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Abstract

In the minimum constraint removal problem, we are given a set of geometric objects as obstacles

in the plane, and we want to find the minimum number of obstacles that must be removed to reach

a target point t from the source point s by an obstacle-free path. The problem is known to be

intractable, and (perhaps surprisingly) no sub-linear approximations are known even for simple

obstacles such as rectangles and disks. The main result of our paper is a new approximation

technique that gives O(
√

n)-approximation for rectangles, disks as well as rectilinear polygons.

The technique also gives O(
√

n)-approximation for the minimum color path problem in graphs.

We also present some inapproximability results for the geometric constraint removal problem.
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1 Introduction

Given a set S of geometric objects as obstacles in the plane, a path is called obstacle-free if

it does not intersect the interior of any obstacle. In the minimum constraint removal (MCR)

problem, the goal is to remove a minimum-sized subset S ′ ⊆ S such that the remaining set

S \ S ′ admits an obstacle-free path between a source point s and the target point t. The

problem is known to be NP-complete even when the obstacles have very simple geometry

such as rectangles or line segments. The MCR problem is also related to the minimum color

path (MCP) problem, where the goal is to find a path in a graph using the minimum number

1 The work was partially done when the author was visiting University of California, Santa Barbara.
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2:2 Approximation Bounds for Minimum Constraint Removal

of colors. In the vertex-colored version of the problem, each vertex v of a graph G = (V, E)

is associated with a set of colors χ(v) ⊆ C = {1, 2, . . . , |C|}, and the goal is to find a path

between two fixed vertices s and t (s-t path) that minimizes the total number of colors along

the path. Similarly, in the edge-colored version, each edge of G has an associated set of

colors, and the s-t path must minimize the total number of colors along the path.

The geometric constraint removal problem can be cast as a minimum color path problem

by constructing a graph on the arrangement formed by the obstacles. The arrangement A(S)

of S is a partition induced by the obstacles, whose faces are the two-dimensional connected

regions, and whose edges are segments of the obstacle boundaries. We now define a planar

graph GA whose vertices are in one-to-one correspondence with the faces of the arrangement,

and whose edges join two neighboring faces. By associating each obstacle with a unique

color, we obtain a version of the minimum color path problem—an s–t path has exactly as

many colors along it as the number of obstacles it crosses. However, it is worth pointing

out that the number of vertices in GA can be quadratic in the size of the geometric input: a

set of n geometric obstacles, each with a constant number of boundary edges, can create an

Ω(n2) size arrangement.

The minimum color path problem is also NP-complete, and by a reduction from Set

Cover it is also NP-hard to approximate to a factor better than o(log n) even if the graph is

planar [8, 14,20]. In [13], Hassin et al. solve a special case of the MCP problem where each

edge has exactly one color. For that special case, they present an O(
√

|V |)-approximation

algorithm. However, for the general MCP problem, no sub-linear algorithm appears to be

known to the best of our knowledge.

The geometric minimum constraint removal problem has been studied under different

names across multiple research communities, including sensor networks and robotics. In

the sensor networks, the problem is called barrier resilience, in which a collection of sensors

are modeled for providing (overlapping) geometric coverage in the plane, and the network’s

resilience is measured by the minimum number of sensors whose removal creates a sensor-

avoiding s–t path. The most common form of geometric obstacles considered in sensor

network applications are circular disks. When all disks have the same (unit) radius, a

2-approximation is known due to Chan and Kirkpatrick [5], who build and improve upon the

earlier work of Bereg and Kirkpatrick [3]. However, even for this simple case, the complexity

of minimum constraint removal is an unsolved open problem [5]. In [5, 17], constant factor

approximations are proposed for restricted versions of arbitrary radii disks. However, in

general, when disks have arbitrary radii, no sub-linear approximation with provable guarantee

is known. The problem has also been studied for other types of obstacles, mainly from

the perspective of time complexity. The problem has been shown to be NP-complete for

convex obstacles [11], for line segments [19], even in the bounded density case [2, 10], and for

axis-parallel rectangles with aspect ratio close to one [17].

In robotics, the minimum constraint removal problem models the motion planning problem

of multi-articulated robot [11,14]. Suppose we have a physical environment constaining a

disjoint set of impenetrable obstacles in the plane, and a robot with two degrees of freedom.

Then the configuration space approach to motion planning shrinks the robot to a point

while simultaneously expanding the obstacle by taking their Minkowski sum with the robot’s

geometry. The result is our minimum constraint removal problem: a set of two-dimensional

intersecting obstacles that may have no feasible path for the robot, and so some obstacles

need to be removed.

Finally, the problem has also been studied through the lenses of parameterized complex-

ity [10, 17], and exact and heuristic algorithms [9, 14]. It is also loosely related to a shortest

path problem in the plane [1, 15], where given a set of disjoint obstacles, the goal is to find

an Euclidean shortest s-t path that intersects at most k obstacles.
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1.1 Our Results

In this work, we make progress on both the graph and the geometric versions of MCP

by obtaining improved approximation results. All these approximations are achieved in

polynomial time. For the minimum constraint removal problem, we obtain the following

results.

We present an O(
√

n)-approximation for rectilinear polygons, where n denotes the total

number of vertices of the polygons. No sublinear approximation was known even for

squares.

We present an O(
√

n)-approximation for disks, where n denotes the number of disks. For

arbitrary disks, the only approximation results known are in the restricted cases, where

either the crossing patterns of the paths are limited or the aspect ratio and the density

are bounded.

Prior approximation algorithms for MCR proceed by establishing a good bound on the

number of times an optimal path enters a removed obstacle. For the obstacles we consider,

i.e., rectilinear polygons and disks, this bound is very large. Thus the previous approaches

are inadequate to obtain the above mentioned results. Our main new idea is to use a filtering

step, which removes a small number of obstacles that are potentially expensive in terms of

the number of times an optimal path enters those obstacles.

The above results are based on an algorithmic framework, which uses the filtering step

mentioned before. As a byproduct, the framework also gives an O(
√

|V |)-approximation for

MCP on vertex-colored graphs.

We also obtain a few hardness results for MCR which give a better understanding of the

problem. We show that for rectilinear polygons, the problem is NP-hard to approximate

within a factor better than 2. The same result holds even for convex polygons. We also

prove the APX-hardness of the problem in a more restricted case, where the obstacles are

axis-parallel rectangles.

The framework is described in Section 2. The application of the framework to the MCR

problem is discussed in Section 3. Finally we describe the hardness results in Section 4.

Throughout this paper, the proofs of lemmas and theorems marked with (∗) are given in the

appendix due to space constraints.

2 An Algorithmic Framework

We begin our discussion by introducing a generic framework that yields a sublinear ap-

proximation for minimum color path problems on graphs. In the later sections, we apply

this framework to achieve similar approximation bounds for the MCR problem. Roughly

speaking, the framework comprises of two main steps. In the first step, a ‘small’ subset of

the colors are removed from the instance based on some conditions. In the second stage, an

approximation of the minimum color path is computed using a shortest path algorithm. We

start with some basic definitions.

As an input to the framework, we assume that we are given a graph G = (V, E), the

source vertex s, the target vertex t, and a set of colors C, such that each vertex v ∈ V is

assigned a subset χ(v) ⊆ C of colors. We will refer to such a graph as a colored graph and

denote it by G = (V, E, C). we define the set of colors χ(π) used by π to be the union of the

colors of vertices on this path. That is, χ(π) =
⋃

v∈π χ(v).

◮ Definition 1. Any path π in G is a k-color path if the number of colors used |χ(π)| is k.

APPROX/RANDOM 2018



2:4 Approximation Bounds for Minimum Constraint Removal

An algorithm is called an α-approximation algorithm for computing a k-color path if

it satisfies the following two conditions: (1) if there exists a k-color path π from s to t, it

computes a path π∗ such that |χ(π∗)| ≤ αk, and (2) if there is no k-color path from s to t, it

returns an arbitrary s-t path. The following is straightforward.

◮ Lemma 2. If there exists an α-approximation algorithm to compute a k-color path from

s to t then there also exists an α-approximation algorithm for computing a minimum color

path from s to t.

Proof. We try all possible values k = 1, 2, . . . , |C| and let πk be the path returned by

the approximation algorithm for computing a k-color path for a given value of k. Let j

be the value such that χ(πj) has smallest cardinality over all χ(πk). Now, let l be the

number of colors used by a minimum color path, then |χ(πl)| must be at most αl. Clearly,

|χ(πj)| ≤ |χ(πl)| ≤ αl and therefore πj is an α-approximation for computing a minimum

color path. ◭

From Lemma 2 it follows that computing an approximation of a k-color path is sufficient,

and therefore in the rest of our discussion, we work towards that goal. Next, we describe the

details of our framework.

2.1 Approximation Framework

As an input to the framework, we assume that we are given a colored graph G = (V, E, C),

and an integer k. The key idea behind our approximation framework is to define a notion of

neighborhood for the colors in C, and ‘discard’ the colors that have dense neighborhoods.

◮ Definition 3. Let P be an arbitrary set of objects and β be a parameter. We define

neighborhood N : C → 2P to be a mapping from C to subsets of P that satisfies the following

properties.

1. (Bounded-Size Property) Sum of cardinalities of all neighborhoods
∑

C∈C |N (C)| is

O(kβ2)

2. (Bounded-Occurrence Property) If there exists a k-color path in G, then there also

exists a k-color path π∗ in G such that, for any color C ∈ C, the number of times C

appears on π∗ is at most O(|N (C)|).

The set P in the above definition can be any set of objects. For example, in MCP problem

P is the set of vertices of the graph. In the geometric MCR, P is a set of points in the plane.

We now describe our approximation algorithm which we will refer to as APPROX-CORE.

Algorithm APPROX-CORE

1. Construct the neighborhood N (C) for each color C ∈ C.

2. For all C ∈ C, remove all occurrences of the color C from the graph G if |N (C)| ≥ β. Let

G′ be the modified graph after removing all such colors.

3. For every vertex v in G′, assign an integer weight |χ(v)| on v.

4. Compute a minimum weight path π from s to t in G′ using Dijkstra’s Algorithm. Return

π.

◮ Lemma 4. Given the set P and a parameter β, the algorithm APPROX-CORE gives an

O(β)-approximation for the k-color path in G.
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Proof. Assume that there exists a k-color path in G. Otherwise, the proof is trivial as the

algorithm always returns a path. Let C1 be the set of colors removed during step 2 of the

algorithm, and C2 be the set of colors in G′ that appear on the path π returned by the

algorithm. Then, the total number of colors in G that may appear on π is at most |C1| + |C2|.
First we compute a bound on the size of C1. Observe that the neighborhood of each color

C ∈ C1 has size at least β. Therefore, we have:
∑

C∈C1

|N (C)| ≤
∑

C∈C

|N (C)|

=⇒ |C1| · β ≤ O(kβ2) By the bounded-size property of N
=⇒ |C1| ≤ ckβ for some constant c

Next, we compute a bound on size of C2 . Towards this end, observe that the neighborhood

N (C) of every color C in G′ has fewer than β colors. By the bounded-occurrence property

of the neighborhood N , there exists a k-color path π∗ in G such that for each C ∈ C, the

number of times C appears on π∗ is at most O(|N (C)|). Therefore, it follows that any color

C in G′ appears on π∗ at most O(β) times. In other words, there exists a path in G′ that

has weight at most c′kβ for another constant c′. Therefore the number of colors used by the

minimum weight path π is at most c′kβ.

Hence, the total number of colors in C that appear on π is at most |C1|+ |C2| = (c+c′) ·kβ,

which is an O(β)-approximation. ◭

We obtain the following theorem.

◮ Theorem 5. Given a colored graph G = (V, E, C), suppose a neighborhood N for G can

be constructed in polynomial time that satisfies the bounded-size and bounded-occurrence

property. Then there exists a polynomial time algorithm that achieves an O(β)-approximation

for computing a k-color path in G.

Therefore, in order to achieve an approximation for the k-color path, it just suffices

to construct a neighborhood N , that satisfies the bounded-size and bounded-occurrence

properties. In the next section, we illustrate this construction for MCP on vertex-colored

graphs.

2.2 Application to Minimum Color Path

In this section, we will apply the above framework to achieve O(
√

n)−approximation for

MCP on a vertex-colored graph G = (V, E, C) with n vertices. Our goal is to simply

compute a neighborhood N for a k-color path in G such that N has bounded-size O(kn)

and satisfies the bounded-occurrence property. Using Lemma 2 and β =
√

n in Theorem 5,

an O(
√

n)-approximation for MCP follows.

We define neighborhood N (C) of each color C to be the set {v ∈ V | C ∈ χ(v) and

|χ(v)| ≤ k}. The bounded-occurrence property is easily satisfied because a k-color path

πk will never visit vertices that contain more than k colors, and since πk is simple, each

occurrence of a color C on the path can be uniquely charged to a vertex in N (C). To see

that the bounded-size property is satisfied, we note the following.
∑

C∈C

|N (C)| =
∑

v∈V :|χ(v)|≤k

|χ(v)| ≤ O(kn).

◮ Theorem 6. There exists an O(
√

n)-approximation algorithm for MCP on vertex-colored

graphs.

APPROX/RANDOM 2018



2:6 Approximation Bounds for Minimum Constraint Removal

Application to Minimum Label Path. As another example application for the framework,

we consider a special case of MCP when each edge has exactly one color (called its label). This

problem has been well studied [4,12,13] under the name minimum label path. Hassin et al. [13]

gave an O(
√

n)-approximation for this problem on general graphs. Using our framework and

the following simple definition of neighborhood, we can achieve an O(
√

n
OPT

)-approximation

if the number of edges in G is O(n). Here OPT is the number of labels used by any minimum

label s-t path.

For the sake of applying the framework, we transform the input edge-colored graph

G = (V, E, C) into a vertex-colored graph H by adding a vertex corresponding to each edge.

The color corresponding to an old edge is moved to the new vertex. Now, for each new vertex

v that has color C, we include both neighbors (old vertices) of v in H to the neighborhood

of C. The bounded-occurrence property is straightforward. For the bound on size, observe

that an old vertex v can be in at most degree(v) neighborhoods, so sum of cardinality of all

neighborhoods is at most 2|E|. Since |E| = O(n), the size of N is O(n) = O(n
k

· k). With

β =
√

n/k, Theorem 5 and Lemma 2 give an O(
√

n
OPT

)-approximation.

3 Application to Geometric Objects

In this section, we apply our approximation framework to achieve sublinear approximation

for MCR when the obstacles are rectilinear polygons (Section 3.1) and disks of arbitrary

radii (Section 3.2). Observe that if m is the number of cells of the input arrangement

A of obstacles in S, applying Theorem 6 on the graph obtained from A easily gives a

O(
√

m)-approximation. However, m can be Ω(n2) and therefore this approach does not give

us an O(
√

n)-approximation. Here n is the number of vertices if obstacles are polygonal

or the number of disks otherwise. By exploiting the geometry of obstacles, we show how

to construct a colored graph G = (V, E, C) and a sparse neighborhood N even when the

underlying colored graph G can have Ω(n2) complexity.

Recall that, there are two main steps for applying the framework. First we need to

construct the colored graph G such that an s–t path in the plane that removes the minimum

number of constraints, corresponds to a path in G that uses the minimum number of colors.

Next, we need to construct the neighborhood N for colors in G such that it satisfies the

bounded-size and bounded-occurrence properties. Note that for technical reasons, the graph

G we construct for the geometric instances has colors assigned on edges. Indeed, for the sake

of applying the framework, one can easily transform it into a vertex-colored graph by adding

a vertex corresponding to each edge. We begin by revisiting some necessary background.

Any arrangement of obstacles in the plane can be partitioned into two distinct regions

namely the obstacles, and free space, that is the region of the plane not occupied by obstacles.

Without loss of generality, we assume that the points s and t lie in free space, as we must

remove all the obstacles that are incident to either s or t in order to find an obstacle free s–t

path. We say that a path π crosses an obstacle S if π intersects the interior of S. Note that,

as s and t lie in free space, if π crosses S, π must intersect the boundary of S transversally.

Consider an optimal path π that removes the minimum number of obstacles. It is easy

to see that π will cross an obstacle S if and only if S was removed from input. Therefore,

removing an obstacle is equivalent to crossing it. In the following, we introduce the notion of

a k-crossing path.

◮ Definition 7. A path π in the plane is called a k-crossing path if it crosses exactly k

obstacles.
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It is easy to see that if each obstacle is assigned a unique color and we assign color to a

path whenever it enters an obstacle, then a k-crossing path π uses exactly k colors. Observe

that although the space of k-crossing paths is infinite, we want to establish a one to one

correspondence between the path in the plane that crosses minimum number of obstacles

and a path in G that uses the minimum number of colors.

◮ Definition 8. Given a set S of obstacles in the plane, a one to one mapping M : S → C from

a set of obstacles S to a set of colors C = {1, 2, . . . , |C|}, we say that a graph G = (V, E, M(S))

with two fixed vertices vs, vt is a valid colored graph for the input arrangement if the following

conditions hold:

1. if there is a k-color vs-vt path in G, then there is also a j-crossing s-t path in the plane

for some j ≤ k, and

2. if there is a k-crossing s-t path in the plane, then there is also a j-color path from vs to

vt in G for some j ≤ k.

The first condition is typically established by fixing an embedding for the edges of G in

the plane. From the above discussion and using Lemma 2 and Theorem 5 with β =
√

n, we

have the following.

◮ Lemma 9. Suppose we are given a valid colored graph G = (V, E, C) for an arrangement

of the set S of input obstacles in the plane, such that there is a k-color path in G. If we can

construct the neighborhoods N (S) for all obstacles S ∈ S such that, the total size across all

neighborhoods is O(kn) (bounded-size), and there exists a k-color path π in G from vs to vt

such that for any obstacle S ∈ S, the corresponding color appears on π at most O(|N (S)|)
times (bounded-occurrence), then APPROX-CORE achieves an O(

√
n)-approximation for

MCR.

3.1 An O(
√

n)-approximation for Rectilinear Polygons

We begin by describing our construction of a valid colored graph G = (V, E, M(S)) for the

input set of obstacles S. Without loss of generality, we assume that the mapping M simply

assigns a unique color Ci ∈ C to each obstacle Si ∈ S.

Graph Construction. Let V be the set of vertices of all obstacles in S (including s and t).

Let vs and vt be the vertices corresponding to the points s and t, respectively. We build a

complete graph over this vertex set by adding an edge (u, v) to E for every pair of vertices

u, v ∈ V . We define a rectilinear embedding of an edge e = (u, v) in the plane as follows.

Without loss of generality, assume u lies below and to the left of v, and let x be the

point where a horizontal ray from u and a vertical ray from v intersect. The rectilinear

path πuv = ux → xv is called the embedding of edge e. We assign e the colors

corresponding to obstacles, whose boundaries are intersected by πuv transversally.

Roughly speaking, we assign a color to an edge if it intersects both the interior and

boundary of the corresponding obstacle, i.e., when the edge enters or exits the obstacle. It is

easy to see that with the above construction, the first condition of Definition 8 is satisfied.

For the second requirement, we make the following claim.

◮ Lemma 10. If there exists a k-crossing s-t path π∗ in the plane, then there exists a vs-vt

path π in G that uses at most k colors.

APPROX/RANDOM 2018
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For every vertex v ∈ V , draw four axis-aligned rays emanating at v one in each

of the four directions. Next, find the first k distinct obstacles whose boundaries are

intersected by each of these rays transversally as we move away from v. Let this set

be Xv and therefore |Xv| ≤ 4k. For each S ∈ Xv, include v to the neighborhood

N (S). (See also Figure 1.(b))

The elements in the union of all neighborhoods is the set of vertices in the input and

therefore has size O(n). Moreover, since each element is present in at most 4k neighborhoods,
∑

S∈S |N (S)| is O(kn). Therefore the bounded-size property is easily satisfied. For the

bounded-occurrence property, we prove the following lemma.

◮ Lemma 11. Let π be any k-color vs-vt path in G and Si ∈ S be an arbitrary obstacle.

Then the color Ci corresponding to obstacle Si appears on edges of π at most O(|N (Si)|)
times.

Proof. We consider the set Ei = {e | Ci ∈ χ(e)} of edges that contain the color Ci and

need to show that |Ei| = O(|N (Si)|). Let e = (p, q) be an arbitrary edge in Ei and let

πpq = pr → rq be its rectilinear embedding. From our construction, e has color Ci iff

πpq crossed Si. Therefore, at least one of pr and rq must intersect the boundary of Si

transversally. This implies that at least one of p and q must be included in N (Si) during

our neighborhood construction. If p ∈ N (Si), we charge this occurrence of color Ci to p,

otherwise we charge it to q. Since a vertex p ∈ N (Si) is adjacent to at most two edges in π,

every element in N (Si) is charged at most twice. Therefore Ci occurs on edges of π at most

2|N (Si)| times. ◭

Using Lemma 9, we obtain the following result.

◮ Theorem 12. If all the obstacles in S are rectilinear polygons, then there exists an

O(
√

n)-approximation algorithm for the MCR problem.

3.2 An O(
√

n)-approximation for Arbitrary Disks

We will now consider the case when all the input obstacles are disks, of possibly different

radii. The construction of the neighborhood for disks needs to be different, as the earlier

arguments for rectilinear polygons relied heavily on obstacles having corners and therefore do

not apply to disks. Recall that in order to apply our approximation framework, we first need

to construct a valid colored graph G = (V, E, C) (Lemma 9). Towards this end, we simply

let G to be the graph GA induced by the input arrangement A: each cell of GA contains a

vertex and any pair of neighboring cells (vertices) are joined by an arc that does not intersect

any other cell. Let vs and vt be the vertices in G corresponding to the cells that contain s

and t, respectively. We assign a unique color to each disk. Additionally, we make G directed

by replacing each edge by two directed edges. For each directed edge e = (u, v), we assign to

e the set of colors corresponding to all the disks D such that v lies in the interior of D and u

does not lie in the interior of D. Roughly speaking, we assign colors when the edge enters

into an obstacle.

Note that the way G is defined, it is a plane graph and we consider its natural embedding

which is also planar. Since we assign colors when an edge of G enters an obstacle, it is easy

to see that a k-color path π in G corresponds to a k-crossing path π′ in the plane. For the

other direction, given a k-crossing path π′ we can easily construct a path π in G by simply

concatenating the vertices corresponding to each arrangement cell intersected by π′ in order.

Thus, we have the following immediate observation.

APPROX/RANDOM 2018
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Consider the set of arcs {Auivi
| 2 ≤ i ≤ l}. First, assume that any two arcs in this set

are disjoint. Since π∗ is a minimum length k-crossing path, there must be at least one disk

not crossed by π∗ that intersects Ruivi
as well as the disk Db. Let Ds be the first such disk

encountered while traversing the arc Auivi
clockwise along the boundary of Db. There are

two cases. If Ds is bigger than Db, we charge the crossing to one of the phantom points in

N (Db). Otherwise, we assume Ds is smaller than Db. Let x1 be the first intersection point of

∂Ds and ∂Db encountered while traversing the arc Auivi
clockwise along the boundary of Db.

Observe that π∗ must cross all the disks in D(Ds, Db) because otherwise it will contradict

the choice of Ds.

Hence the size of D(Ds, Db) is bounded by k, the number of disks that π∗ can cross. This

implies the tuple (x1, Ds, Db) must be included to the neighborhood N (Db), and therefore

we can charge this crossing to this tuple.

Because of the disjointness assumption of the arcs, the same tuple cannot be charged to

another crossing.

Also it is easy to verify that the phantom points need not be charged more than a constant

number of times, as the set of disks bigger than Db for which we charge a phantom point

must be exterior-disjoint of Ds and therefore can be at most six (Lemma 15). The case when

the arcs are not disjoint, for any two arcs, one must contain the other. This is true, as the

subpaths πuivi
as defined above cannot intersect each other. By exploiting this structure of

the arcs one can prove the lemma in this case as well. ◭

Using Lemma 9, we obtain the following result.

◮ Theorem 18. If all the obstacles in S are disks, then there exists an O(
√

n)-approximation

algorithm for the MCR problem.

Using a different realization of the algorithmic approach described above, it appears

possible to derive an approximation guarantee close to O(
√

n) for other obstacle types. We

sketch this for the case where the obstacle set S is a set of triangles satisfying standard

degeneracy assumptions. We define the level of a 2-dimensional cell σ in the arrangement

of the triangles in S to be the minimum number of triangles whose removal results in an

obstacle-free path from s to (any point in) σ. Thus, there is only one cell at level 0, and

this is the cell containing s. We can show that the number of cells with level at most k

is O(knα(n)), where α(·) is the inverse Ackermann function. Furthermore, the number of

arrangement edges bordering such cells is also O(knα(n)).

Suppose there is a k-crossing path from s to t, and we want to approximate it. For a

triangle T ∈ S, we include in its neighborhood N (T ) any arrangement edge e such that

(a) e is part of T ’s boundary, and (b) e borders a cell σ that is contained in T and has

level at most k. It follows that the sum of the neighborhood sizes is O(knα(n)). We can

also establish the bounded occurrence property, leading to an approximation guarantee of

O(
√

nα(n)). We defer the details to the journal version.

4 Hardness of Approximation

In this section, we describe the 2-inapproximability and the APX-hardness results for

rectilinear polygons and axis-parallel rectangles, respectively. Due to space constraints, we

will just mention the results and defer the details to the appendix.
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2-inapproximability. We reduce an instance of Vertex Cover to an instance of MCR with

rectilinear polygons. Since Vertex Cover is hard to approximate within a factor of 2 assuming

the Unique Games conjecture [18], we get the following theorem.

◮ Theorem 19. Minimum constraint removal with rectilinear polygons is hard to approximate

within a factor of 2 assuming the Unique Games conjecture.

The same construction can also be extended for convex polygons.

◮ Corollary 20. Minimum constraint removal with convex polygons is hard to approximate

within a factor of 2 assuming the Unique Games conjecture.

APX-hardness for Axis Parallel Rectangles. We reduce a restricted version of vertex cover

to our problem which is referred to as Special-3VC. Chan et al. [6] had introduced this

version for the sake of proving APX-hardness of several geometric optimization problems.

As Special-3VC is APX-hard we obtain the following theorem.

◮ Theorem 21. Minimum constraint removal with rectangles is APX-hard.
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strip defined by Gi and Gi+1. The drawing procedure is the following. Consider the first

edge (vpq, vm5) corresponding to the vertex vm5. Let H1 be a horizontal line such that all

the class 1 rectangles lie above it and all the class 2 rectangles lie below it. At first we

expand Rm5 sufficiently towards below such that one can place a pathlet with the following

properties - the only rectangle it intersects is Rm5, it consists of two horizontal segments

and one vertical segment, and its start and end points lie on L. Note that the expansion

of Rm5 do not create any new intersections with the existing pathlets. Thereafter Rpq is

expanded sufficiently towards below and right to ensure that it has non-empty intersection

with Q1. Then the other pathlet can be drawn in a way so that it intersects the portion of

Rpq that is in Q1, and as Q1 is empty the pathlet does not intersect any other rectangle (see

Figure 8(a)). Now consider the ith type 2 edge (vpq, vxy) in this order. Let all the edges

before it in the ordering are already taken care of. It is easy to see that one can expand Rxy

towards below for drawing a pathlet with the desired properties. Now to make sure that the

other pathlet intersects only Rpq, set Hi to be a horizontal line such that the region Qi, as

defined above, is empty of previously drawn pathlets and expanded rectangles. Then we can

expand Rpq towards below and right so that it has non-empty intersection with Qi. As Qi is

empty one can draw the other pathlet as well with the desired properties (see Figure 8(b)).

Finally, we place the barrier region around the paths. As the pathlets are orthogonal

and consisting of a polynomial number of segments in total, the barrier region can be

simulated using a polynomial number of rectangles and thus the construction can be realized

in polynomial time.

From the construction, it is straightforward to see the following lemma.

◮ Lemma 24. There is a size k vertex cover for G iff there is an s-t path that intersects k

rectangles.

As Special-3VC is APX-hard, it follows that MCR with axis-aligned rectangles is

APX-hard (Theorem 21).

APPROX/RANDOM 2018


	Introduction
	Our Results

	An Algorithmic Framework
	Approximation Framework
	Application to Minimum Color Path

	Application to Geometric Objects
	An O(sqrt{n})-approximation for Rectilinear Polygons
	An O(sqrt{n})-approximation for Arbitrary Disks

	Hardness of Approximation
	Proof of Lemma 16
	2-Inapproximability for Rectilinear Polygons
	APX-hardness for Axis Parallel Rectangles

