clock frequency. Therefore, for
configuration 1 (SA + counter based TDC approach), we set the
clock to be 2GHz. Similarly, for configuration 2 (row-by-row
read and accumulation approach), the memory crossbar also has
an internal 2GHz clock. The off-chip memory bandwidth is set
to be 512GB/s which is same with TPU-v2 [22]. The key design
specification and the layout view for a VMM engine is
presented in Fig. 8. One should note that we use the same circuit
implementation but changing the WL activation pattern
(parallel versus row-by-row access) to realize the two different

configurations. Also, we ignore the power overhead of the
reference voltage generation circuit in configuration 1 since it
can be shared across the system. Therefore, the power of VMM
engine for these two configurations are also similar.

B. Benchmarks and precision
We have 5 different types of DNN models (AlexNet,

GoogleNet, VGG-16, VGG-19, and LSTM) with varying
parameter size and computing complexity (i.e. GOPs).

We also explore the system peak performance with different
bitwidth of DNN weights and activations. As illustrated in Fig.
9, with less bit-precision, the throughput is higher. We also note
that when the activation is less than 8-bit (which is the precision
for 256 rows FeFET crossbar), configuration 1 becomes faster
as it takes a smaller number of clock cycles to accumulate the
sensing result (A more detailed analyses for this observation
can be found in supplementary material).

In the following experiments, we assume weights and
activations have 8-bit precision because we observe that for the
benchmark DNN models, 8-bit is good enough to ensure the
inference accuracy. One should note that the state-of-the-art
DNN models (such as ResNet [23] and MobileNet [24])
typically requires 16-bit or even floating point for the best
accuracy. Supporting flexible bit-precision and floating point
operation is our future work.

C. Performance analyses
First, for data transmission efficiency, we compare our H-

NoC design with the naive approach (no input
broadcasting/reuse or output on-the-fly processing) and
ISAAC-like design (using two stage hierarchical buffer for
output accumulation) [7]. Fig. 10(a) shows the data (input,
weights, and internal temporary data) transmission latency for
processing one image using 4 different benchmark CNNs. On
average, our design reduces the latency by 14.5x and 6.7x over
the naive approach and ISAAC-like design across the
benchmark CNNs, respectively.

Second, we analyze the power efficiency of FeFET VMM
engines and compare with ReRAM baseline design, as
illustrated in Fig. 10(b). We first consider using ADC in the BL
peripherals and insert buffer to drive the WL (i.e. resistive
load). With a simple technology replacement from ReRAM to
FeFET (using the same peripherals), we observe that the FeFET
based design achieves only 1.2x power reduction because the
power consumption on the peripherals dominated. With the

Fig. 8: Design specification for the prototype implementation and the layout
view for one VMM engine. Two configurations share the same circuit
implementation.

Configurations
Config 1

(SA+counter based
TDC)

Config 2
(row-by-row

accumulation)

Computing domain Mixed signal Digital

of VMM engine
(memory capacity) 2048 256x256 FeFET crossbar (16 MB)

Peak throughput 16.38 TOPs
(@ clk_mem: 2 GHz with 8-bit precision)

DRAM bandwidth 512 GB/s

VMM power * 5.8 mW

System power 18.2 W

Technology 28 nm CMOS

Design specification for the prototype implementation

* For config 1, we ignore the power for reference
voltage generation.

8
K

B
 F

eF
ET

buffer

10
5

um

38 um

VMM engine layout view

Fig. 9. Peak throughput with different weight and activation precision. 32/16
means the weight is 32-bit while the activation is 16-bit.

0.1

1

10

100

1000

32/32 32/16 16/16 16/8 8/8 8/4 4/4 4/2

Config 1 Config 2

P
ea

k
th

ro
ug

hp
ut

 (T
O

P
s) Performance gain with config 1

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JXCDC.2019.2923745, IEEE Journal
on Exploratory Solid-State Computational Devices and Circuits

JxCDC-0095-Feb-2019.R2 7

optimized digital-like peripherals (i.e. replace the power-
hungry ADC with SA + counter and also eliminate the WL
buffer since FeFET is a capacitive load), significant power
efficiency improvement is observed (another 5.7x). In total,
with the cross-cutting solutions combining emerging device
technologies and circuit innovations, FeFET based VMM
engine demonstrates 6.3x power efficiency over the baseline
ReRAM design.

We then evaluate the overall system performance using our
benchmark DNN models and compared with the measured data
from desktop GPU (Nvidia GTX 1080Ti with 11.3 TFLOPs
throughput and 250 W power). Fig. 11 shows the speed
(normalized) comparison for different DNNs under varying
batch sizes. We don't differentiate the two VMM engine
configurations because they have similar throughput when
using 8-bit precision. We observe that our design outperforms
GPU solution by 8.4x in terms of frames per second (fps).
Additionally, desktop GPU's power is 13.7x higher than out
work, resulting up to 115x computing efficiency (GOPs/W)
improvement with our design.

D. Computing accuracy
The device variation of FeFET can potentially impact the

computing accuracy. Similar with prior ReRAM based design,
we use Gaussian noise to represent the stochastic device

variation [25]. We calibrate our device variation model with
experimental FeFET data in recent published works [13, 14].
The typical variation (the standard deviation: 𝜎) varies from 1%
to 20%.

Fig. 12 shows the classification accuracy deterioration under
device variation considering the two proposed VMM engine
configurations. As mentioned earlier, the first configuration
eliminates the ADC but still perform part of the computing in
mixed-signal domain, thus, it is more vulnerable to device
variation. On the other side, thanks to the large on/off ratio of
FeFET, the second configuration demonstrates good robustness
towards the device noise.

E. Comparison with other works
We perform a detailed comparison between existing DNN

accelerators implemented with ASIC [2, 22], NMP [4, 5], and
PIM architecture [7, 10]. For ASIC based solution, we consider
DaDianNao [2], which integrates large amount of on-chip
eDRAM to store DNN parameters and TPU-v2 [22], the second
generation of tensor processor unit from Google. For NMP, we
investigate DeepTrain [5], a novel architecture which integrates
logic layer into the high-bandwidth DRAM. We also compare
with ISAAC [7], a pioneer work for ReRAM based PIM
architecture for DNN acceleration. For SRAM based design, we
evaluate a recent work, neural-cache [10], a bit-serial logic-in-
memory based DNN accelerator architecture. At last, we
compare with a recent FeFET based design [26] which utilize
FeFET as analog synapse (each device stores 5-bit) for DNN
training acceleration. The key design features are summarized
in Table I. In terms of computing efficiency, we evaluate from
two different aspect, namely, array-level and system level. For
array-level efficiency, only the energy consumed by the array
(device and crossbar peripherals) is considered.

As a conclusion, our design achieves the state-of-the-art
performance with 896 GOPs/W computing efficiency using 8-
bit precision. Our design outperforms other PIM architectures
by leveraging the following merits: (1) The key horse power
comes from the VMM engine which eliminates the slow/power-
hungry ADC, plus the high memory clock frequency. (2) H-
NoC helps to reduce the data movement latency for both input
reuse and output collection. (3) With FeFET as the memory

Fig. 10. System performance improvements for (a) H-NoC for data
transmission and (b) VMM engine for computation.

0 2 4 6 8 10 12 14 16

Our design

Baseline FeFET

Baseline ReRAM
WL
BL
Crossbar
NOC
Ohters

0

5

10

15

20

25

30

AlexNet GoogleNet VGG-16 VGG-19

Naïve ISAAC-like H-NoC

Power distribution (mW)

6.3x

5.7x

1.2x

(a)

(b)

D
at

a
tra

ns
m

is
si

on

(m
s/

fra
m

e)

Fig. 11. Normalized inference speed of desktop GPU and our design for DNN
models with varying batch sizes. For VGG-16 and VGG-19, we choose smaller
batch sizes to avoid the run out of memory error.

0

5

10

15

20

25

16 64 256512 16 64 256512 4 16 32 64 4 16 32 64 16 64 256512

AlexNet GoogleNet VGG-16 VGG-19 LSTM

GPU Our work

N
or

m
al

iz
ed

 s
pe

ed

Fig. 12. Computing accuracy under different level of device variation. The
variation is characterized with Gaussian noise.

A
cc

ur
ac

y

Device variation (standard deviation: 𝜎)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

A
le

xN
et

G
oo

gl
eN

et

V
G

G
-1

6

V
G

G
-1

9

LS
TM

A
le

xN
et

G
oo

gl
eN

et

V
G

G
-1

6

V
G

G
-1

9

LS
TM

Config 1 Config 2
0 0.001 0.01 0.1

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JXCDC.2019.2923745, IEEE Journal
on Exploratory Solid-State Computational Devices and Circuits

JxCDC-0095-Feb-2019.R2 8

cell, we also benefit from the dense cell structure and low read
latency/write energy.

VIII. CONCLUSION
In this work, we propose FeFET based PIM architecture to

accelerate DNN inference. With FeFET as the basic memory
cell and ADC free VMM engine design, the computing
efficiency is significantly enhanced. A dedicated hierarchical
network-on-chip is developed to realize fast and parallel data
communication. As FeFET continues to mature towards a
commercial technology, we show the pathway to a high-
efficient architecture that successfully leverages unique
properties of this technology to accelerate challenging data-
intensive computing applications.

REFERENCES

[1] S. Han et al., "EIE: efficient inference engine on compressed deep
neural network," in Computer Architecture (ISCA), 2016
ACM/IEEE 43rd Annual International Symposium on, 2016, pp.
243-254: IEEE.

[2] Y. Chen et al., "Dadiannao: A machine-learning supercomputer," in
Proceedings of the 47th Annual IEEE/ACM International
Symposium on Microarchitecture, 2014, pp. 609-622: IEEE
Computer Society.

[3] Z. Du et al., "ShiDianNao: Shifting vision processing closer to the
sensor," in ACM SIGARCH Computer Architecture News, 2015, vol.
43, no. 3, pp. 92-104: ACM.

[4] D. Kim, J. Kung, S. Chai, S. Yalamanchili, and S. Mukhopadhyay,
"Neurocube: A programmable digital neuromorphic architecture
with high-density 3D memory," in Computer Architecture (ISCA),
2016 ACM/IEEE 43rd Annual International Symposium on, 2016,
pp. 380-392: IEEE.

[5] D. Kim, T. Na, S. Yalamanchili, and S. Mukhopadhyay,
"DeepTrain: A Programmable Embedded Platform for Training
Deep Neural Networks," IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 37, no. 11, pp. 2360-
2370, 2018.

[6] P. Chi et al., "Prime: A novel processing-in-memory architecture for
neural network computation in reram-based main memory," in ACM
SIGARCH Computer Architecture News, 2016, vol. 44, no. 3, pp.
27-39: IEEE Press.

[7] A. Shafiee et al., "ISAAC: A convolutional neural network
accelerator with in-situ analog arithmetic in crossbars," ACM
SIGARCH Computer Architecture News, vol. 44, no. 3, pp. 14-26,
2016.

[8] L. Song, X. Qian, H. Li, and Y. Chen, "Pipelayer: A pipelined
reram-based accelerator for deep learning," in High Performance
Computer Architecture (HPCA), 2017 IEEE International
Symposium on, 2017, pp. 541-552: IEEE.

[9] S. Li, D. Niu, K. T. Malladi, H. Zheng, B. Brennan, and Y. Xie,
"Drisa: A dram-based reconfigurable in-situ accelerator," in
Proceedings of the 50th Annual IEEE/ACM International
Symposium on Microarchitecture, 2017, pp. 288-301: ACM.

[10] C. Eckert et al., "Neural cache: bit-serial in-cache acceleration of
deep neural networks," in Proceedings of the 45th Annual

International Symposium on Computer Architecture, 2018, pp. 383-
396: IEEE Press.

[11] Y. Long et al., "A ferroelectric FET based power-efficient
architecture for data-intensive computing," in Proceedings of the
International Conference on Computer-Aided Design, 2018, p. 32:
ACM.

[12] J. Muller, T. S. Boscke, U. Schroder, R. Hoffmann, T. Mikolajick,
and L. Frey, "Nanosecond Polarization Switching and Long
Retention in a Novel MFIS-FET Based on Ferroelectric HfO2,"
IEEE Electron Device Letters, vol. 33, no. 2, pp. 185-187, 2012.

[13] M. Trentzsch et al., "A 28nm HKMG super low power embedded
NVM technology based on ferroelectric FETs," in 2016 IEEE
International Electron Devices Meeting (IEDM), 2016, pp. 11.5. 1-
11.5. 4: IEEE.

[14] H. Mulaosmanovic et al., "Novel ferroelectric FET based synapse
for neuromorphic systems," in 2017 Symposium on VLSI
Technology, 2017, pp. T176-T177: IEEE.

[15] A. Aziz et al., "Computing with ferroelectric FETs: Devices,
models, systems, and applications," in 2018 Design, Automation &
Test in Europe Conference & Exhibition (DATE), 2018, pp. 1289-
1298: IEEE.

[16] Z. Wang, S. Khandelwal, and A. I. Khan, "Ferroelectric oscillators
and their coupled networks," IEEE Electron Device Letters, vol. 38,
no. 11, pp. 1614-1617, 2017.

[17] Z. Wang et al., "Experimental Demonstration of Ferroelectric
Spiking Neurons for Unsupervised Clustering," in 2018 IEEE
International Electron Devices Meeting (IEDM), 2018, pp. 13.3. 1-
13.3. 4: IEEE.

[18] X. Chen, X. Yin, M. Niemier, and X. S. Hu, "Design and
optimization of FeFET-based crossbars for binary convolution
neural networks," in 2018 Design, Automation & Test in Europe
Conference & Exhibition (DATE), 2018, pp. 1205-1210: IEEE.

[19] S. F. Mueller, "Development of HfO2-Based Ferroelectric
Memories for Future CMOS Technology Nodes," PhD thesis 2014.

[20] M. Lee et al., "Physical thickness 1. x nm ferroelectric HfZrOx
negative capacitance FETs," in 2016 IEEE International Electron
Devices Meeting (IEDM), 2016, pp. 12.1. 1-12.1. 4: IEEE.

[21] H. Mulaosmanovic, T. Mikolajick, and S. Slesazeck, "Accumulative
polarization reversal in nanoscale ferroelectric transistors," ACS
applied materials & interfaces, vol. 10, no. 28, pp. 23997-24002,
2018.

[22] Google TPU-v2 https://cloud.google.com/tpu/docs/system-
architecture.

[23] K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for
image recognition," in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2016, pp. 770-778.

[24] A. G. Howard et al., "Mobilenets: Efficient convolutional neural
networks for mobile vision applications," arXiv preprint
arXiv:1704.04861, 2017.

[25] B. Gao et al., "Ultra-low-energy three-dimensional oxide-based
electronic synapses for implementation of robust high-accuracy
neuromorphic computation systems," ACS nano, vol. 8, no. 7, pp.
6998-7004, 2014.

[26] M. Jerry et al., "Ferroelectric FET analog synapse for acceleration
of deep neural network training," in 2017 IEEE International
Electron Devices Meeting (IEDM), 2017, pp. 6.2. 1-6.2. 4: IEEE.

TABLE I
PERFORMANCE COMPARISON WITH OTHER DNN ACCELERATORS

Technology Hardware Parameter
storage

Power
(W)

Area
(mm2)

Efficiency
(array-level)

Efficiency
(system-level)

Peak
throughput

DaDianNao [2] 28 nm ASIC eDRAM (on-chip) 20.1 67.7 -- 286 GOPs/W 5.7 TOPs

TPU-v2 [20] -- ASIC DRAM ~ 250 -- -- 180 GOPs/W 45 TOPs

DeepTrain [5] 15 nm NMP DRAM 7.2 -- -- 566 GOPs/W 7.2 TOPs

ISAAC [7] 28 nm PIM ReRAM 65.8 85.4 604 GOPs/W 381 GOPs/W 25.1 TOPs

Neural Cache [10] 28 nm PIM SRAM 52.9 -- 529 GOPs/W -- 28 TOPs

Analog-FeFET [24] -- PIM FeFET -- -- 840 GOPs/W -- --

Our work 28 nm PIM FeFET 18.2 49.6 1234 GOPs/W 896 GOPs/W 16.38 TOPs

https://cloud.google.com/tpu/docs/system-architecture
https://cloud.google.com/tpu/docs/system-architecture

