
Computing a Minimum Color Path in
Edge-Colored Graphs

Neeraj Kumar

Department of Computer Science,
University of California, Santa Barbara, USA

neeraj@cs.ucsb.edu

Abstract. In this paper, we study the problem of computing a min-

color path in an edge-colored graph. More precisely, we are given a
graph G = (V,E), source s, target t, an assignment χ : E → 2C of
edges to a set of colors in C, and we want to find a path from s to t
such that the number of unique colors on this path is minimum over all
possible s-t paths. We show that this problem is hard (conditionally) to
approximate within a factor O(n1/8) of optimum, and give a polynomial
time O(n2/3)-approximation algorithm. We translate the ideas used in
this approximation algorithm into two simple greedy heuristics, and
analyze their performance on an extensive set of synthetic and real world
datasets. From our experiments, we found that our heuristics perform
significantly better than the best previous heuristic algorithm for the
problem on all datasets, both in terms of path quality and the running
time.

1 Introduction

An edge colored graph G = (V,E, C, χ) comprises of an underlying graph G =
(V,E), and a set of colors C such that each edge e ∈ E is assigned a subset
χ(e) ⊆ C of colors. For any path π in this graph, suppose we define its cost
to be |χ(π)| where χ(π) =

⋃

e∈π χ(e) is the set of colors used by this path. In
this paper, we study the natural problem of computing a path π from a source
s to some target t such that its cost, that is the number of colors used by π,
is minimized. The problem is known to be NP-hard, and by a reduction from
Set-cover is also hard to approximate within a factor o(log n).

The problem was first studied by Yuan et al. [19] and was motivated by
applications in maximizing the reliability of connections in mesh networks. More
precisely, each network link is assigned one or more colors where each color
corresponds to a given failure event that makes the link unusable. Now if the
probability of all the failure events is the same, a path that minimizes the number
of colors used has also the least probability of failure. Therefore, the number of
colors used by a minimum color path can be used as a measure for ‘resilience’ of
the network. This has also been applied in context of sensor networks [2] and
attack graphs in computer security [14]. Apart from resilience, the minimum color
path problem can also be used to model licensing costs in networks. Roughly

2 N. Kumar

speaking, each link can be assigned a set of colors based on the providers that
operate the link, and a minimum color path then corresponds to a minimum
number of licenses that are required to ensure connectivity between two given
nodes. More generally, the problem applies to any setting where colors can be
thought of as “services” and we only need to pay for the first usage of that service.
The problem was also studied by Hauser [12] motivated by robotics applications.
In such settings, colors are induced by geometric objects (obstacles) that block
one or more edges in a path of the robot. Naturally, one would like to remove
the minimum number of obstacles to find a clear path, which corresponds to the
colors used by a minimum color path.

The problem has also gathered significant theoretical interest. If each edge of
the graph is assigned exactly one color (called its label), the problem is called
min-label path and was studied in [11]. They gave an algorithm to compute
an O(

√
n)-approximation and also show that it is hard to approximate within

O(logcn) for any fixed constant c, and n being the number of vertices. Several
other authors have also studied related problems such as minimum label spanning
tree and minimum label cut [8,16]. The min-color path problem on vertex-colored

graph was recently studied in [1] where they gave an O(
√
n)-approximation

algorithm. Indeed, one can transform an edge-colored graph into a vertex-colored
graph by adding a vertex of degree two on each edge e and assigning it the set of
colors χ(e). However, this does not gives a sublinear approximation in n as the
number of vertices in the transformed graph can be Ω(n2).

1.1 Our Contribution

In this work, we make progress on the problem by improving the known approxi-
mation bounds and by designing fast heuristic algorithms.

– By a reduction from the minimum k-union problem [6] which was recently
shown to be hard to approximate within a factor of O(n1/4), we show that
min-color path cannot be approximated within a factor O(n1/8) of optimum
on edge-colored graphs. This also implies improved lower bounds for min-label
path, as well as min-color path on vertex-colored graphs.

– We give an O(n2/3)-approximation algorithm for min-color path problem on
edge-colored graphs. If the number of colors on each edge is bounded by a
constant, the algorithm achieves an approximation factor of O((n

OPT
)2/3),

where OPT is the number of colors used by the optimal path.

– We translate the ideas from the above approximation algorithm into two
greedy heuristics and analyze its performance on a set of synthetic and
real-world instances [15]. Although similar greedy heuristics were proposed
by the previous work [19] and have been shown to perform well on randomly

generated colored graphs; a holistic analysis of such algorithms on more
challenging and realistic instances seems to be lacking. We aim to bridge this
gap by identifying the characteristics of challenging yet realistic instances
that helps us design a set of synthetic benchmarks to evaluate our algorithms.

Computing a Minimum Color Path 3

From our experiments, we found that our heuristics achieve significantly
better performance than the heuristic from [19] while being significantly (up
to 10 times) faster. We also provide an ILP formulation for the problem that
performs reasonably well in practice. All source code and datasets have been
made available online on github [17].

The rest of the paper is organized as follows. In Section 2, we discuss our
hardness reduction. The details of O(n2/3)−approximation is given in Section 3.
We discuss our heuristic algorithms and experiments in Section 4. For the rest
of our discussion, unless stated otherwise, we will use the term colored graph
to mean an edge-colored graph and our goal is to compute a min-color path on
such graphs. On some occasions, we will also need to refer to the min-label path
problem, which is a special case of min-color path when all edges have exactly
one color.

2 Hardness of Approximation

By a simple reduction from Set-cover, it is known that the min-color path
problem is hard to approximate to a factor better than o(log n), where n is the
number of vertices. This was later improved by Hassin et al. [11], where they
show that the min-label path (and therefore the min-color path) problem is hard
to approximate within a factor O(logc n) for any fixed constant c. In this section,
we work towards strengthening this lower bound. To this end, we consider the
minimum k-union problem that was recently studied in [6].

In the minimum k-union problem, we are given a collection S of m sets over
a ground set U and the objective is to pick a sub-collection S ′ ⊆ S of size k such
that the union of all sets in S ′ is minimized. The problem is known to be hard to
approximate within a factor O(m1/4). However, it is important to note that this
lower bound is conditional, and is based on the so-called Dense vs Random

conjecture being true [6]. The conjecture has also been used to give lower bound
guarantees for several other problems such as Densest k-subgraph [3], Lowest
Degree 2-Spanner, Smallest m-edge subgraph [5], and Label cover [7].

In the following, we will show how to transform an instance of minimum k-
union problem to an instance of min-color path. More precisely, given a collection
S of m sets over a ground set U and a parameter k, we will construct a colored
graph G = (V,E, C, χ) with two designated vertices s, t, such that a solution for
min-color path on G corresponds to a solution of minimum k-union on S and
vice versa. We construct G in three steps (See also Figure 1).

– We start with a path graph G′ that has m+1 vertices and m edges. Next, we
createm−k+1 copies of G′ and arrange them as rows in a (m−k+1)×(m+1)-
grid, as shown in Figure 1.

– So far we only have horizontal edges in this grid of the form (vij , vi(j+1)).
Next, we will add diagonal edges of the form (vij , v(i+1)(j+1)) that basically
connect a vertex in row i to its right neighbor in row i+ 1.

Computing a Minimum Color Path 5

used. As shown above, r must also be the number of elements in an optimal
solution of minimum k-union. Therefore, we can compute a selection of k sets
that have union at most O(m1/4) times optimal, which is a contradiction. ⊓⊔

Note that we can also make G vertex-colored : subdivide each horizontal edge
e by adding a vertex ve of degree two, and assign the set of colors χ(e) to ve.
Observe that since the graph G we constructed above had O(n) edges, the same
lower bound also translates to min-color path on vertex-colored graph.

Corollary 1. Min-color path on vertex-colored graphs is hard to approximate

within a factor O(n1/8) of optimal.

One can also obtain a similar bound for min-label path (proof in Appendix).

Lemma 2. Min-label path is hard to approximate within a factor O((n
OPT

)1/8),
where OPT is the number of colors used by the optimal path.

3 An O(n2/3)− Approximation Algorithm

In this section, we describe an approximation algorithm for our problem that
is sublinear in the number of vertices n. Note that if the number of colors on
each edge is at most one, there exists an O(

√
n) approximation algorithm [11].

However, their technique critically depends on the number of colors on each edge
to be at most one, and therefore cannot be easily extended to obtain a sublinear
approximation1.

An alternative approach is to transform our problem into an instance of
min-color path on vertex-colored graphs by adding a vertex of degree two on
each edge e and assigning the colors |χ(e)| to this vertex. Applying the O(

√

|V |)-
approximation from [1], easily gives an O(

√

|E|)-approximation for our problem,
which is sub-linear in n if the graph is sparse, but can still be Ω(n) in the worst
case. To address this problem, we apply the technique of Goel et al. [9] where
the idea is to partition the graph G into dense and sparse components based on
the degree of vertices (Step 1 of our algorithm). We consider edges in both these
components separately. For edges in dense component, we simply discard their
colors, whereas for edges in the sparse components, we use a pruning strategy
similar to [1] to discard a set of colors based on their occurrence. Finally, we
show that both these pieces combined indeed compute a path with small number
of colors. We start by making a couple of simple observations that will be useful.

First, we assume that the number of colors used by the optimal path (denoted
by k) is given to our algorithm as input. Since k is an integer between 1 and |C|, it is
easy to see that an α-approximation for this version gives an α-approximation for

1 This is because if each edge has at most one color, the pruning stage in algorithm
from [11] can be phrased as a maximum coverage problem, for which constant
approximations are known. However even if number of colors is exactly two, the
pruning stage becomes a variant of the densest k-subgraph problem which is hard to
approximate within a factor of Ω(n1/4) of optimum.

6 N. Kumar

min-color path. This holds as we can simply run the α-approximation algorithm
|C| times, once for each value of k and return the best path found.

Now, since we have fixed k, we can remove all edges from the graph that
contain more than k colors, as a min-color path will never use these edges. Since
each edge in G now contains at most k colors, we have the following lemma.

Lemma 3. Any s− t path of length ℓ uses at most kℓ colors and is therefore an

ℓ-approximation.

This suggests that if there exists a path in G of small length, we readily get
a good approximation. Note that the diameter of a graph G = (V,E) is bounded

by |V |
δ(G) , where δ(G) is the minimum degree over vertices in G. So if the graph is

dense, that is, degree of each vertex is high enough, the diameter will be small,
and any path will be a good approximation (Lemma 3).

We are now ready to describe the details of our algorithm. We outline the
details for the most general case when the number of colors on each edge is
bounded by a parameter z ≤ k. If z is a constant, the algorithm achieves slightly
better bounds.

Algorithm : Approximate k-Color Path The input to our algorithm is a
colored graph G = (V,E, C, χ), the number of colors k and a threshold β (which
we will fix later) for deciding if a vertex belongs to a dense component or a sparse
component. Note that all edges of G have at most z ≤ k colors on them.

1. First, we will classify the vertices of G as lying in sparse or dense component.
To do this, we include vertices of degree at most β to the sparse component
and remove all edges adjacent to it. Now we repeat the process on the modified
graph until no such vertex exists. Finally, we assign the remaining vertices to
the dense component, and restore G to be the original graph.

2. For all edges e = (u, v) such that both u, v lie in the dense component, discard
its colors. That is set color χ(e) = ∅.

3. Now, consider the set of edges that have at least one endpoint in the sparse
component, call them critical edges. Note that the number of such edges is
at most nβ.

4. Remove every color ci that occurs on at least
√

znβ
k critical edges. That is,

set χ(e) = χ(e) \ {ci}, for all edges e ∈ E.

5. Let G′ be the colored graph obtained after above modifications. Using |χ(e)|
as weight of the edge e, run Dijkstra’s algorithm to compute a minimum
weight s− t path π in G′. Return π.

It remains to show that the algorithm above indeed computes an approximately
good path. We will prove this in two steps. First, we make the following claim.

Lemma 4. The number of colors that lie on the path π in the modified colored

graph G′ is at most
√
zknβ.

Computing a Minimum Color Path 7

Proof. Observe that each color appears on no more than
√

znβ
k edges of G′. Now

consider the optimal path π∗ in G that uses k colors. Since each of these k colors

contribute to the weight of at most
√

znβ
k edges of π∗, the weight of the path

π∗ in G′ is at most (k ·
√

znβ
k) =

√
zknβ. Therefore, the minimum weight s− t

path π will use no more than
√
zknβ colors. ⊓⊔

Lemma 5. The number of colors that lie on the path π in the original colored

graph G is O(znβ +
√
zknβ).

Proof. To show this, we will first bound the number of colors of π that we may
have discarded in Steps 2 and 4 of our algorithm.

Consider a connected dense component Ci. Now let Gi be the subgraph
induced by vertices in Ci. Since the degree of each vertex in Gi is at least β,
the diameter of Gi is at most ni

β , where ni is the number of vertices in the

component Ci. Observe that since the weight of all edges of Ci is zero in G′,
we can safely assume that π only enters Ci at most once. This holds because
if π enters and exits Ci multiple times, we can simply find a shortcut from the
first entry to last exit of weight zero, such a shortcut always exists because
Ci is connected. Therefore π contains at most ni

β edges and uses at most zni

β
colors in the component Ci. Summed over all components, the total number of
colors discarded in Step 2 that can lie on π is at most z

∑

i
ni

β ≤ zn
β . Next,

we bound the number of colors discarded in Step 4. Observe that since each
critical edge contains at most z colors, the total number of occurrences of all
colors on all critical edges is znβ. Since we only discard colors that occur on

more than
√

znβ
k edges, the total number of discarded colors is bounded by

(

znβ
/
√

znβ
k

)

=
√
zknβ.

Summing these two bounds with the one from Lemma 4, we achieve the
claimed bound. ⊓⊔

The bound from Lemma 5 is minimized when β = (znk)1/3. This gives the

total number of colors used to be O((znk)2/3) ·k) and therefore, an approximation

factor of O((znk)2/3). If the number of colors z on each edge is bounded by a

constant, we get an approximation factor of O((nk)
2/3). Otherwise, we have that

z ≤ k, which gives an O(n2/3)-approximation.

Theorem 1. There exists a polynomial time O(n2/3)-approximation algorithm

for min-color path in an edge-colored graphs G = (V,E, C, χ). If the number of

colors on each edge is bounded by a constant, the approximation factor can be

improved to O((n
OPT

)2/3).

4 Fast Heuristic Algorithms and Datasets

In this section we will focus on designing fast heuristic algorithms for the minimum
color path problem. Given a colored graph G = (V,E, C, χ), one natural heuristic

8 N. Kumar

is to use Dijkstra’s algorithm as follows: simply replace the set of colors χ(e) on
each edge e by their cardinalities |χ(e)| as weights and then compute a minimum
weight path in this graph.

Building upon this idea, Yuan et al. [19] proposed a greedy strategy where
they start with a path computed by Dijkstra’s algorithm as above, and iteratively
select the color that improves the path found so far by maximum amount. More
precisely, for each color c ∈ C, decrement the weight of each edge on which c
occurs by one, and compute a path using Dijkstra’s algorithm. Now, select the
color that improves the path found so far by maximum amount in terms of number
of colors used. Keep the weight of edges with selected color to their decremented
value and repeat the process until the path can no longer be improved.

This heuristic was called Single-Path All Color Optimization Algorithm
(SPACOA) in their paper and was shown to achieve close to optimal number
of colors on uniformly colored random graphs 2. We argue that although their
heuristic performs well on such instances, there still is a need to design and
analyze algorithms on a wider range of more realistic instances. This holds
because of two reasons. First, in most practical applications where the min-color
path is used, the distribution of colors is typically not uniform. For instance, in
network reliability applications where colors correspond to a failure event, it is
likely that a specific failure event is more common (occurs on more edges) than
the other. Similarly, in a network topology setting [15], where colors correspond
to ISPs, some providers have larger connectivity than the others. Second, in most
of these applications, existence of an edge between two nodes typically depends
on proximity of nodes (imagine wireless routers or sensor networks) which is also
not accurately captured by random graphs.

Moreover, we note that due to their structural properties (such as small
diameters) uniformly colored random graphs are not good instances to measure
the efficacy of heuristic algorithms because on these instances the number of
colors used by a color oblivious Dijkstra’s algorithm is also quite close to optimal,
and as such there is little room for improvement. (See also Table 1). In the next
two sections, we aim to construct synthetic instances for the min-color path
problem that are more challenging and at the same time realistic. Thereafter, we
present a couple of greedy heuristic algorithms and analyze their performance on
these synthetic and some real world instances. We will use the SPACOA heuristic
from [19] as a benchmark for our comparisons. We begin by analyzing min-color
paths in uniformly colored random graphs and explain why a color oblivious
algorithm such as Dijkstra performs so well. This gives some useful insights into
characteristics of hard instances.

4.1 Min-Color Path in Uniformly Colored Random Graphs

We begin by analyzing uniformly colored random graphs where given a random
graph, colors are assigned uniformly to its edges [19]. That is, for each edge in

2 we assume that the random graph is constructed under G(n, p) model, that is an
edge exists between a pair of vertices with probability p.

Computing a Minimum Color Path 9

the graph, a color is picked uniformly at random from the set C of all colors, and
assigned to that edge. We note that a colored graph G is likely to be a ‘hard
instance’ for min-color path if there exists an s− t path in G with small number
of colors, and the expected number of colors on any s− t path is much larger,
so that a color oblivious algorithm is ‘fooled’ into taking one of these paths. We
observe that in randomly generated colored graphs as above, this is quite less
likely to happen, which is why the paths computed by a color oblivious Dijkstra’s
algorithm are still quite good.

To see this, consider an s− t path π of length ℓ in G. Observe that since the
colors are independently assigned on each edge, it is equivalent to first fix a path
and then assign colors to its edges. Let piπ be the probability that color i appears
on some edge of π. The probability that color i does not appear on any edge of
π is (1− 1

|C|)
ℓ and therefore piπ = 1− (1− 1

|C|)
ℓ, for each color i. In other words,

we can represent the occurrence of a color i on the path π by a Bernoulli random
variable with a success probability piπ. The number of colors on this path π will
then correspond to the number of successes in |C| such trials, which follows the
binomial distribution B(|C|, piπ). The expected number of colors on the path is
given by |C|piπ which clearly increases as the length of the path increases. The

probability that the number of colors on π is k is given by
(

|C|
k

)

·pkiπ · (1−piπ)
|C|−k.

For example, if the number of colors |C| = 50, then the probability that a path
of length 20 uses a small number, say 5, colors is about 10−4.

Therefore, in order to construct colored graph instances where there is sig-
nificant difference between the paths computed by a color oblivious algorithm
such as Dijkstra and the optimal path, we need to ensure that (a) there are a
large number of paths between the source vertex s and destination vertex t (b)
the vertices s and t are reasonably far apart. The first condition maximizes the
probability that there will be an s-t path with a small number of colors. The
second condition ensures that the expected number of colors on any s-t path is
large, and it is quite likely that a color oblivious algorithm is fooled into taking
one of these expensive paths.

4.2 Constructing Hard Instances

We construct our instances in two steps. First, we show how to construct the
underlying graph G = (V,E) and next describe how to assign colors on edges of
G. We begin by assuming that unless otherwise stated, the vertices s and t are
always assigned to be the pair of vertices that are farthest apart in G, that is,
they realize the diameter of G. The idea now is to construct graphs that have
large diameters (so that s, t are reasonably separated), are ‘locally’ dense (so
that there is a large number of s-t paths) and capture application scenarios for
min-color path problems.

– Layered Graphs These graphs comprise of n nodes arranged in a k× (n/k)
grid. Each column consists of k nodes that form a layer and consecutive layers
are fully connected. More precisely, a node vij in column j is connected to
all nodes vlj+1 in the next column and the for all l = {1, . . . , k}. All vertices

10 N. Kumar

in the first column are connected to the source s, and the last column are
connected to t. Such graphs are known to appear in design of centralized
telecommunication networks [10], task scheduling, or software architectures.

– Unit Disk Intersection Graphs These graphs comprise of a collection
of n unit disks randomly arranged in a rectangular region. The graph is
defined as usual, each disk corresponds to a vertex and is connected to all
the other disks it intersects. Since the edges only exist between vertices that
are close to each other, disk intersection graphs tend to have large diameters
proportional to the dimensions of the region they lie in. These graphs appear
quite frequently in ad-hoc wireless communication networks [13]

– Road Networks These graphs intend to capture applications of min-color
path to transportation networks such as logistics, where colors may correspond
to trucking companies that operate between certain cities, and one would
like to compute a path with fewest number of contracts needed to send cargo
between two cities. For these graphs, we simply use the well-known road
network datasets such as the California road network from [18]. As one may
expect, road networks also tend to have large diameters.

Next, we assign colors to edges of the graph G. To keep things simple, we will
assign colors to edges of G independently. We consider edges of G one by one
and assign them up to z colors, by sampling the set of colors z times. However,
in order to also capture that some colors are more likely to occur than others,
we sample the colors from a truncated normal distribution as follows. We start
with a normal distribution with mean µ = 0.5, standard deviation σ = 0.16
(so that 0 < µ± 3σ < 1) and scale it by the number of colors. Now we sample
numbers from this distribution rounding down to the nearest integer. With high
probability, the sampled color indices will lie in the valid range [0, |C|), otherwise
the sample returns an empty color set.

Table 1. Number of colors used by Dijkstra vs best known solutions on various colored
graph instances. Note the higher difference between Dijkstra and optimal values for our
instances.

Instance Dijkstra Best known Remarks

Layered 43.38 17.6 k = 4 nodes per layer
Unit-disk 34.66 13.88 n = 1000 random disks in a 10× 100 rectangle
Road-network 366 246 1.5M nodes, 2.7M edges, 500 colors
Uniform-col [19] 11.45 9.5 edges added with p = log n/2n

Finally, for the sake of comparison, we also include the randomly generated
colored graphs (Uniform-col) from [19]. The number of colors used by Dijkstra’s
algorithm and the optimal number of colors are shown in Table 1. For all the
datasets except Road-network, the number of nodes is 1000, the number of colors
is 50 and the number of samples per edge was 3. The reported values are averaged
over 20 runs. For the Uniform-col instances, the probability of adding edges p

Computing a Minimum Color Path 11

was chosen so that the difference between colors used by Dijkstra’s algorithm
and the optimal is maximized.

4.3 ILP Formulation

We will now discuss an ILP formulation to solve the min-color path problem
exactly. Given a colored graph G = (V,E, C), the formulation is straightforward.
We have a variable ci for each color i ∈ C, and another variable ej for each edge
j ∈ E. The objective function can be written as:

minimize
∑

i

ci subject to

ci ≥ ej i ∈ χ(j) (color i lies on edge j) (1)

∑

j∈out(v)

ej −
∑

j∈in(v)

ej =







1, v = s
−1, v = t
0, v 6= s, t







∀v ∈ V (2)

ci, ej ∈ {0, 1}

The first set of constraints (1) ensure that whenever an edge is picked, its colors
will be picked as well. The second set of constraints (2) ensure that the set
of selected edges form a path. We implemented the above formulation using
Gurobi MIP solver (version 8.0.1) and found that they run surprisingly fast
(within a second) on Uniform-col instances from Table 1. However, the solver
tends to struggle even on small instances (about a hundred nodes) of all other
datasets, suggesting that these instances are indeed challenging. In the next
section, we will discuss a couple of heuristic algorithms that can compute good
paths reasonably fast, and later in Section 4.5 compare their results with the
optimal values computed by the ILP solver for some small instances.

4.4 Greedy Strategies

We begin by noting that a reasonably long path that uses small number of colors
must repeat a lot of its colors. Therefore, the primary challenge is to identify
the set of colors that are likely to be repeated on a path, and “select” them so
that they are not counted multiple times by a shortest path algorithm. This
selection is simulated by removing the color from the colored graph, so that
subsequent runs of of shortest path algorithm can compute potentially better
paths. Inspired from the approximation algorithm of Section 3, our first heuristic
Greedy-Select simply selects the colors greedily based on the number of times
they occur on edges of G and returns the best path found. We outline the details
below.

Algorithm: Greedy-Select Colors The input to the algorithm is a colored
graph G = (V,E, C, χ) and it returns an s− t path π.

12 N. Kumar

1. Find an initial path π0 by running Dijkstra’s algorithm on G with weight
of each edge e = |χ(e)|. Let the number of the colors used by π0 is K, an
upperbound on number of colors our paths can use. Set the path π = π0.

2. Initialize i = 1, and set G0 = G the original colored graph.
3. Remove the color cmax that appears on maximum number of critical edges of

Gi−1. That is, set χ(e) = χ(e)−{cmax} ∀e ∈ E. Let Gi be the colored graph
obtained.

4. Compute the minimum weight path πi in Gi with weight of each edge
e = |χ(e)| using Dijkstra’s algorithm.

5. Let K ′ be the number of colors on πi in the original colored graph G. If
K ′ < K, update the upperbound K = K ′ and set π = πi.

6. if i < K, set i = i+ 1 and return to Step 3. Otherwise return path π.

Although the above algorithm runs quite fast and computes good paths, we
can improve the path quality further by the following observation. Consider a
color ci that occurs on a small number of edges, then using an edge that contains
ci (unless absolutely necessary) can be detrimental to the path quality, as we may
be better off picking edges with colors that occur more frequently. This suggests
an alternative greedy strategy: we try to guess a color that the path is not likely
to use, discard the edges that contain that color, and repeat the process until
s and t are disconnected. This way we arrive at a small set of colors from the
opposite direction, by iteratively discarding a set of ‘expensive’ candidates. To
decide which color to discard first, we can again use their number of occurrences
on edges of G – a small number of occurrences means a small number of edges
are discarded and s-t are more likely to remain connected. However, we found
that this strategy by itself is not as effective as Greedy-Select, but one can
indeed combine both these strategies together into the Greedy-Prune-Select

heuristic, that is a little slower, but computes even better paths.

Algorithm: Greedy-Prune-Select Colors The input is a colored graph G =
(V,E, C, χ), and a parameter threshold that controls the number of times we
invoke Greedy-Select heuristic. The output is an s− t path π.

1. For each color c ∈ C, initialize preference(c) to be number of edges it occurs
on. Initialize i = 0, G0 = G to be the initial graph, and C0 = C to be the
initial set of candidate colors that can be discarded.

2. Run Greedy-Select on G0 to find an initial path π0 to improve upon.
Record the number of edges M = |E| in the graph at this point.

3. Repeat the following steps until Ci is empty:
(a) Pick a color ci ∈ Ci−1 such that preference(ci) is minimum, and remove

all edges e such that ci ∈ χ(e). Let Gi be the graph obtained, and
Ci = Ci−1 \ {ci}.

(b) If s, t are disconnected in Gi, restore the discarded edges. That is set
Gi = Gi−1. Set i = i+ 1 and return to Step 3.

(c) Otherwise, remove all edges from Gi that do not lie in the same con-
nected component as s, t. Update preference of all colors that lie on these
discarded edges.

Computing a Minimum Color Path 13

(d) If the graph Gi has changed significantly, that is M − |Ei| ≥ threshold or
if this is the last iteration, run Greedy-Select again to compute the
path πi. Update M = |Ei|.

(e) Set i = i+ 1 and return to Step 3.

4. Return the path πi that is best in terms of number of colors.

The running time is typically dominated by the number of calls to Greedy-

Select. In our experiments, we set threshold = 0.25|E| which guarantees that we
only make a small number of calls to Greedy-Select. Theoretically, Greedy-

Select runs in O(|C| · D) time, where D is the running time of Dijkstra’s
algorithm. An implementation of Greedy-Prune-Select using BFS to test
connectivity runs in O(|C| · (|V |+ |E|)) +O(|C| ·D) time, which is also O(|C| ·D).
This is an order of magnitude better than SPACOA heuristic that has a worst-case
running time of O(|C|2 ·D).

4.5 Experiments and Results

We will now discuss the performance of above heuristic algorithms on our datasets.
We compare our results with the values computed by the ILP solution (on small
instances) and the SPACOA heuristic from [19]. In summary, we found that
both our heuristics compute paths that are much better than SPACOA heuristic
from [19], while also being significantly faster. The paths computed by Greedy-

Prune-Select are almost always significantly better than Greedy-Select

and the difference especially shows on larger datasets. The results are shown
in Tables 2 to 5 averaged over five runs with the exception of real-world instances.
Runtimes longer than one hour are marked with ∞. Some more experimental
results with different color distributions and another synthetic dataset can found
in Tables 6 and 7 in the Appendix. All code was written in C++ using the OGDF
graph library [4] and executed on a standard linux machine (Ubuntu 16.04)
running on Intel(R) Core(TM) i5-4460S CPU @ 2.90GHz with 16GB RAM.

Layered Graph Instances We run our algorithms on a 4× 125 layered graph
instance with 50 colors on a 4× 2500 instance with 500 colors. As the number
of layers grows from 125 to 2500, these instances get progressively challenging
for the ILP solver due to a large number of candidate paths. As expected, the
SPACOA runs really slow on large instances as it needs to try a lot of colors per
iteration. There is reasonable difference between the quality of paths computed
by Greedy-Prune-Select and Greedy-Select especially on larger instances.
The results are shown in Table 2.

Unit-disk Instances We run our algorithms on two sets of instances, with 500
nodes (disks) in a 10× 50 rectangle, and a 104 nodes in a 10× 1000 rectangle.
The rectangles are chosen narrow so that the graph has a large diameter. The
behavior is quite similar to layered graphs. The results are shown in Table 3.

14 N. Kumar

Table 2. Path quality and running time on layered graph instances.

Algorithm Colors used Time taken (ms) Colors used Time taken (ms)

4× 125 = 0.5k nodes 4× 2500 = 10k nodes

Dijkstra 36.8 0.6 441.8 23.6
SPACOA 33.6 65 396 127× 103

Greedy-Select 18.2 12.6 185.6 3.5× 103

Greedy-Prune-Select 17.2 49 173 12.5× 103

ILP 16.4 707× 103 ∞ ∞

Table 3. Path quality and running time on Unit disk graph instances.

Algorithm Colors used Time taken (ms) Colors used Time taken (ms)

4× 125 = 0.5k nodes 4× 2500 = 10k nodes

Dijkstra 28.8 1 357.8 38
SPACOA 23 124.8 333.6 41.4× 103

Greedy-Select 14.2 13 145.6 4.7× 103

Greedy-Prune-Select 13.4 55 134 17.6× 103

ILP 12.6 1176× 103 ∞ ∞

Real-world Instances Next, we focus on a couple of real-world examples. Our
first instance is the California road network [18] that has 1.5M nodes and 2.7M
edges. The graph however was not colored to begin with, so we color it artificially
by assigning 500 colors from the truncated normal distribution as explained
before. Our second instance is from the Internet Topology Zoo [15], a manually
compiled dataset of connectivity of internet service providers over major cities
of the world. We translate this to our colored graph model, the cities naturally
correspond to nodes, providers correspond to colors, and a color is assigned to
an edge if the corresponding provider provides connectivity between these two
cities. This graph has 5.6k nodes, 8.6k edges and 261 colors, with an average of
1.44 colors per edge.

Table 4. Path quality and running time on some real world instances.

Algorithm Colors used Time taken (ms) Colors used Time taken (ms)

CA Road Network Internet topology

Dijkstra 366 3.068× 103 7 26
SPACOA 355 3.12× 106 4 3111
Greedy-Select 251 0.73× 106 5 29
Greedy-Prune-Select 246 2.71× 106 4 286
ILP ∞ ∞ 4 1817

The road-network instance due to its size is challenging to all algorithms.
On the other hand, the internet-topology dataset seems quite easy for all the
instances. One possible explanation for this is that although the number of nodes
is large, the graph has a lot of connected components and a small diameter. This

Computing a Minimum Color Path 15

limits the space of candidate paths making all algorithms (particularly the ILP
solver) quite fast.

Uniform-Col Instances These instances are the same as one from [19] and
have been mostly included for the sake of comparison. We run our algorithms on
a Uniform-Col instance with 103 nodes and 50 colors, and another instance with
104 nodes and 500 colors.

Table 5. Path quality and running time on Uniform-Col instances.

Algorithm Colors used Time taken (in ms) Colors used Time taken (in ms)

103 nodes 104 nodes

Dijkstra 11.45 0.95 11.7 15
SPACOA 9.95 75.45 11.2 8664

Greedy-Select 10.4 9.2 11.5 150
Greedy-Prune-Select 10.3 46.3 11.4 1919

ILP 9.5 3913.8 - -

The SPACOA heuristic performs marginally better than our heuristics on
these examples. The primary reason for this is that the difference between optimal
solution and that computed by Dijkstra’s algorithm is really small (about 2), and
the SPACOA heuristic typically overcomes this difference in just one iteration by
trying all colors and picking the one that gives the best path. The cases in which
SPACOA heuristic struggles to find good paths is when it has to try multiple
iterations to bridge the gap between Dijkstra’s algorithm and optimal, and gets
stuck in a local minima. That is less likely to happen when the difference between
optimal and Dijkstra value is small. This is also evident from the performance
of SPACOA heuristic on union of random colored graphs (basically a set of
concatenated Uniform-Col Instances) shown in Table 6 (in Appendix). In this
case, the difference between optimal and Dijkstra value is larger and SPACOA
heuristic fails to compute good paths.

5 Conclusion

In this paper, we made progress on the min-color path problem by showing that
under plausible complexity conjectures, the problem is hard to approximate within
a factor O(n1/8) of optimum. We also provide a simple O(n2/3)-approximation
algorithm and designed heuristic algorithms that seem to perform quite well
in practice. A natural open question is to see if these bounds can be improved
further. The log-density framework has been useful in designing tight approxi-
mation bounds for related problems such as minimum k-union [6] and densest
k-subgraph [3]. It would be interesting to see if those techniques can be applied
to min-color path.

16 N. Kumar

References

1. Bandyapadhyay, S., Kumar, N., Suri, S., Varadarajan, K.: Improved Approximation
Bounds for the Minimum Constraint Removal Problem. In: APPROX 2018. LIPIcs,
vol. 116, pp. 2:1–2:19 (2018)

2. Bereg, S., Kirkpatrick, D.G.: Approximating barrier resilience in wireless sensor
networks. In: ALGOSENSORS’09. pp. 29–40 (2009)

3. Bhaskara, A., Charikar, M., Chlamtac, E., Feige, U., Vijayaraghavan, A.: Detecting
high log-densities: an O(n1/4) approximation for densest k-subgraph. In: Proceedings
of the 42nd STOC. pp. 201–210. ACM (2010)

4. Chimani, M., Gutwenger, C.: The Open Graph Drawing Framework (OGDF).

5. Chlamtac, E., Dinitz, M., Krauthgamer, R.: Everywhere-sparse spanners via dense
subgraphs. In: Proceedings of the 53rd FOCS. pp. 758–767 (2012)

6. Chlamtáč, E., Dinitz, M., Makarychev, Y.: Minimizing the union: Tight approxima-
tions for small set bipartite vertex expansion. In: Proceedings of the 28th SODA.
pp. 881–899 (2017)

7. Chlamtáč, E., Manurangsi, P., Moshkovitz, D., Vijayaraghavan, A.: Approximation
algorithms for label cover and the log-density threshold. In: Proceedings of the 28th
SODA. pp. 900–919 (2017)

8. Fellows, M.R., Guo, J., Kanj, I.: The parameterized complexity of some minimum
label problems. Journal of Computer and System Sciences 76(8), 727–740 (2010)

9. Goel, G., Karande, C., Tripathi, P., Wang, L.: Approximability of combinatorial
problems with multi-agent submodular cost functions. In: Proceedings of the 50th
FOCS. pp. 755–764 (2009)

10. Gouveia, L., Simonetti, L., Uchoa, E.: Modeling hop-constrained and diameter-
constrained minimum spanning tree problems as steiner tree problems over layered
graphs. Mathematical Programming 128(1-2), 123–148 (2011)

11. Hassin, R., Monnot, J., Segev, D.: Approximation algorithms and hardness results
for labeled connectivity problems. J. Comb. Optim. 14(4), 437–453 (2007)

12. Hauser, K.: The minimum constraint removal problem with three robotics applica-
tions. The International Journal of Robotics Research 33(1), 5–17 (2014)

13. Huson, M.L., Sen, A.: Broadcast scheduling algorithms for radio networks. In:
Proceedings of MILCOM’95. vol. 2, pp. 647–651. IEEE (1995)

14. Jha, S., Sheyner, O., Wing, J.: Two formal analyses of attack graphs. In: Computer
Security Foundations Workshop. pp. 49–63. IEEE (2002)

15. Knight, S., Nguyen, H.X., Falkner, N., Bowden, R., Roughan, M.: The internet
topology zoo. IEEE Journal on Selected Areas in Communications 29(9), 1765–1775
(2011)

16. Krumke, S.O., Wirth, H.C.: On the minimum label spanning tree problem. Infor-
mation Processing Letters 66(2), 81–85 (1998)

17. Kumar, N.: Minimum Color Path Experiments (Github Repository).
http://github.com/sud03r/min-color-path (2019)

18. Leskovec, J., Lang, K.J., Dasgupta, A., Mahoney, M.W.: Community structure in
large networks: Natural cluster sizes and the absence of large well-defined clusters.
Internet Mathematics 6(1), 29–123 (2009)

19. Yuan, S., Varma, S., Jue, J.P.: Minimum-color path problems for reliability in mesh
networks. In: INFOCOM’05. vol. 4, pp. 2658–2669 (2005)

Computing a Minimum Color Path 17

6 Appendix

6.1 Proof of Lemma 2

Suppose in the min-color path instance G from Lemma 1, we are also given as
input OPT, the number of colors that the path can use. Then, we can easily
remove all edges that have more than OPT number of colors as a min-color path
will never use them. Now since |χ(e)| ≤ OPT, we can create an instance G′

of min-label path by subdividing each edge into a path of at most OPT edges,
each containing exactly one color. It is easy to see that a min-label path in
G′ corresponds to a min-color path in G and vice-versa. However, the number
of vertices in G′ is OPT times the number of vertices in G. It is easy to see
that an O((n

OPT
)1/8) approximation in this min-label path instance yields an

O(n1/8) approximation for the min-color path instance where OPT is given as
input. Observe that since OPT ∈ {1, 2, . . . , |C|}, we can run this min-color path
approximation and take the path that uses minimum number of colors over all
|C| possible guesses for OPT, giving us an O(n1/8) approximation for the general
min-color path instance, which is a contradiction.

6.2 Union of Random Graphs

In this section, we intend to capture some random graph models similar to
the previous work [19]. The intuition is that although graphs from applications
are not inherently random, they can still be thought of as a union of random
components that are connected together. This ensures that the diamater is large
and there are fairly large number of s-t paths making these instances reasonably
challenging. We consider a simple model which comprises of k random graphs each
with n/k nodes concatenated in series. More precisely, we have k random graphs
G1, G2, . . . , Gk, and let si, ti be the terminals of Gi (nodes that are farthest apart
in Gi). We now simply connect these graphs in series along the terminals as
follows : (s1 − G1 − t1) . . . (si − Gi − ti) . . . (sk − Gk − tk) to obtain the graph
G. The number of random graphs is always 20, and n = 1k, 50 colors for small
instances, and n = 10k, 500 colors for large instances.

Table 6. Path quality and running time on union of Random Graphs, k = 20.

Algorithm Colors used Time taken (ms) Colors used Time taken (ms)

20× 50 = 1k nodes 20× 500 = 10k nodes

Dijkstra 39.8 1.4 210.2 24
SPACOA 35.7 161 189.4 47.3× 103

Greedy-Select 31 38 179.4 3.4× 103

Greedy-Prune-Select 29.8 100 150.6 13.3× 103

ILP 29.7 980 - -

18 N. Kumar

6.3 Uniformly-Colored Synthetic Instances

In this section, we analyze how our heuristics perform with an alternative method
of assigning colors. We pick two of our synthetic instances (namely layered,
unit-disk) and assigning colors to the edges uniformly. That is for all edges e ∈ E,
sample a color uniformly from the set of colors C and add it to χ(e). Repeat the
sample three times to ensure an assignment of about 3 colors per edge. We only
color large instances. Observe that since each color is now equally likely to occur,
the paths are likely to have more colors now. Surprisingly enough, for layered
graph instances, SPACOA heuristic generally fails to improve at all upon Dijkstra
estimate. One possible explanation for that is discarding a single color does not
improve a path at all in terms of number of colors and the algorithm gets stuck in
a local minima. However, our heuristics continue to perform significantly better
with Greedy-Prune-Select being the clear winner by a significant margin.

Table 7. Path quality and running time on uniformly-colored layered and unit-disk
graph instances.

Algorithm Colors used Time taken (ms) Colors used Time taken (ms)

Layered, 10k nodes unit-disk, 10k nodes

Dijkstra 500 23.4 480.6 35.8
SPACOA 499.6 7.0× 103 462.2 59.2× 103

Greedy-Select 358.2 12.5× 103 296.4 9.2× 103

Greedy-Prune-Select 328.8 22.4× 103 263.4 29.7× 103

