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Abstract

This paper investigates the idea of introducing learning algorithms into parking guidance and
information systems that employ a central server, in order to provide estimated optimal parking
searching strategies to travelers. The parking searching process on a network with uncertain
parking availability can naturally be modeled as a Markov Decision Process (MDP). Such an
MDP with full information can easily be solved by dynamic programming approaches.
However, the probabilities of finding parking are difficult to define and calculate, even with
accurate occupancy data. Learning algorithms are suitable for addressing this issue. The central
server collects data from numerous travelers’ parking search experiences in the same area within
a time window, computes approximated optimal parking searching strategy using a learning
algorithm, and distributes the strategy to travelers. We propose an algorithm based on Q-
learning, where the topology of the underlying transportation network is incorporated. This
modification allows us to reduce the size of the problem dramatically, and thus the amount of
data required to learn the optimal strategy. Numerical experiments conducted on a toy network
show that the proposed learning algorithm outperforms the nearest-node greedy search strategy
and the original Q-learning algorithm. Sensitivity analysis regarding the desired amount of
training data is also performed.
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1. Introduction

As an essential component of the urban transportation network, parking searching has been
widely considered as a significant reason for congestion in downtown areas. According to
empirical studies (/, 2), cruising for parking is responsible for 30% of traffic (trips) on average in
urban areas. In a more recent research, Giuffre et al. (3) found that cruising for parking results in
a peak increase of about 25 —40% of the traffic flow. Simulation studies incorporating parking
search at macroscopic (4—6) and microscopic level (7, &) also show the degradation of traffic
condition caused by cursing for parking. For example, by exploiting the properties of the
macroscopic fundamental diagram, Geroliminis (5) modeled the dynamics of parking searching
and showed the cruising affects all travelers even those with a destination outside the limited
parking region.

Recognizing the significance of parking searching problem, parking guidance and information
systems, which often involve parking information collection, processing, and distribution, have
emerged to help drivers find parking spaces. Parking information collection is often achieved by
sensors at entrances/exits or at individual parking stalls (9). Crowdsourcing is also an emerging
approach to parking information collection. Furthermore, to provide future parking availability
information, many studies have proposed prediction methods with model-based, statistical, or
machine learning approaches (e.g., 10, 11, and the articles cited therein). Data distribution relies
on efficient communications between drivers and the service provider (12, 13); and smartphone-
based services have become a popular solution. Available mobile services currently on the
market include mobile payment, parking information provision, and reservation (e.g.,
ParkMobile, ParkMe, BestParking etc.).

We argue, however, the effectiveness of providing parking information (current parking
availability, predicted future parking availability, and predicted parking search time) alone to
users might be limited. The parking information collection methods mentioned previously may
be unreliable under abnormally high parking demand, which usually suggests special events and
unfamiliar drivers, when effective parking guidance and information services are most needed.
Under such circumstances, it is common that parking spaces are reassigned or reserved (special
event); and double parking is also common for parking facilities with narrow stalls (unfamiliar
drivers). While some researchers found parking information such as occupancy information,
parking searching time (/4) and future parking availability (/5) significantly reduce users’
cruising time, others showed that the benefit depends on the level of congestion (/6). The
benefit is limited when the parking capacity is almost saturated.

Providing travelers with parking searching strategies (suggested actions for a user to take in any
given state of the parking searching process) could be a more effective approach to parking
management, especially for unfamiliar drivers and for special events. The parking searching
problem can naturally be viewed as a Markov Decision Process (MDP) where the outcome is
random. User-optimal strategies can be formed if the underlying Markov transition probabilities
and the cost/reward structure associated with the outcomes are known. To make the MDP
formulation more realistic, Tang et al. (/7) introduced driver memories in modeling individual
driver’s parking searching process. Drivers are assumed to have memories of the probability of
finding parking at each facility, which is set to either 1 or 0 upon the outcome of a visit to a
facility, and are later gradually reset to an a priori value. In their approach, the state space
would grow exponentially with the memory size. Additionally, the actual probabilities of
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finding parking (the a priori values) are difficult to define and calculate, even with accurate
occupancy data. To address this issue, learning algorithms can be introduced to approximate the
optimal strategy. Commuters already form user-optimal strategies by learning from their day-to-
day experiences. While learning is limited during non-recurring parking searching for an
individual driver (e.g., when going to a special event or visiting a special destination) due to
limited interaction with the environment, it is possible to introduce learning into parking
guidance and information services that can leverage experiences from numerous users attending
the same event or visiting the same destination.

In this paper, we consider the setting where a central server is employed by a parking guidance
and information service provider, and users of the service interact with the central server through
a mobile phone app or alike. Figure 1 describes the users’ interactions with the server and the
environment. Through the app, the central server gathers information on whether a user
successfully finds parking or not either through location data or user reports. It then learns from
the parking search experiences from all the users in the same area within a reasonable time
window to compute an approximated user-optimal strategy. The approximated user-optimal
strategy is distributed to those still searching for parking within the same time window through
the mobile app. This learning cycle repeats for each time window. For users whose searches are
not completed within a time window / learning cycle, updated recommendations can be pushed
to them through the mobile app. Alternatively, this update can be skipped and the outcomes of
these users’ searches following old strategies would provide valuable data and jump-start the
next learning cycle. The latter might even be preferred by the users, especially when the time
windows are small, so that they do not receive constant updates.

Server

(((

Data CollectiV ' \Parking Search Strategy
Learning
> G e

Parking SearcP\ /

Outcomes;
Cost / Reward Environment

Parking Search Actions

FIGURE 1 FRAMEWORK

Note that the users are not required to adopt the recommended strategy. Diverse actual behavior
policies adopted by the users arguably would help with the convergence of the learning
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algorithm. While travelers’ actual searching behaviors would affect the underlying probabilities
of finding parking at each facility, it should also be noted that we are not trying to predict the
actual parking probabilities for the current and future time windows. The actual probabilities are
highly likely to fluctuate continuously; but the proposed system and learning algorithm will
model the probabilities as constant in a given time window / learning cycle.

Therefore, it is desirable that the parking conditions are relatively stable during each time
window / learning cycle (from drivers exploring the environment and collecting data to an
estimated user-optimal strategy being distributed to drivers) as shown in Figure 1. Otherwise,
the knowledge and user-optimal strategy learned during exploration would be applied in a
different environment and would not be effective. The time windows could be pre-determined
for recurrent special events (such as seasonal sport events) where the demand patterns are
generally known. They could also be determined in real time when the central server detects a
shift in the parking search outcomes from the users; or if the parking guidance and information
service provider is also able to obtain data (such as real-time occupancy and capacity of a
parking facility) from infrastructure managers. With data from the supply side, it is possible to
estimate the parking probabilities and predict future parking availability. Our previous work (/7)
has proposed a rolling-horizon framework and an iterative approach for this purpose. The
framework is also able to detect demand pattern shifts, and could potentially be applied for the
time window determination.

The focus of this paper, on the other hand, is on reducing the amount of data and time required to
train the learning algorithm. This is crucial so that the time window can be sufficiently short, if
needed. Additionally, being able to learn the optimal strategy with limited data frees the parking
guidance and information service from a high market penetration requirement. The service and
algorithm would not need all or a large percentage of the travelers to participate in order to work.

We propose a modified Q-learning algorithm that can be adopted by such parking guidance and
information services to provide user-optimal parking search strategies for individual drivers. As
a reinforcement learning algorithm, Q-learning is a model-free off-policy method where the
learning is performed through agent actions and environment feedback. Since user actions are
choosing the parking facility to visit next, and the reward structure is closely coupled with the
transportation network through travel cost, it is possible to incorporate and take advantage of the
network topology in the learning algorithm. We propose a Q-learning-based algorithm that
utilizes the underlying transportation network topology, which can dramatically reduce the size
of the state space and improves the convergence speed and the solution quality.

To this end, the contributions of this paper are: 1) the first to introduce reinforcement learning
into parking guidance and information systems to provide user-optimal parking strategies to
individuals; 2) a modified reinforcement learning algorithm utilizing the topology of the
transportation network, greatly reducing the amount of data required for training.

2. Methodology

This section discusses the model and methodology proposed in this paper. Section 2.1 describes
our model for the parking searching MDP problem. Section 2.2 provides an overview on
reinforcement learning methods. Section 2.3 explains in detail the proposed learning algorithm
that utilizes the transportation network topology.
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2.1 Modeling parking searching problem as a Markov decision process

Consider a strongly connected urban transportation network with a set of parking facilities
(nodes), denoted as N = {1, 2, ..., n}, where there is a path between every pair of nodes. The
probability of finding parking at each facility i is denoted as p;. This network model can
incorporate both off- and on-street parking facilities. For on-street parking, a dummy node can
be created with its corresponding probability and inserted in the middle of the modeled street. A
driver starts from origin O, tries to find parking in the transportation network, and travels to
destination D using other modes (e.g., walking). Without loss of generality, we assume that no
parking is allowed at the origin O or the destination D. The goal of a parking strategy is to
minimize a driver’s expected cost (or maximize a driver’s reward) of parking, which includes the
cost of cruising to search for parking and the travel cost from a parking facility to her final
destination. For the non-recurring parking searching scenarios considered in this paper (e.g.,
when going to a special event or visiting a special destination), p; is unknown to the users or the
parking guidance and information system. While p; constantly fluctuates in reality, we assume
that p; remains relatively stable in each time window / learning cycle as discussed in Section 1;
and the learning algorithm will treat p; as constant.

The parking searching problem can be formulated as an MDP. Each node i in the set N
corresponds to two states: iy and ip, representing a traveler not finding parking / found parking
at node i respectively. If a traveler is in state ig, she can take action a;; (i,j € N,j # i),
representing the action of driving from node i to node j and searching for parking there. Note
that node j may not be the immediate adjacent facility to node i in the physical road network.
Each action a;; leads to two possible outcomes (jx and jp) depending on the probability of
finding parking at node j. If a traveler is in state ip, the only action allowed next is a;p, traveling
to the destination using other modes.

Figure 2 and Figure 3 illustrate the physical network and the transition graph for a 3-node
example. In Figure 2, only driving links but no walking paths are shown. Note that the origin
node is not directly connected to nodes 2 and 3 (Figure 2), but a driver at origin O can take
actions a,j, Vj € N (Figure 3). Action ay, means that the driver goes from origin to node 2 to
search for parking, bypassing node 1 even it is on his way. A driver in state the 15 (physically
at node 1 but did not find parking there) can take action a,; (j = 2, 3), driving to node j and
searching for parking there. If he takes action a,,, then there is a probability of p, that he finds
parking and reaches state 2p; he will then take action a,p to travel to the final destination using
other modes (e.g., walking). Otherwise he would end up with state 2z and continue searching.
Also note that states 1p, 2p, ... np are in fact terminal states, as the only action allowed from these
states is traveling to the destination D using other modes. Given the states and actions above, we
are able to define the rewards based on the actions taken. For searching actions, the reward of
a;j(i € NU{0},j € N,j # i), is simply defined as —d(i, j), the negative shortest path travel
distance between node i and j. Similarly, after a traveler finds parking, the reward is defined as
the negative of the travel cost to the destination by other modes.
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FIGURE 2 PHYSICAL NETWORK (3-NODE EXAMPLE)
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FIGURE 3 TRANSITION GRAPH (3-NODE EXAMPLE)

The optimal value of a state is the total expected reward staring from this state to the destination
state D, following the optimal strategy. If the transition probabilities are known, the problem can
be solved exactly using dynamic programming methods such as value iteration and policy
iteration. When the transition probabilities are unknown to agents in the system, reinforcement
learning methods can be adopted to estimate the optimal values and generate approximated
optimal strategy based on the values learned. Note that the optimal values of terminal states s €
{D,1p,2p, ...,np} are determined. We are interested in estimating the optimal values of state s €

{0,1R, 2R, ..., ng}.

2.2. Overview of reinforcement learning

With the advancements in theory, algorithms and computational power, reinforcement learning
algorithms have already been effectively applied to transportation problems including signal
control (/8—21), train rescheduling (22), travel behavior (23) and autonomous vehicle control
(24, 25).

In reinforcement learning, an agent learns how to achieve a certain goal by exploring the
environment: it takes an action at its current state in the environment, moves to the next state
depending on the probabilistic outcome, and receives rewards. The action and reward pairs are
used to update the estimated optimal value of each state.
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On-policy and off-policy methods are two classes of learning methods. On-policy methods (e.g.,
SARSA and TD(A), see (27)) start with a given policy that adopts the current optimal actions
most of the time but also has small probabilities of taking other actions for further exploration,
and learn the value of each state under this policy until the optimal values and actions converge.
On the other hand, off-policy methods (e.g., Q-learning (28), R-learning (29)) can learn the state-
action values of a target policy that the agents do not necessarily follow in their exploration.

For our problem, off-policy methods are more appropriate since the central server does not know
the actual behavior policies being adopted by travelers in the parking search data collected. Q-
learning is a common off-policy algorithm learning directly from the consequence of actions. It
can be proven that given sufficient training data under any soft behavior policy, where the
probability of taking the current optimal action is less than 1, even purely random behavior
policy, the optimal action values learned will converge with probability 1 (27).

2.3 Proposed learning algorithm

We propose a modified Q-learning algorithm which takes advantage of the network topology and
dramatically reduces the size of state space. The proposed algorithm takes travelers’ parking
search actions and outcomes (regardless of the actual behavior policies adopted) and generates
an estimated optimal parking searching strategy. It does not require a large amount of data for
training, and is able to converge quickly. It is suitable to provide an approximated optimal
strategy for parking searching problem with limited information.

We will briefly introduce the Q-learning algorithm first, followed by the proposed algorithm
which is based on Q-learning.

Q-learning is an off-policy learning approach approximating the underlying value of state-action
function Q(s,a) (s € S,a € A) directly when an agent at state s takes action a and ends up at
state s’

Q(s,a) = (1 —a)Q(s,a) + a(r, + Y max Q(s',a")) )

where « is the learning rate and y is the discount factor. Since we are trying to minimize the
total cost of the parking search process without discounting the cost of any action in our

problem, the discount factor y = 1. r, is the immediate reward of action a and max Q(s’,a") is
a' e s/

the maximal possible reward afterwards. Equation (1) means that Q (s, a) would be updated as
the weighted average of the current value of Q (s, a) and the reward following the current
optimal strategy based on current Q values. Note that the Q values can be arbitrarily initialized
because in each update, intuitively speaking, we are adding more truth and discounting the effect
of initialized value by . In fact, it can be proven that the algorithm converges as long as all
state-action pairs continue to be updated (27).

We propose a modified Q-learning algorithm for the parking searching problem, taking
advantage of the topology of the transportation network. Note that Q (i R Qi j) represents the
expected value of taking action a;; from state ig. This means that Q (i R Qi j) is comprised of two
components: the travel cost from current node i to j, and the sum of all the expected following
rewards starting from searching at node j. Now consider two state-action pairs (ig, a;, ) and

(j R ajk) where the actions are driving to the same node k from different current nodes i and j.
The only difference between Q (ig, a;; ) and Q( Jr ajk) lies in the first component, their travel
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costs. The sum of all the expected following rewards starting from searching at node k would be
the same, denoted as V (kg). Define

V(ke) = Q(0,agy) — d(0,k) o
= Qg ay) —d(i, k) = Q(jr i) —d(G. k), Vi, jEN

Since the travel cost is deterministic, we only need to update one value V (kg) for all the actions
going to the same location k when any action a;, is taken. From equation (2), updating V (kg) is
essentially updating Q (ig, a;;), Vi € N as well as Q(0, a;). In other words, with the original
Q-learning equation (1), only one Q value is updated when a state-action pair occurs; but with
equation (2), when a state-action pair occurs, the Q values for all state-action pairs with the same
destination node are updated at the same time. This will greatly reduce the number of updates to
be performed in the learning process.

Pseudo code:

Initialize V (s), count(s)
Repeat (for each parking search trajectory):
Initialize the starting node i,
Repeat (for each parking facility j visited in the search trajectory

before finally finding parking):
1

a(j) < Z

count(j)3

V(i) « (1= @V (i) + alry,, + max (V(kg) + G, 0) = d. )]

count(j) «— count(j) + 1

<]

where count(j) records how many times facility j is visited. The learning rate a is calculated
separately for each node j based on count(j). For each node, the series of learning rate must
add up to infinity while the summation of square of @ must be finite to ensure convergence (37).
After estimating V values, the Q values can be derived by reversing equation (2). The optimal
policy can then be derived by choosing the action with maximal value at each state.

2.4 Benchmark algorithm

To evaluate the proposed algorithm later in our numerical experiments, we choose the value
iteration method as a benchmark where all the parking probabilities are assumed known. Denote
V' (s) as the expected total rewards if a traveler starts from state s and taking optimal actions until
he reaches the destination. Value iteration iteratively updates V (s) by taking the optimal action
based on the current V (s) estimates:

Viar(s) = max(EgPa(s, s)(Rals,s") + yVils))

In the above equation, V;(s) is the it estimate of V (), P,(s, s") is the probability of
transitioning from state s to s’ under action a, and R, (s, s") is the corresponding reward.
Vy(s),Vs € S can be arbitrarily initialized. The discount factor y is 1 because we are
considering the total undiscounted reward. As an undiscounted Markov decision problem, the
convergence has not been completely understood; but for our problem, the convergence of value
iteration can be proved from a sufficient condition proposed in (30). This guarantees the validity
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of using value iteration as our benchmark. Finally, the optimal state values V(s) can be used to
derive an optimal strategy m by:

n(s) = argmax(Zy Py (s, ) (Ra(s,s") + YVi(s)))

3. Numerical Experiments

Numerical experiments are conducted with randomly generated parking probabilities on a toy
network to investigate the performance of the proposed method. The transportation network
considered has six nodes. The network topology and associated travel costs as shown in Figure
4. The proposed method is compared with the original Q-learning, a greedy nearest-node
strategy and the optimal strategy calculated using value iteration from the exact probabilities of
finding parking. The experiments show that the proposed learning algorithm could generate a
searching strategy close enough to the optimal strategy with a reasonable size of training data.
Additionally, sensitivity analysis is performed regarding the amount of data needed.

FIGURE 4 S1X-NODE NETWORK

3.1 Methods comparison

The comparison among methods is performed under 1000 different scenarios. In each scenario,
the actual probabilities of not finding parking are randomly generated between [0.5, 1] for each
parking facility, simulating a relatively congested parking condition. In each scenario, 100
parking search trajectories are generated from a purely random search policy as the training data
used for learning. This is a reasonable data size considering the scale of a real special event.

We first compare the ranking (in terms of expected cost) of the strategies obtained by the three
approximate methods: the greedy nearest-node strategy, the Q-learning method, and the
proposed modified Q-learning method. From Table 1, it can be seen that the proposed modified
Q-learning is ranked first (lowest expected cost) in 529 out of the 1000 scenarios; and is ranked
last (highest expected cost) in only 99 scenarios. The ranking performances of the original Q-
learning and the nearest-node strategy are similar, both inferior to the proposed modified Q-
learning algorithm. Both of them are ranked first for only 200+ scenarios, but last for 400+
scenarios.
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TABLE 1 COST RANKING COUNTS

Strategy . . .
m Nearest Q-learning Revised Q-learning

First 228 243 529
Second 334 294 372
Third 438 463 99

We further benchmark the three approximate methods against the true optimal strategy solved
using value iteration. Two performance metrics are examined: the average expected travel cost
over the 1000 scenarios, and the performance profile (32).

In terms of the average expected travel cost over the 1000 scenarios, the true optimal strategy
scores 11.56. The average expected cost of nearest strategy, Q-learning and modified Q-learning
are 12.86, 12.92 and 11.77, respectively. The gap between the strategy obtained from the
modified Q-learning and the optimal strategy is very small.

The performance profile provides a more detailed, graphical comparison of different algorithms
over the same problem set (32). In this study, each scenario is a unique problem in the problem
set. For each scenario ¢ and algorithm m, ¢, ,, is defined as the expected cost of the resulting
strategy. We use the true optimal strategy as a baseline, which is always better or equal to other
strategies but unknown to travelers. The performance ratio of algorithm m in scenario c is
defined as:

tc,m

7"C,‘i’n
tc,optimal

We are interested in obtaining an overall assessment of the performance of the algorithms instead
of any particular scenario. Now define

ne

lCl,cE C:item =7

pm(T) =
where n. is the number of scenarios in which the algorithm m has a performance ratio within a
factor T of the best possible strategy. As defined, p,,, (7) is essentially the cumulative distribution
function of the performance ratio of algorithm m. For example, a point (1.05,0.93) on the
dotted line in Figure 5 indicates that the modified Q-learning algorithm can solve 93% problems
in the problem set with a cost smaller than or equal to 1.05 times what the optimal solution takes.

It can be observed from Figure 5 that for the easier 40% of the 1000 scenarios, all three
approximate algorithms can lead to strategies that have almost the same expected cost as the true
optimal strategy (all three curves are almost vertical in the box defined by 7 € [1,1.1] and p(7) €
[0,0.4]). On the other hand, for all of the 1000 scenarios, the proposed modified Q-learning would
result in strategies that cost no larger than 2 times what the true optimal strategy costs (the p(7)
value reaches 1 before 7 gets greater than 2 for the dotted line). But the other two approximate
algorithms could lead to strategies that cost much more compared to the true optimal strategy. In
the worst case, the estimated optimal strategies obtained from Q-learning could take up to 7.7
times the true optimal cost (the long tail of the solid curve hits T = 7.7 when p(t) = 1). This
might be because the training data set in this case study is limited to 100 search trajectories. The
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1 values of the original Q-functions are not properly trained with limited data. In the next section,
2 we will explore the sensitivity of the Q-learning and the proposed limited Q-learning algorithms.
3

1
1
08
e 10.8
J-__..‘
O_ . .
0.4 Revised Q-learning
0.6 =——=(-earning
0.2 -
= = = Nearest
0
1 2 3 4 5 6 7 8
4 T
5 FIGURE 5 PERFORMANCE PROFILE OF CASE STUDY
6 3.2 Sensitivity analysis
7  Applying the same settings as in section 3.1, the purpose of this experiment is to investigate how
8  the size of training data would affect the performance of Q-learning and revised Q-learning. The
9  performance measure here is the relative excessive cost (REC), where the optimal cost from
10 value iteration is used as benchmark.
11 TABLE 2 RELATIVE EXCESSIVE COST
DATA SIZE RELATIVE EXCESSIVE COST
(Number of Random Q-Learning Modified Q-learning
Search Trajectories)
10 17.23% 12.46%
50 15.36% 3.20%
100 11.72% 1.83%
200 6.62% 1.75%
500 2.14% 1.12%
1000 0.71% 0.70%
10000 0.22% 0.28%
12

13 From Table 2, it can be seen that as the size of the training data set increases, the performance of
14 the Q-learning gradually catches up and later surpassed modified Q-learning when more than
15 1000 search trajectories are involved. However, the parking conditions could have changed by
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the time enough data is collected and an estimated user-optimal strategy is pushed to the drivers.
The proposed modified Q-learning, on the other hand, is able to generate searching strategies
close enough to the true optimal strategy with as few as 50 search trajectories.

4. Conclusion and Future Work

This paper investigates the idea of introducing learning algorithms into parking guidance and
information systems that employ a central server, in order to provide estimated user-optimal
parking searching strategies to individual travelers. The central server collects data from
numerous travelers’ parking search experiences in the same area within a reasonable time
window, computes approximated user-optimal parking searching strategy, and distributes the
resulting strategy to travelers who are still searching in the same time window. This cycle
repeats for each time window. A modified Q-learning approach is proposed. The proposed
learning algorithm takes advantage of the network topology and dramatically reduces the size of
the problem. Our numerical experiments have demonstrated that the proposed algorithm is able
to produce high quality solutions with limited training data, and thus has great potential to be
applied in real time.

There are several interesting future research directions. The determination of reasonable time
windows is not addressed in this paper. We briefly discussed possible approaches in Section 1.
Further development and analysis of these approaches would contribute to a more
comprehensive parking guidance and information service framework towards implementation. It
would also be interesting to see how the different approaches to handling recommendation
updates discussed in Section 1 would affect the performance of the system. Improvements to the
learning algorithm itself might also be a possibility. In this paper, the centralized server is
considered to have no a priori knowledge of the probabilities of finding parking. In some
circumstance, we may be able to retrieve some a priori knowledge from available information
even before training starts. This could further reduce the amount of data required and the
proposed algorithm will converge faster to the user-optimal strategy. Another possibility is to
relax the fixed probability within a time window into a time-dependent probability. No matter
how fast a server could learn, the parking conditions may change constantly. How to generate
time-dependent searching strategies from learning needs further investigation. Finally, the
authors plan to incorporate other components into the parking network such as parking
reservation, pricing and ridesharing and analyze their impact on the transportation network.
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