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1. Introduction  

Quantum tomography is an important tool for characterizing quantum systems and is useful for quantum information 
processing applications. Quantum-state tomography estimates the state of a quantum system, while quantum-
detector tomography estimates the positive-operator-valued measure (POVM) that describes a detector. Here we 
present a technique for estimating both the state of a single qubit, and the parameters of a positive-operator-valued 
measure (POVM) that describes a detector, in a self-consistent manner [1, 2]. We accomplish this by performing a 
series of known, unitary transformations between the state preparation and measurement stages. We refer to this 
technique as state preparation and measurement tomography via unitary transformations (SPAMTUT). 

SPAMTUT is similar to gate-set tomography (GST) in that both the state and the POVM are estimated [2]. 
SPAMTUT and GST differ in that for SPAMTUT the transformations performed between the state and the 
measurement are assumed to be known, in principle allowing for fewer measurements. The assumption that the 
transformations are known is valid if they can be calibrated using a bright, classical source and a classical detector, 
as is the case in our experiments. The only assumptions made about the state and the detector POVM are that we 
know their Hilbert-space dimensions. 

In our experiments we use individual photons encoded as polarization qubits, so vectors that describe the state 
and the POVM reside within the Poincaré sphere and the unitary transformations act as rotations within this sphere. 
The vectors that describe the state and the POVM are determined by aligning the rotation axes of the transfor-
mations with these vectors, rather than by inverting a measured set of data. This allows us to estimate errors in the 
parameters that describe the state and the POVM in a straightforward manner. The directions of the state and the 
POVM are determined to within a four-fold ambiguity. This ambiguity is due to gauge degrees of freedom [2, 3]. If 
a second state preparation or POVM is available this can be reduced to a two-fold ambiguity, or, if some a priori 
information about the state or the POVM is known, that information can be used to distinguish between the four 
possibilities. Finally, there is an undetermined continuous degree of freedom (sometimes called a blame gauge [3]) 
that trades off between the purity of the state and the discrimination power of the detector. SPAMTUT determines a 
limit on the amount of this tradeoff. 

Here we describe the theory of SPAMTUT, as well as an experiment we are performing to demonstrate it. 

2.  Theory 

Suppose we have a qubit that is prepared in a state that is described by the density operator , which can be 
expressed in terms of the Pauli matrices  (i = 1,2,3) as  

   .  (1) 

The parameters that describe  can be arranged into a 3-component vector . Furthermore, we have a 2-outcome 

detector described by the POVM elements  (  and NOT- ). They are written in terms of the elements of 
a 3-component vector  and the detector bias parameter u as 
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Positivity is ensured by the constraints  and . The two-outcome POVM can be represented in terms 

of a single observable , and the expectation value of a measurement is given by [3] 

   . (3) 
The goal of SPAMTUT is to estimate ,  and u, thereby fully characterizing the state and the POVM. This is 

done by performing known, unitary transformations  between the state preparation and the measurement. Since 
 and  are three-dimensional vectors whose magnitudes are bounded by 1, they reside within the Poincaré sphere 

(or, alternatively, the Bloch sphere). The transformation  rotates  (by an angle  about  the axis 

) into , so we measure  

   . (4) 

We begin by searching for a transformation  that maximizes ; in this case  is aligned parallel to . 

Next, we find a transformation  that minimizes . In this case  is aligned antiparallel to , so 

. We find u from . Since u has been determined, we can now directly determine the 

dot product from our measurements: . We then find a transformation  that makes the dot product 0, 
or at least minimizes its magnitude, 

   , (5) 

so  . Now that we have the transformation , we can leave it in place and seek . Once  is determined 

we can find the original vector  by applying  to .  

 Given  and u, we perform measurements which yield 

   . (6) 

We now find a transformation  that minimizes  for all rotation angles  (in our simulations we find that 

minimizing  for the two angles  is sufficient). This means that  for any . There are now 

two possibilities, which we will consider separately: the rotation axis  is parallel to either  or .  

Assuming  is parallel to , we have found the direction of , which is parallel to  (  rotates about an 
axis parallel to , so its direction does not change). Now we need to find . Recalling that , we can find a 

transformation  that maximizes . This makes  parallel to . Knowing  and the direction 

of  determines the direction of , as  . We also know . While SPAMTUT determines 
the product of the magnitudes of  and , it cannot determine their individual magnitudes because of the blame 
gauge degrees of freedom described above. Given this fact, we will assume that w is maximized, so we have 

, and then . All of the information we now have determines one solution for the state and the 

POVM, call this solution . 
As seen in Eq. (6), the expectation values that we measure are determined by a dot product. It might be the case 

that both  and  point in the opposite directions that we determined above, and the minus signs would cancel out. 
Thus, due to gauge degrees of freedom, the actual state and detector POVM might be given by the solution 
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Tr Σ̂Û 'ρ̂( )− u = !w i !p ' = 0
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. This represents a choice of basis. In the case of polarization qubits it effectively corresponds to 
rotating both the state and the detector by 90o, i.e. interchanging what we mean by horizontal and vertical. 

To find the next possible solution assume  is parallel to , so the direction of  is determined. The 

transformation  that maximizes  still ensures that  is parallel to . Knowing  and the 

direction of  determines the direction of , as . From the direction of  we can find the direction of 
. Again, we can determine the product of the magnitudes of  and , but not their individual magnitudes. Call 

this solution , and once again  is also a possible solution. Effectively these solutions differ 
from the previously found solutions by swapping the roles of  and . 

We have thus found four possible solutions that determine both the state and the detector POVM, to within the 
continuous blame gauge degree of freedom. If a second state preparation or detector POVM is available the whole 
process can be repeated. This will allow us to distinguish between solutions a and b, but not between the positive 
and negative solutions.  

We have performed simulations of the SPAMTUT algorithm. We generate 1,000 random pairs of state 
preparations and detector POVMs. The directions of  and  are chosen randomly, and we assume , 

  and . In all trials, one of the four solutions returned by SPAMTUT correctly determined 
all of the parameters. 

3.  Experiment 

To perform SPAMTUT we need to minimize or maximize certain measurements. Experimentally this can be done to 
within the uncertainties of the measurements, and these uncertainties bound our accuracy in determining both the 
state and the detector POVM. There are two types of uncertainties that are relevant: systematic errors in the 
calibration of the unitary transformations, and statistical uncertainties due to finite measurement times. Using 
classical sources and detectors to calibrate the transformations can, in principle, make systematic errors arbitrarily 
small. Longer counting times can be used to reduce statistical uncertainties.  

We are in the process of implementing an experiment to demonstrate that we can use SPAMTUT to self-
consistently determine the polarization state of a single photon, and the POVM of a detector that measures this 
polarization. To do this we need to perform arbitrary unitary transformations of a polarization qubit, which means 
that we need to be able to rotate through an arbitrary angle, about an arbitrary axis, in the Poincaré sphere. To 
implement these transformations we use a Soleil-Babinet compensator (SBC) placed between two quarter-wave 
plates [4]. The rotation of the axes of these components determine the axis of rotation, while the retardance of the 
SBC determines the rotation angle. 

4.  Conclusions 

We have shown that SPAMTUT is capable of estimating both the quantum state of a single qubit, and the POVM 
that performs a measurement of this qubit, in a self-consistent manner. This is done by performing a series of 
known, unitary transformations between the state preparation and measurement stages. The only assumptions made 
about the state and the detector POVM are that we know their Hilbert-space dimensions. 
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