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ABSTRACT

Spherical microphone arrays have attained considerable interest in recent years for their ability to decompose
three-dimensional soundfields. This paper details real-time capabilities of a source-tracking system composed of a
beamforming array and multiple lavalier microphones. Using the lavalier microphones for source identification, a
particle filter can be implemented to allow independent tracking of the orientation of multiple sources simultaneously.
This source identification and tracking mechanism is utilized in an immersive lab space. In conjunction with
networked audiovisual equipment, the system can generate a real-time virtual representation of sound sources for a
more dynamic telematic experience.

1 Introduction 2 Localization

There are three major aspects to the method of localiza-
tion and source identification in this application. The
first is the beamforming algorithm, a delay-and-sum

A diverse selection of literature exists on the topic of di-
rectionally filtering signals from higher order spherical
microphone arrays. These deliver a variety of methods
to perform soundfield analysis or source tracking with
increasing precision and flexibility. The research effort
outlined in this paper aims to develop a multiple-source-
tracking system using modern techniques capable of
providing relatively low-latency tracking data to a full
telematic environment. This paper also demonstrates
that such a system is fit to run on modern, consumer-
grade equipment.

method which improves robustness to sensor noise
while remaining both mathematically and computa-
tionally simple to execute, especially in the Spherical
Harmonics Domain (SHD). The second aspect is the
filtering mechanism, which treats a collection of gen-
erated beams as a set of particles, and uses an uncer-
tainty model to iteratively predict and update a source’s
orientation over successive frames. Finally, the filter-
ing mechanism is wrapped into a detection framework,
which monitors source activity and allows for discrimi-
nation between multiple sources, while reducing com-
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putational load.
2.1 Beamforming

Before beamforming, the signals from the microphone
array are encoded in to the SHD using the Spherical
Harmonics Transform (SHT). This improves the com-
putational efficiency of beamforming down the line by
taking advantage of the orthonormal spherical basis
functions to describe the spatial behavior of the sound-
field [1]. For a spherical array with Q sensors, with
their orientation given by Q, = (¢, 6,), a short-time
Fourier transform of the input signals is computed first,
then the SHT is performed by:
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where p(k,a,Q,) is the frequency-domain representa-
tion of the audio signals, a is the radius of the sphere,
and ¥, (Q,):
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are the Spherical Harmonics coefficients, oriented for
each capsule position, governed by degree n, order m,
angular orientation Q and the Legendre function P,,,.
This operation can be represented in matrix form as:
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where p € C(@%5 represents the audio signals, and
Yq € RW +11XQ 5 the matrix of harmonic components.
The SHD representation of the array is order-limited
based on Q = (N + 1)2, where Q is the number of
microphones, and N is the maximum ideally attainable
order before spatial aliasing occurs. For further details
of the SHT for acoustic arrays and its parameters, refer
to [1, 2, 3, 4].

The beamformer, or directional filter, is a simple delay-
and-sum model, designed to align phase of the input
signals in the direction of interest. In the SHD, the
weights are described by

Y ()
bu(kr)’
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where d, is the set of axis-symmetric delay-and-sum
beamforming weights, as derived in [2]. b,(k,r) rep-
resents the modal behavior of the spherical surface at
the orientation described by Y"(€;) using spherical
harmonics. These are applied to the transformed array
signals to create the directionally-filtered array output:

Y =WoPum- ®))

Multiple beams can be generated and applied to the
audio data with this method. The output is then a
matrix of spherical harmonic signals that have been
directionally filtered according to multiple orientation
angles.

White-Noise Gain is a metric of array robustness to
sensor self-noise, and can be determined by taking the
ratio of the array input to the array output. By maximiz-
ing the ratio, the optimal weights for maximum WNG
for a SHD beamformer can be derived,

ilV:O % by (kr)[?

which is analogous to the delay-and-sum beamformer,
as shown in [5]. Although other algorithms for direc-
tional filtering exist in the literature, this method is
preferable for its directional and computational perfor-
mance, as well as its simplicity [6, 7].

2.2 Filtering Algorithm

The generated beams are incorporated into a filtering
algorithm to estimate source position over time. The en-
ergy sum of the array output is taken, then normalized
across orientation angles to generate a pseudolikelihood
distribution. A recursive Bayesian estimator is used
to estimate source position based on this likelihood
function as well as a transition model which estimates
position change over time, and prior output.

The conditional density estimating source position
given array measurements is described by

AES Conference on Audio for Virtual and Augmented Reality, Redmond, WA, USA, 2018 August 20 — 22
Page 2 of 6



Mathews, Braasch

Real-Time SMA Beamforming

P(Xe|y14-1) :/p(xt|x,71)p(x,,1|y1:,,1)dx,,1 @)
p(Xe|y 1) o< (¥, %) P (Xe|¥1:4-1) (8)

where x is the node corresponding to source posi-
tion, and y is the data obtained from measurements.
p(x;|y;.,) is the posterior density which describes the
probability of a source position given a collection of
measurements to step f. p(X,|x,_1) is the transition den-
sity which governs movement of the source. Finally,
p(y,|x;) is the likelihood. Recursive approximations
of the posterior density are performed using a sequen-
tial Monte Carlo process on a set of particles which
are generated from the array output as described above
[8, 9]. This process of recursive estimation is outlined
as follows:

Given an initial uniformly-weighted particle distribu-
tion, the source state represented by x<’), withiel...N
being the set of particles,

1. Generate a likelihood function based on measure-
ments obtained.

In lieu of a true likelihood function, a pseudolike-
lihood is generated via

f(x:,y,) = max y,(Q), ©))

where Q is the set of vectors governing state ori-
entation (Q() = (81, (). This takes advantage
of the fact that the measurements from generated
beams imply their own distribution of the source
location estimate [10]. And therefore, the particle
orientation is observed where the measurement
values are at maximum.

2. Apply normalized values from the likelihood func-
tion to the particle weights.

The likelihood values are converted to weights by
normalizing their values to sum to unity.

= S %)
Y f(xy)

3. Estimate source position

(10)

The weighted particles are applied to the orienta-
tion set to produce the source location estimate.

N
L=y wia® (11)
i=1

4. Predict a new set of particles using the estimated
source location and a model for source movement
The weighted particles are resampled according
to a selection-with-replacement scheme that prior-
itizes particles with large weighting values. There
are a variety of dynamic models that are suitable
for this work [8, 11, 12]. In this case, a simple
Gaussian distribution was used, with the parame-
ters determined heuristically.

5. Save the new particle orientation set for process-
ing the next frame of measurement data

The process is then repeated for the next frame of data
using the resampled particles.

2.3 Detection Framework

The framework governing this process allows discrimi-
nation of multiple sources. Lavalier microphones are
used to identify active sources on a per-frame basis.
Based on the active source, a corresponding set of par-
ticles are updated to reflect its estimated orientation.
Finally, a time-based limit is imposed on the orientation
of the particle sets to account for source motion during
periods of inactivity.

The energy-sum of each lavalier microphone within a
given time frame is determined by

N
Ey =Y s(n)”. (12)
n=1

Where n € 1...N are samples, and s(n) is the signal
from the lavalier. The log difference of the lavalier sig-
nals is compared, and identifies whether a single source
is active, multiple sources are active, or no sources are
active, based on whether the difference result exceeds
an experimentally determined threshold.

From this identification, the system will activate a set
of particles for prediction and update only if its corre-
sponding source is solely active. If both sources are
either active or inactive, the system defaults to a hold-
ing state, storing the last set of computed particles, and
activating a timer which will reset the particles for all
sources to initial weight and orientation distributions
once a given time interval has elapsed. Similarly, while
a single source is active, reset timers are engaged for
all inactive sources. This reset process is included to
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Fig. 1: Global flow diagram of the detection and tracking system for a single frame of data.

improve tracking accuracy over relatively long periods
of inactivity as seen in typical conversational scenar-
ios. A diagram of this detection and activity analysis
framework is shown in Figure 1.

For analysis purposes, the absolute position of the
sources are recorded and compared with the estimate
using

& =|L — L] (13)
Where & is the angular deviation for time frame ¢. This
is averaged over the runtime of each test to produce the
mean error, quantifying the degree of deviation from
the true source position.

3 Results

A test of this system was performed at the Rensse-
laer Polytechnic Institute CRAIVE-Lab (Collaborative
Research-Augmented Immersive Virtual Environment)
- a large, open room approximately 223m? and with an
reverberation time of 0.4s. Two lavalier microphones
were attached to two sound sources simulating a con-
versation between two male speakers, with speaking in-
tervals varying between 2 and 4 seconds, and consistent
intervals of either concurrent or sequential speech. The
first source maintained a stationary position at 2.3m,
while the second moved along an arc of approximately
wrad around the array, also at a distance of 2.3m.

The system was compiled as an external object in Max
7 to take advantage of Max’s real-time audio process-
ing capabilities. Each audio frame consisted of 512
samples with a 50% overlap, and a Hamming window
applied. Audio was obtained via three slaved Focus-
rite interfaces with a sample rate of 48ksps and 16-bit

depth. Computation was performed on a consumer-
grade laptop. Plots of the test were generated using a
functionally identical system written in MATLAB.

The plot of position over time for the two sources and
their estimates are displayed in Figure 2. Accuracy
was calculated to be 0.07rad for concurrent speakers,
and 0.1rad for sequential speakers via average angular
deviation. Computational speed of the system was
logged in both Max and MATLAB - average processing
time per-frame was 1.1ms for Max, or about 8§90 audio
frames per second.

0.5
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Time (sec)

Fig. 2: Plot of the average estimated position over az-
imuth of two sequentially speaking male speak-
ers, one stationary (red) and one moving (blue),
with ground truth represented by the dashed
black lines.

4 Discussion

The low latency of this system justifies a low threshold
for dropped frames (i.e. frames which bypass analysis
due to source confusion). Since typical speech sources
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Fig. 3: Plot of the average estimated position over az-
imuth of two concurrently speaking male speak-
ers, one stationary (red) and one moving (blue),
with ground truth represented by the dashed
black lines.

produce large dynamic changes in very short time inter-
vals, tracking of even concurrent speakers is possible
with fast enough frame-by-frame analysis.

It should also be noted that the system was limited to
azimuth-only detection for ease of analysis and plot
generation. However, extension to full spherical cov-
erage is a relatively trivial exercise involving uniform
spherical coverage instead of uniform circular for the
initial particle distribution, and dynamic motion in both
azimuth and elevation versus simply azimuth.

The higher error value seen in the sequential source
case can mostly be attributed to the continued motion
of the moving source. Since the default behavior of
the system is to maintain the orientations of the last
frame of particles verified by measurement, there is a
period of tracking loss, followed by a brief period of
reacquisition as the system registers new activity.

By compiling the system for use in Max, integration
with other technical tools becomes a viable option. Cur-
rently, extensions of the system are capable of stream-
ing audio and tracking data to other computers, web-
based applications, and other devices in the environ-
ment, such as tracking cameras and networked lighting
systems. This ease of integration aids research into
multi-sensor tracking at the environment-level.

5 Summary

This research effort demonstrates a practical framework
for multiple source discrimination with a beamforming

Fig. 4: Tracking and integration test. The location es-
timate of the author is broadcast to a lighting
array and browser-based application, visually
highlighting the author’s position.

spherical microphone array. The ability to generate
accurate tracking with high frame rates on consumer-
grade hardware is important for the proliferation of this
type of acoustic analysis in the commercial sphere. Al-
though many refinements can be made to improve the
computational efficiency, tracking behavior, hardware
robustness, etc., the simplicity and ease of implementa-
tion of this system indicates its usefulness in a variety
of practical scenarios where real-time performance is
important.
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