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Abstract—This paper presents a Ferroelectric FET (FeFET) 

based processing-in-memory (PIM) architecture to accelerate 
inference of deep neural networks (DNNs). We propose a digital 
in-memory vector-matrix multiplication (VMM) engine design 
utilizing the FeFET crossbar to enables bit-parallel computation 
and eliminate analog-to-digital conversion in prior mixed-signal 
PIM designs. A dedicated hierarchical network-on-chip (H-NoC) 
is developed for input broadcasting and on-the-fly partial results 
processing, reducing the data transmission volume and latency. 
Simulations in 28nm CMOS technology show 115x and 6.3x higher 
computing efficiency (GOPs/W) over desktop GPU (Nvidia GTX 
1080Ti) and ReRAM based design, respectively. 
 

Index Terms—Ferroelectric FET, Processing in memory, DNN  

I. INTRODUCTION 
HE wide-spread adoption of deep neural networks (DNNs) 
in solving complex problems in various domains have 
inspired the design of many dedicated hardware 

accelerators [1-3]. However, as DNN models become deeper 
and require more parameters, the time/energy cost of moving 
data between memory and logic starts limiting the efficiency of 
the computing. Memory rich architecture integrates large 
amount of on-chip memory to reduce the DRAM access [2, 3]. 
Near-memory-processing (NMP) architecture embeds logic 
engines within off-chip memory to reduce the cost of data-
movement [4, 5]. A more aggressive approach is to directly 
perform computation inside memory, often referred to as the 
processing-in-memory (PIM) architectures [6-11]. The PIM 
architectures are designed to perform vector-matrix-
multiplication (VMM) within the memory (i.e. VMM-in-
memory). The current summation at the bit-line is used to 
perform multiplication-accumulation (MAC) operation, 
resulting in very high throughput. The resistive random access 
memory (ReRAM) crossbar based in memory VMM engine 
design has shown promise of high energy-efficiency, thanks to 
the zero-leakage storage, high-density (1T cells), and non-
volatility of ReRAM devices [6-8]. However, recent studies 
have noted challenges associated with ReRAM’s high write 
power, long read latency, and challenges in driving large 
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crossbar arrays with many parallel ReRAM devices [11]. 
Moreover, due to the nature of analog computation for current 
summation, analog/digital conversion (ADC and DAC) is 
necessary for data conversion, leading to high power/area 
overhead. As an alternative, some prior PIM based designs 
utilize DRAM [9] or SRAM [10] to performs basic logic 
operation (such as NOR and AND) inside the memory rather 
than current summation, therefore, avoiding ADC/DAC. 
However, such approaches suffer from large leakage current 
and reduced compute density due to their low level logic 
abstraction.   

This paper presents a ferroelectric FET (FeFET) based PIM 
architecture for in-memory vector-matrix computation to 
accelerate DNN inference. Our design is built on three core 
concepts:  
• We employ FeFET as the basic memory cell. Compared 

with ReRAM, FeFET presents much less read latency (less 
RC delay) and ultra-low programming energy while keeps 
similar density and non-volatility. 

• We exploit gate-driven operation of FeFET to design all-
digital VMM engine, eliminating ADC/DAC while ensuring 
high throughput.  

• We present a scalable micro-architecture by connecting 
multiple VMM engines using a hierarchical network-on-chip 
(H-NoC) with in-router accumulator, reducing the data 
transmission volume and latency.  

A chip-scale architecture is developed using our VMM-in-
memory fabric coupled with specialized functional blocks, on-
chip storage. A dedicated execution flow and software-
hardware interface is developed to improve the system 
flexibility. The proposed system is implemented in 28nm 
CMOS technology. The area, power, and frequency of 
operation are simulated using post-layout analyses of blocks 
and network. The cycle-level simulation is used for application 
level performance analyses for different Convolutional and 
Recurrent Neural Network (CNN and RNN) models. Our 
design demonstrates 115x and 6.3x higher computing 
efficiency (GOPs/W) over GPU (Nvidia GTX 1080Ti) and 
ReRAM based PIM design, respectively. 
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II. FEFET BACKGROUND  
Various memory techniques have been explored for PIM 

based designs including DRAM [9], eDRAM [2, 3], SRAM 
[10], ReRAM [6, 7]. Among these memory techniques, 
ReRAM attracted lots of research attentions recently and shows 
promise for very high energy-efficiency. However, recent 
studies also note challenges associated with ReRAM’s high 
write power, long read latency, and power/area overhead for 
driving large arrays [11].  

To address the challenges presented in ReRAM, we propose 
to use FeFET as an alternative memory solution for PIM 
architecture. FeFET is a transistor in which the ferroelectric 
oxide layer is included in the gate dielectric stack, as shown in 
Fig. 1. A ferroelectric oxide is an insulator which exhibits a 
spontaneous electric polarization in the absence of electric field. 
The direction of the polarization can be switched by applying a 
voltage larger than the coercive voltage on the gate terminal of 
FeFET [12]. When the polarization is pointing downwards, 
channel is in inversion, bringing the transistor into the 'ON' state 
(i.e. low Vth state). Similarly, if the polarization is pointing 
upwards, channel is in accumulation which gives the transistor 
'OFF' state (i.e. high Vth state).  

It has already been demonstrated that Hafnium oxide FeFET 
has good temperature stability, writing endurance, data 
retention and switching speed/energy [12-14]. The ultra-low 
writing energy due to the unique electrical field effect switching 
mechanism is the most prominent feature which distinguish 
FeFET from other emerging technologies. Further, unlike 
ReRAM which presents as resistive loads for reading, FeFET is 
gate-driven (i.e. capacitive load), eliminating the large RC 
delay in ReRAM case and reducing the read latency. 

Besides utilizing FeFET as non-volatile memory [12-14], 
there have been a few recent works exploring FeFET based 
logic (AND, OR, etc.) design [15], oscillator design [16], 
spiking neural network [17], and binary neural network 
acceleration (using 4 FeFET cells for XNOR logic) [18]. These 
works focus on device/crossbar modeling and lack of 
system/architecture level design. 

III. FEFET CROSSBAR DESIGN  
With FeFET crossbar as the core memory element, each cell 

in the crossbar performs a 1-bit multiplication. Fig. 2(a) shows 
the configuration of the FeFET crossbar, where gate, drain, 
source of the transistors are connected to WL, BL and source 
line (SL), respectively. Fig. 2(b) shows the corresponding 

layout view of a 256x256 crossbar under 28nm technology (the 
layout is based on normal MOSFET). The left side of Fig. 2(c) 
shows the measured Ids-Vgs characteristics [13]. Two distinct 
threshold voltage (-0.2V and 0.9V) are observed and the on/off 
ratio is more than 105. One should note that with our FeFET 
crossbar configuration, device can be programmed in a row-
wise fashion [19].  

For computation, weights are stored as transistor channel 
conductance (i.e. threshold voltage) and input vectors are used 
to drive WLs (i.e. transistor gate). We employ the FeFET based 
AND logic [15] to perform the 1-bit multiplication. One-bit of 
weight is encoded as high 𝑉𝑡ℎ or low 𝑉𝑡ℎ, representing either 0 
or 1, respectively; similarly, 1 bit of input vector can be encoded 
as high or low WL voltage (𝑉𝑔𝑠).  When the input bit is 0 (i.e. 
low 𝑉𝑔𝑠), the current is always 0 with either high 𝑉𝑡ℎ or low 𝑉𝑡ℎ 
since the transistor is turned off. On the other hand, if the input 
bit is 1 (i.e. high 𝑉𝑔𝑠), the transistor is still off when 𝑉𝑡ℎ is high 
but turns on when 𝑉𝑡ℎ is low. The large on/off ratio of FeFET, 
thanks to its steep sub-threshold slope (<60 mV/Dec) [20], 
creates large difference between the output '1' current and 
output '0' current.   

A key advantage of our design is that now the WL connects 
to transistor's gate, which is a capacitive load. Therefore, there 
is no word line voltage drop issue (RC delay) as in the ReRAM 
scenario. Moreover, the drain voltage is fixed at 1V, which is 
the system supply voltage. One should note that the read disturb 
effect (minor polarization loop caused by reading operation) is 
less concerned and not explored in our desgin since both the 
pulse width and amplitude of the gate voltage is much smaller 
than the switching voltage reported in recent works [13, 21]. 

IV. VMM ENGINE MICRO-ARCHITECTURE 
In this section, we present two configurations of the all-

digital VMM engine to realize an ADC free design.  

 
Fig. 2.  (a) Configuration of FeFET crossbar. (b) Layout view of a 256x256 
crossbar under 28nm technology. (c) Measured Ids-Vgs characteristics from a 
FeFET device. Measurement data are extracted from [13] with the transistor 
size 30nm x 80nm. FeFET based 1-bit multiplication (i.e. AND logic). 
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Fig. 1.  (a) FeFET structure and its on/off state. 
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A. Configuration 1: SA and Counter based TDC  
We propose a pre-charge/discharge approach based VMM 

engine design as shown in Fig. 3(a). First, the BL is pre-charged 
to the supply voltage 𝑉  . Then, during computing, depending 
on how many devices in the same column are turned on, the BL 
voltage drops with different speed. The comparator (sense-
amplifier based) is used to sample the difference between the 
reference voltage 𝑉𝑅𝐸𝐹  and 𝑉𝐵𝐿  periodically (controlled by a 
clock signal clk). When clk is low, the output is 0 (reset). When 
clk is high, the output of comparator is 1 if 𝑉𝐵𝐿  > 𝑉𝑅𝐸𝐹 , or 0 if 
𝑉𝐵𝐿  < 𝑉𝑅𝐸𝐹 . Therefore, within 1 clock cycle, if 𝑉𝐵𝐿  is larger than 
the reference voltage, the comparator generates a pulse; if not, 
the output of comparator remains 0. A counter accumulates the 
number of pulses from comparator. Basically, with a simple 
sense amplifier and counter, we realize the time to digital 
converting (TDC).  Simulation in 28nm CMOS shows that our 
design consumes 2.7x less power than using ADC [7], while 
achieving same speed. 

B. Configuration 2: Row-by-Row read and accumulation  
The ADC (or TDC in configuration 1) is inevitable if 

multiple WLs are simultaneously activated. To eliminate it, we 
propose to activate single WL per clock cycle. As shown in Fig. 
3(b), The first part of WL peripheral is a clock-driven one-hot 
vector unit. At the first clock cycle, the enable signal for the top 
WL (𝑒𝑛 ) is turned on. Then, at the second clock cycle, 𝑒𝑛  
disabled and 𝑒𝑛  is enabled, and so on. The second part of WL 
peripheral is a logic gate which performs AND operation 
between the enable signal (𝑒𝑛𝑖 ) and input vector (𝑎𝑖 ). Only 
when both 𝑒𝑛𝑖  and 𝑎𝑖  are high, the value stored in 
corresponding memory cells 𝑏𝑖  are sensed out. At BL 
peripheral, sense amplifier (SA) is employed to sense out the 
value (either 0 or 1) and send it to the counter at each clock 
cycle. Essentially, the MAC operation is performed with 𝑁 
cycles where 𝑁 is the number of rows in the memory array.  

While sacrificing the parallelism of analog computing, our 
design is faster than ADC based approach. This is due to the 
fact that for prior ADC based design, the speed of ADC is the 
major throughput bottleneck. For example, in ISAAC [7], a 1.3 
Giga-samples-per-second (GSps) SAR ADC is employed and 
shared by a memory crossbar. It takes 100ns to convert the 
analog values for a  28 ×  28 (the crossbar size in ISAAC) 
memory array. In our design, it also takes 128 clock cycles to 

perform the same computing (loop through all the rows). For a 
 28 ×  28 FeFET array (2KB), our simulation indicates the 
internal clock frequency can go up to 4GHz (reading frequency, 
not programming) in 28nm technology, resulting 25.6 ns to 
perform the MAC operation, ~4x faster than ADC based 
solution.  

C. Comparison of the two configurations 
While the proposed two configurations have very different 

reading/sensing scheme, the circuit level implementation are 
similar. To be more specific, the sensing is realized by a sense 
amplifier (called comparator in configuration 1) and a counter. 
In essence, with the same system implementation, we can 
realize these two configurations simply by changing the control 
signal (i.e. the WL activations) patterns. 

In terms of speed, the latency for configuration 1 is 
determined by the clock frequency (reference voltage 𝑉𝑅𝐸𝐹  
needs change accordingly) of the comparator and counter. For 
a FeFET crossbar with 𝑁 rows, the counter needs to wait at 
least 𝑁 clock cycle to ensure the output has N levels. Similarly, 
the latency for configuration 2 is determined by the memory 
clock as the sensing is performed row-by-row. For a 𝑁 rows 
crossbar, 𝑁 clock cycles are necessary to get the final output.  

In terms of accuracy, configuration 2 is preferred. In 
configuration 1, even though the sensing is digital, the BL 
discharge is still in analog domain. Further, the device 
variation, cell leakage, nonlinearity of BL discharge and 
temperature/voltage fluctuation can introduce computing error. 
On the other hand, the MAC in configuration 2 is in digital 
domain, providing much better fidelity in terms of computing 
accuracy. 

V. DATA COMMUNICATION NETWORK 

A. VMM engine for large scale matrix operation 
Fig. 4 illustrates the methodology to partition a large matrix-

matrix multiplication across multiple VMM engines. Assuming 
the 1 VMM engine can hold parameters of size s×s, the weight 
matrix is then partitioned into several small segments with the 
granularity of s×s. In total, n×m VMM engine will be used (Fig. 
4). Similarly, the input matrix is first transposed, partitioned 
and sequentially fed into the corresponding VMM engines.  

From Fig. 4, we observe that each input segment is shared 
across multiple VMM engines horizontally (e.g. VMM11, 

 
Fig. 3.  (a) Configuration 1: SA + counter based TDC VMM engine design. (b) Configuration 2: Row-by-row read and accumulation based VMM engine design. 
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VMM12, till VMM1m). We call it as row-wise input sharing. 
On the other side, partial results generated from the same 
column of multiple VMM engines should be summed together 
vertically (e.g. VMM11, VMM21, till VMMn1 in Fig. 4) since 
they belong to the same column in the original weight matrix. 
We call it as column-wise output summation. 

B. Hierarchical Network-on-Chip (H-NoC) Design  
We propose a hierarchical NoC to address the discrepency 

between row-wise input sharing and column-wise output 
summation (Fig. 5). At the bottom level, 4 VMM engines share 
a router. Then, 4 such routers are connected to a router in the 
higher level. Since the VMM engines organized in a 
hierarchical fashion, a system with 𝑁  level of routers can 
accommodate up to 4𝑁  VMM engines. Fig. 5(b) shows the 
router design, containing five input/output ports and 
corresponding I/O buffers. A 5 × 5  switching matrix is 
equipped to route input/output ports and the routing is based on 

store-and-forward (SAF) approach. Distinguished from 
conventional router designs, we insert a computing block (i.e. 
accumulator) inside the router to enable on-the-fly partial 
results summation. The benefits of H-NoC are in two-fold.   

First, H-NoC realizes efficient row-wise input sharing. 
Fig. 5(c) illustrates three different data forwarding patterns. The 
first example shows the one-to-one forwarding. The top-level 
router decodes the first 4-bit of a packet (each bit represents the 
on/off of top-left, top-right, bottom-right, bottom-left output 
ports, e.g. '1000' means the packet goes to its top-left branch) 
and sent the packet to its sub-level router. Then the sub-level 
router decodes the next 4-bits and repeats until the packet 
arrives the designated VMM engine at the top-left corner. 
Besides one-to-one forwarding, the packet can be broadcast. As 
shown in the last example of Fig. 5(c), since the first 4-bit 
address is '1111', the top-level router broadcasts the packet to 
its sub-level routers in four directions. This process repeats and 
finally a single packet is assigned to 16 distributed VMM 
engines simultaneously.  

A case study is used to illustrate how the row-wise input 
sharing benefits from the input broadcasting. As shown in Fig 
6(a), a large weight matrix is first partitioned into several 
segments (we show 2 × 8   6 segments, more details about 
matrix partition and mapping are discussed in supplementary 
materials). Then, we map W11, W21, W31, W41 to 4 VMM engines 
sharing the same router node ❹. Then, input vectors are sent 
to corresponding VMM engines (input sharing and reuse). For 
example:  I4 (in blue) should go to two VMM engines which 
store W41 and W42. Conventionally, this requires two packets 
and two cycles since there are two destination VMM engines. 
With H-NoC, this can be done with a single packet and one 
cycle. As shown in Fig. 6(b), router ❶ decode the first 4-bit 
address (1100) and then broadcasts I4 to its sub-level router at 
top-left and top-right directions (i.e. sends packet to routers ❷ 
and ❸). These two routers then decode the next 4-bits (1000) 
and sent the packet to their top-left router ❹ and ❻. Finally, 
the packet goes to the bottom-right leaf VMM engines of router 
❹ and ❻. 

Second, H-NoC is dedicated for efficient column-wise 
partial results summation. Enabled by the in-router 
accumulator, the results summation is performed on-the-fly, i.e. 
output summation happens during data transmitting. Again, we 
use the case in Fig. 6 as an example. It takes two steps to get the 

 
Fig. 6: A case study to illustrate how data are mapped via H-NoC. We use 
different color and shade to help tracking the input and weight mapping. 
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summation ( 𝑡 𝑡   ∑  𝑖 ∙  𝑖 
 
𝑖  ). First, router ❹ and ❺ 

works independently and parallelly, each receiving four partial 
results from the connected VMM engines and summing the 
partial data utilizing the built-in accumulator (i.e.  𝑝  𝑡𝑖   
∑  𝑖 ∙  𝑖 
 
𝑖   and  𝑝  𝑡𝑖   ∑  𝑖 ∙  𝑖 

 
𝑖  ). Router ❷ then 

accumulates the partial results from ❹ and ❺ and sends the 
final summation to global buffer. Therefore, rather than sending 
each partial result to the global buffer as separate packets, only 
1 packet is sent to the global buffer leveraging the on-the-
fly/parallel processing enabled by H-NOC. 

Depending on how many VMM engines are involved for one 
matrix computing, this process repeats until all the partial 
results are summed together. As routers in the same level are 
working in parallel, the worst-case latency is limited to 
4 × n  ber of ro ter level , since it takes 4 clock cycles for 
a router to accumulate partial results from its 4 branches.  

VI. CHIP-SCALE ARCHITECTURE  

A. System Architecture 
Fig. 7(a) shows the system architecture with VMM engines 

interconnected with H-NoC. We implement several fixed 
function units to support computation that cannot be accelerated 
within the VMM-engines, such as element-wise multiplication 
and activation functions. This ensures our design has the 
flexibility to support various CNN and RNN models. For 
example, multiplier array and adder array are used for element-
wise multiplication and addition, respectively. Additionally, 
they combined together can be used to compute the Taylor 
series of some special functions such as sigmoid. Since our 
design accelerate DNN inference, both adder and multiplier 
have 16-bit fixed point precision. Pooling processor is used to 
perform average or max pooling and ReLU is for ReLU layer. 
There are several other fixed function units, such as max value 
search and divider (used in batch normalization layer). The last 
component in the system architecture is the micro-processor 
which fetches/decodes the instructions and coordinates the data 
accessing and transmission. 

B. Execution Flow 
The first layer of AlexNet is used as an example to illustrate 

the execution flow (Fig. 7(b)). The input feature maps to this 
layer is 224 × 244 × 3 ×  , representing the image width, 

height, RGB channels, and mini-batch size, respectively. The 
Convolutional kernel size is 3 ×   ×   × 96, corresponding 
to the number of input channels, kernel width/height, and output 
channels, respectively. The micro-processor calculates how 
many memory sub-arrays are required to perform the 
computation. Assuming the memory sub-array size is 256 ×
256 , each set of the convolution kernel (i.e. 3 ×   ×   ) 
contains 363 weight parameters, and thus, ⌈363/256⌉  2 
crossbar arrays to perform the dot-production for one kernel. 
Further, kernels can be padded horizontally to achieve 
parallelism. Since there are 96 kernels, in total we need 
96 × 8 ÷ 256 × 2  6  memory sub-arrays, given that each 
element is a 8-bit number (256 devices in a row can hold 32 8-
bit numbers). Then, the micro-processor will wrap the received 
data into discrete packets (the first few bits of a packet contains 
the routing address) and dispatch them to the target memory 
sub-array locations via H-NoC. After the computing is done, 
results are collected back and sent to the activation/pooling 
function units through system bus.  

Eventually, the output feature maps are generated and stored 
to the memory for temporary storage since they will be used as 
inputs for the next layer. Preferably, these data are stored in on-
chip memory if there are available space; alternatively, if all the 
on-chip memory sub-arrays are programmed with weights, the 
micro-processor will offload the temporary data off-chip. 
Typically, a single layer parameter size is less than 2MB, the 
offload of temporary data rarely happens for our benchmark 
CNNs and RNNs 

C. Software/hardware interface 
A software/hardware interface is designed to bridge the gap 

between software and hardware, letting users easily deploy their 
applications without specific hardware knowledge. As shown 
in Fig. 7(c), the runtime system takes DNN definition file (as 
well as pre-trained model if available) as input, sets the 
computing model and running precision, and performs layer-
wise interpretation to translate the high-level DNN model 
definition to the instructions we developed for the proposed 
system. There are three types of instructions: control, layers, 
and parameter specification. Instructions are 64-bit with the 
first 6-bit as Opcode. Control instructions are used to define 
computing precision, set running mode (only inference 
available now, supporting training is our future work) and write 

 
Fig. 7: The chip-scale architecture of the FeFET-based PIM design: (a) system architecture, and (b, c) execution flow. 
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address register. Layers instructions define the layer and where 
the weight and activation should be fetched from. Parameter 
specification instructions are always attached to the layer 
instructions, specifying more information about the layer 
defined by the previous instruction. For example, to define the 
computation of a convolutional layer, we need two instructions, 
one for layer specification which defines the layer type and 
where we should read the weight and input from (i.e. weight 
and input address); the other one defines the convolutional 
kernel size, input/output feature map depths, etc.  Details about 
instruction design and more examples are available at 
supplementary materials. 

VII. SIMULATION RESULTS 

A. Prototype design 
The prototype design contains 2048 VMM engines organizing 

with a 6 levels H-NoC. Each VMM engine contains a 256x256 
FeFET memory crossbar together with the peripheral circuitry. 
In addition, at system level, we implemented several functional 
blocks such as multiplier/adder arrays, pooling processor, and 
ReLU units. We performed SPICE simulation with 28nm 
CMOS technology (normal MOSFET model with calibrated 
threshold voltage and transistor size to mimic the I-V 
characteristic of real FeFET measurement data [13]) using 
extracted netlist of the crossbar together with the WL drivers 
and SAs to estimate power and latency of the memory sub-
array. The SPICE simulation is then coupled with synthesized 
digital blocks (such as counters, H-NoC, functional blocks and 
controller) to form a completed chip-level modeling. While 
setting the system clock to be 1GHz, the FeFET memory sub-
array can run at a higher clock frequency. Therefore, for 
configuration 1 (SA + counter based TDC approach), we set the 
clock to be 2GHz. Similarly, for configuration 2 (row-by-row 
read and accumulation approach), the memory crossbar also has 
an internal 2GHz clock. The off-chip memory bandwidth is set 
to be 512GB/s which is same with TPU-v2 [22]. The key design 
specification and the layout view for a VMM engine is 
presented in Fig. 8. One should note that we use the same circuit 
implementation but changing the WL activation pattern 
(parallel versus row-by-row access) to realize the two different 

configurations. Also, we ignore the power overhead of the 
reference voltage generation circuit in configuration 1 since it 
can be shared across the system. Therefore, the power of VMM 
engine for these two configurations are also similar.  

B. Benchmarks and precision 
We have 5 different types of DNN models (AlexNet, 

GoogleNet, VGG-16, VGG-19, and LSTM) with varying 
parameter size and computing complexity (i.e. GOPs).  

We also explore the system peak performance with different 
bitwidth of DNN weights and activations. As illustrated in Fig. 
9, with less bit-precision, the throughput is higher. We also note 
that when the activation is less than 8-bit (which is the precision 
for 256 rows FeFET crossbar), configuration 1 becomes faster 
as it takes a smaller number of clock cycles to accumulate the 
sensing result (A more detailed analyses for this observation 
can be found in supplementary material).  

In the following experiments, we assume weights and 
activations have 8-bit precision because we observe that for the 
benchmark DNN models, 8-bit is good enough to ensure the 
inference accuracy. One should note that the state-of-the-art 
DNN models (such as ResNet [23] and MobileNet [24]) 
typically requires 16-bit or even floating point for the best 
accuracy. Supporting flexible bit-precision and floating point 
operation is our future work.  

C. Performance analyses 
First, for data transmission efficiency, we compare our H-

NoC design with the naive approach (no input 
broadcasting/reuse or output on-the-fly processing) and 
ISAAC-like design (using two stage hierarchical buffer for 
output accumulation) [7]. Fig. 10(a) shows the data (input, 
weights, and internal temporary data) transmission latency for 
processing one image using 4 different benchmark CNNs. On 
average, our design reduces the latency by 14.5x and 6.7x over 
the naive approach and ISAAC-like design across the 
benchmark CNNs, respectively.  

Second, we analyze the power efficiency of FeFET VMM 
engines and compare with ReRAM baseline design, as 
illustrated in Fig. 10(b). We first consider using ADC in the BL 
peripherals and insert buffer to drive the WL (i.e. resistive 
load). With a simple technology replacement from ReRAM to 
FeFET (using the same peripherals), we observe that the FeFET 
based design achieves only 1.2x power reduction because the 
power consumption on the peripherals dominated. With the 

 
Fig. 8: Design specification for the prototype implementation and the layout 
view for one VMM engine. Two configurations share the same circuit 
implementation. 
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optimized digital-like peripherals (i.e. replace the power-
hungry ADC with SA + counter and also eliminate the WL 
buffer since FeFET is a capacitive load), significant power 
efficiency improvement is observed (another 5.7x). In total, 
with the cross-cutting solutions combining emerging device 
technologies and circuit innovations, FeFET based VMM 
engine demonstrates 6.3x power efficiency over the baseline 
ReRAM design. 

We then evaluate the overall system performance using our 
benchmark DNN models and compared with the measured data 
from desktop GPU (Nvidia GTX 1080Ti with 11.3 TFLOPs 
throughput and 250 W power). Fig. 11 shows the speed 
(normalized) comparison for different DNNs under varying 
batch sizes. We don't differentiate the two VMM engine 
configurations because they have similar throughput when 
using 8-bit precision. We observe that our design outperforms 
GPU solution by 8.4x in terms of frames per second (fps). 
Additionally, desktop GPU's power is 13.7x higher than out 
work, resulting up to 115x computing efficiency (GOPs/W) 
improvement with our design.  

D. Computing accuracy 
The device variation of FeFET can potentially impact the 

computing accuracy. Similar with prior ReRAM based design, 
we use Gaussian noise to represent the stochastic device 

variation [25]. We calibrate our device variation model with 
experimental FeFET data in recent published works [13, 14]. 
The typical variation (the standard deviation: 𝜎) varies from 1% 
to 20%. 

Fig. 12 shows the classification accuracy deterioration under 
device variation considering the two proposed VMM engine 
configurations. As mentioned earlier, the first configuration 
eliminates the ADC but still perform part of the computing in 
mixed-signal domain, thus, it is more vulnerable to device 
variation. On the other side, thanks to the large on/off ratio of 
FeFET, the second configuration demonstrates good robustness 
towards the device noise.   

E. Comparison with other works 
We perform a detailed comparison between existing DNN 

accelerators implemented with ASIC [2, 22], NMP [4, 5], and 
PIM architecture [7, 10]. For ASIC based solution, we consider 
DaDianNao [2], which integrates large amount of on-chip 
eDRAM to store DNN parameters and TPU-v2 [22], the second 
generation of tensor processor unit from Google. For NMP, we 
investigate DeepTrain [5], a novel architecture which integrates 
logic layer into the high-bandwidth DRAM. We also compare 
with ISAAC [7], a pioneer work for ReRAM based PIM 
architecture for DNN acceleration. For SRAM based design, we 
evaluate a recent work, neural-cache [10], a bit-serial logic-in-
memory based DNN accelerator architecture. At last, we 
compare with a recent FeFET based design [26] which utilize 
FeFET as analog synapse (each device stores 5-bit) for DNN 
training acceleration. The key design features are summarized 
in Table I. In terms of computing efficiency, we evaluate from 
two different aspect, namely, array-level and system level. For 
array-level efficiency, only the energy consumed by the array 
(device and crossbar peripherals) is considered.  

As a conclusion, our design achieves the state-of-the-art 
performance with 896 GOPs/W computing efficiency using 8-
bit precision. Our design outperforms other PIM architectures 
by leveraging the following merits: (1) The key horse power 
comes from the VMM engine which eliminates the slow/power-
hungry ADC, plus the high memory clock frequency. (2) H-
NoC helps to reduce the data movement latency for both input 
reuse and output collection. (3) With FeFET as the memory 

 
Fig. 10. System performance improvements for (a) H-NoC for data 
transmission and (b) VMM engine for computation. 
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Fig. 11. Normalized inference speed of desktop GPU and our design for DNN 
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cell, we also benefit from the dense cell structure and low read 
latency/write energy.  

VIII. CONCLUSION 
In this work, we propose FeFET based PIM architecture to 

accelerate DNN inference. With FeFET as the basic memory 
cell and ADC free VMM engine design, the computing 
efficiency is significantly enhanced. A dedicated hierarchical 
network-on-chip is developed to realize fast and parallel data 
communication. As FeFET continues to mature towards a 
commercial technology, we show the pathway to a high-
efficient architecture that successfully leverages unique 
properties of this technology to accelerate challenging data-
intensive computing applications. 
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TABLE I 
PERFORMANCE COMPARISON WITH OTHER DNN ACCELERATORS 

 

Technology Hardware Parameter
storage

Power
(W)

Area
(mm2)

Efficiency
(array-level)

Efficiency
(system-level)

Peak 
throughput

DaDianNao [2] 28 nm ASIC eDRAM (on-chip) 20.1 67.7 -- 286 GOPs/W 5.7 TOPs

TPU-v2 [20] -- ASIC DRAM ~ 250 -- -- 180 GOPs/W 45 TOPs

DeepTrain [5] 15 nm NMP DRAM 7.2 -- -- 566 GOPs/W 7.2 TOPs

ISAAC [7] 28 nm PIM ReRAM 65.8 85.4 604 GOPs/W 381 GOPs/W 25.1 TOPs

Neural Cache [10] 28 nm PIM SRAM 52.9 -- 529 GOPs/W -- 28 TOPs

Analog-FeFET [24] -- PIM FeFET -- -- 840 GOPs/W -- --

Our work 28 nm PIM FeFET 18.2 49.6 1234 GOPs/W 896 GOPs/W 16.38 TOPs

https://cloud.google.com/tpu/docs/system-architecture
https://cloud.google.com/tpu/docs/system-architecture

