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Abstract

Credibly assessing the resilience of energy infrastructure in the face of
natural disasters is a salient concern facing researchers, government offi-
cials, and community members. Here, we explore the influence of the spa-
tial distribution of disruptions due to hurricanes and other natural hazards
on the resilience of power distribution systems. We find that incorporating
information about the spatial distribution of disaster impacts has signifi-
cant implications for estimating infrastructure resilience. Specifically, the
uncertainty associated with estimated infrastructure resilience metrics to
spatially distributed disaster-induced disruptions is much higher than de-
termined by previous methods. We present a case study of an electric
power distribution grid impacted by a major landfalling hurricane. We
show that improved characterizations of disaster disruption drastically
change the way in which the grid recovers, including changes in emer-
gent system properties such as antifragility. Our work demonstrates that
previous methods for estimating critical infrastructure resilience may be
overstating the confidence associated with estimated network recoveries
due to the lack of consideration of the spatial structure of disruptions.

1 Introduction

Defined broadly, resilience is an emergent property of a system which mani-
fests as the result of an iterative process of sensing, anticipation, learning, and
adaptation to all types of disruptions Park et al. (2013). Using this definition,
resilience must be studied at a system-wide level, where the resilience of an entire
system is studied in the context of hazards and disruptions. Characterization
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of the resilience of a complex system, therefore, is inherently a comprehensive
analysis of that which acts against it. This system–disruption paradigm al-
lows for the study of a wide range of interaction-based entities from ecological
plant–pollinator relationships Kaiser-Bunbury et al. (2017); Holling (1973) to
the psychological resilience of families to trauma Riggs and Riggs (2011).

In the context of engineering urban systems, the resilience of a critical in-
frastructure (e.g., the electric power grid, telecommunication networks, natural
gas, water network, etc.,) includes study of the recovery from failures induced by
hydro-climatic extremes and seismic events as well as acts of terrorism. Critical
urban networked infrastructure is well-represented by a graph Newman (2018).
Subsequently, disrupting a graph requires removing or disabling fractions of the
system consistent with an exogenous threat or hazard.

In this paper, we use a graph-theoretic approach to show that small changes
in the spatial characteristics of a disruption to a system radically change the
characteristics of system performance as a disruption is repaired over time.
Whether the recovery is measured in-terms of network-based performance met-
rics or by the extent of impact on stakeholders, our results indicate that the
measured resilience of a system is heavily dependant on the spatial character-
istics of the initial disruption. We conduct this study in the case of an electric
power distribution grid impacted by a major landfalling hurricane. We generate
different spatial distributions of initial disruptions to a power grid and study
their impact on graph-theoretic measures of network connectivity as well as the
number of customers without power. The remainder of this paper is as follows:
Section 2 introduces relavent other works, Section 3 outlines the data and meth-
ods used for this analysis, and finally Sections 4 and 5 detail the results and
conclusion respectively.

2 Background

Network analysis deals with the study of graphs or networks. Networks are
“a collection of points [referred to as vertices or nodes] joined together by
pairs of lines [referred to as edges or links].” Newman (2018) The edge-vertex
pairing lends itself to be an intuitive mathematical object for which to model
phenomenon such as animal and plant interactions Dietze et al. (2018), aca-
demic authorship, urban infrastructure design Derrible (2017) Clauset et al.
(2009) and—most relevant to this work—electric power infrastructure Nan and
Sansavini (2017); Hines et al. (2010); LaRocca et al. (2014); Duenas-Osorio
Leonardo et al. (2007). Representing a system as a network allows for simple—
and in most cases tractable—estimations of system performance. Measurements
of the overall size, degree of connectivity, length of paths between vertices, and
degree of clustering are all easily computed from a network model and can pro-
vide a myriad of insights about the system being represented Barabasi (2016).
Graphs representing a system in which the components interact can be used to
model how the failure of one vertex may propagate through the network Hu
et al. (2016). If failure likelihoods are drawn from certain probability distribu-
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tions, there can exist critical fractions of node failures for which the failure will
cascade to the entire network. This holds when multiple networks are coupled
together Buldyrev et al. (2010).

Network-based approaches have been widely used to model the resilience
of infrastructure Zimmerman et al. (2016); Gao et al. (2016); Derrible (2017).
This is in addition to conceptual frameworks Park et al. (2013); Linkov et al.
(2014); Bruneau et al. (2003), highly detailed hazard simulations Han et al.
(2009); Staid et al. (2014); Ouyang et al. (2012); Booker et al. (2010), and sta-
tistical and machine learning approaches Nateghi et al. (2011); Nateghi (2018);
Mukherjee et al. (2018); Arab et al. (2015); Shashaani et al. (2018) 1. All of this
work contributes greatly toward improving the resilience of infrastructure by
advancing theoretical understandings in networks science Gao et al. (2016), ad-
dressing particular infrastructure inefficiencies Fang and Sansavini (2017), and
improving policy decisions Guikema and Nateghi (2018).

Generalized graph-theoretic resilience analyses commonly model disruptions
by assigning a probability of failure to each vertex in the graph Gao et al.
(2016); Hu et al. (2016); Buldyrev et al. (2010). The random pattern of outages
fits within a probabilistic formalism allowing for a theoretical understanding
of network properties, but provides little realism in the spatial pattern of dis-
ruptions. Many of the infrastructure systems analyses continue to use random
vertex failures as the general form of the disruption Erdener et al. (2014); Praks
et al. (2015); LaRocca et al. (2014). Degree targeting is another commonly
used technique in which failures are initiated at vertices with the highest degree
Hines et al. (2010); Duenas-Osorio Leonardo et al. (2007); Winkler James et al.
(2011); Hu et al. (2016); Duenas-Osorio and Vemuru (2009). This method is rep-
resentative of a targeted attack in which an agent wishes to remove nodes which
connect to a large portion of the network, however, there is no restriction on the
spatial distribution of the failures. Similarly, other vertex properties have been
used to motivate targeting such as betweenness Hines et al. (2010) or maximum
flow Duenas-Osorio and Vemuru (2009). Localized failures—in which failures
are initialized in small connected components—have been previously studied,
however with limited scope; focusing primarily on repair strategies Hu et al.
(2016), or to replicate previous incidents Praks et al. (2015).

In this work, we isolate the importance of accounting for the spatial distri-
bution of a disruption and show that inducing changes in only the spatial distri-
bution significantly impacts measurements of system performance. Specifically,
the goal of the analysis is not so much to propose a particular spatial pattern
of disruption over another, but to demonstrate the importance of considering
the shape of disruptions in estimating infrastructure recovery. We present the
results in a case study of an electric power distribution grid’s response to a hur-
ricane. The electric power distribution system has been identified as a critical
component of assessing the vulnerability of the electric power grid to severe-
weather disruptions such as hurricanes, with approximately 90% of outages
occurring at the distribution level Ji et al. (2016).

1See (Ouyang, 2014) for a comprehensive list of topics.
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Methods

As mentioned earlier, to investigate the sensitivity of infrastructure system per-
formance to the spatial distribution of disruptions, we present the case of an
electric power distribution system’s recovery after a major landfalling hurricane.
Specifically, we focus on the impact of the spatial distribution of hurricane-
induced disruptions on the performance of an electric power grid located in
the Gulf Coast of the U.S. (Figure 1). We do this by simulating large-scale
disruptions in the distribution grid, mapping the hurricane-induced disruptions
to component failures (outages) in a distribution-level power grid and studying
the sensitivity of the resilience of the system to the spatial distribution of the
disruption. The simulated outages are subsequently repaired over time, repli-
cating the actual recovery of the power grid from the hurricane disruption so as
to study the dynamics of the system’s recovery.

Substation

Power plant

Grid node type

0-10,000 outages

10,001-20,000 outages

20,001-30,000 outages

30,001-40,000 outages

40,001-50,000 outages

50,001-60,000 outages

60-001-70,000 outages

Outages per km2 2

0-386 people

387-3,861 people

3,862 + people
Population per km

0 2 4 8 12
MilesDistribution line

! " #

Figure 1: The case study network situated in the Gulf Coast of the U.S. a
The layout of the electric power grid placed over the county. b The density
of customer-level power outages during Hurricane Katrina with the network
overlain. c Census-tract level population density for the corresponding area.

Electric Power Network

The city for which this analysis is being performed provided GIS files including
the location of all of the county’s power substations. These are used to locate
the position of the nodes in the test network. There are 221 substations and
2 power plants in this data. As we were unable to retrieve information on the
connections between the substations, nodes are connected using a minimum
spanning tree to establish the edges of the graph. The resulting graph has 223
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vertices and 222 edges.

Disruption generation algorithms

In this section, we describe the different disruption patterns evaluated in this
study. All cases described cause failures in 60% of the vertices, and this failure
proportion is kept constant through all trials. This is in accordance with the
actual impact of Hurricane Katrina on the electric power distribution network
under study. As previous work primarily focuses on analyzing randomized fail-
ures, we use random outages as a base for comparison with previous studies.
In simulation replication, a different set of vertices is chosen at random such
that 60% of the network is inoperable. The random disruptions form a control
sample as there is explicitly no spatial association among the initial disruption.

To evaluate how the spatial characteristics of the disruption impact the net-
work, additional simulation trials are performed using disruptions generated by
search trees. Disruptions are generated using both a Breadth-First search (BFS)
and a Depth-First search (DFS) tree Bondy and Murty (2008) as both create
spatially constrained patterns of outages while using no intrinsic information
about the individual vertices. Details of the algorithms used to generate the
disruptions are listed in Algorithms 1 and 2.

Algorithm 1 Breadth-First Search

1: procedure BFS(graph = G, root = r, size = n)
2: Q← empty list of vertices to search
3: T← empty list of vertices in the tree
4: append r to Q
5: while |T | < n do
6: consider v, the first element of Q
7: remove v from Q
8: append v to T
9: for all w in neighbors(v) do

10: if w is not in T then
11: append w to Q

return T

A BFS begins at a random vertex in the network and failures propagate to
all neighbors of that vertex before extending to neighbors-of-neighbors. This
provides a method for generating localized clusters of failures. Similarly, a DFS
outage pattern begins at a random vertex and progresses away from the root
node to a maximal length before searching additional root-node neighbors. The
spatial pattern of DFS trees are connected, but far less localized. These are
referred to as the the BFS and DFS disruption methods for the remainder of
the paper.

The search tree generation methods are computationally cheap, and are
built entirely using the spatial structure of the network. The selection of these
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Algorithm 2 Depth-First Search

1: procedure DFS(graph = G, root = r, size = n)
2: Q← empty list of vertices to search
3: T← empty list of vertices in the tree
4: append r to Q
5: while |T | < n do
6: consider v, the first element of Q
7: remove v from Q
8: append v to T
9: if w ∈ neighbors(v), w 6∈ T then

10: append w to front of Q
return T

algorithms are motivated by existing research supporting the existence of tree-
shaped outages in distribution systems owing to the hierarchical nature of elec-
tric power distribution Ji et al. (2016); Dobson (2016). Here, we do not validate
actual spatial distributions of outages against the BFS and DFS generation
methods, but instead use these methods to isolate the significance of different
spatial configurations of outages in the network on measurements of system per-
formance. The initial distribution of outages for one simulation replication are
seen in Figure 2.

Simulation Methodology

The recovery simulation generates initial disruptions via random, BFS and DFS
methods then subsequently repairs vertices in the network. The rate of repair
(i.e., repaired vertices per time unit) is derived from the rate of outages seen
in the gulf-coast power operator data. This rate is kept constant through all
experiments. At every time step, the vertices to be repaired are chosen based
on their contribution to the total network efficiency. The number of vertices to
be repaired is first fixed based on the time dependent repair rate, then the set
of vertices chosen for repair are selected from the subset of inoperable vertices
which—if repaired—would maximally improve the network efficiency. Vertices
are selected in a greedy fashion such that the selected subset maximally improves
the efficiency of the network. The heuristic search is detailed in Algorithm 3.

Network statistics are recorded at each step and vertices are repaired until
the network is fully operational. The simulation procedure is depicted in Figure
3. The process of creating disruptions and repairing is repeated 100 times for
each disruption generation method to account for the inherent randomness in
the generation of the initial distributions. The analyses were performed on a
16-core Intel Xeon W-2145 processor, each operating at 3.7GHz with 32GB of
ram. Simulation, analysis, and resulting plots were all generated in R version
3.4.4 R Core Team (2018). Network statistics were calculated using igraph

Csardi and Nepusz (2006).
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Operational

Inoperable
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0 2 4 8 12
Miles

a b c

Figure 2: Outage generation types. The results of three outage generation
techniques, each inducing failures in 60% of the grid. Figure a is one instance
of an outage generated randomly. Figure b is a an outage generated using a
breadth-first algorithm, while c is a depth-first algorithm.

Performance metric calculation

We measure the global efficiency of the electric power network as it fails and
recovers as one dimension of network performance. Global efficiency is defined as

Eff(G) =
1

n(n− 1)

∑
i<j∈G

1

d(i, j)

where d(i, j) is the distance between vertex pair i and j. Network efficiency
as a concept was proposed as a measure of how efficiently a network exchanges
information Latora and Marchiori (2001). It has been evaluated in the context
of power system resilience evaluation LaRocca et al. (2014) and used as a proxy
for network performance Sun and Zeng (2017); Winkler James et al. (2011).

Additionally we measure the size of the largest connected component (LCC).
This is defined as the number of vertices in the largest connected subgraph
Newman (2018). A connected subgraph is a subset of the vertices and edges for
which a path exists between all pairs of vertices. LCC has previously been used
to evaluate topological models LaRocca et al. (2014) and provides a measure of
the connectedness of the network (ie a fully connected network has a maximal
LCC because every vertex is included in the largest cluster).
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Algorithm 3 Local-optimal search.
Here, GE is the global efficiency of a graph, and F−R indicates the removal of vertices
R from F.

1: procedure LocalOpt(graph = G, failed vertices = F ,repair= n)
2: R← empty list of vertices to be repaired
3: if |V (F )| = |V (G)| then
4: R = vertex with maximum degree
5: F = F −R
6: LocalOpt(G,F,n-1)
7: else |V (F )| < |V (G)|
8: if |V (F )|+ n ≥ |V (G)| then
9: R = F

10: else|V (F )|+ n < |V (G)|
11: R = f ∈ F s/t GE(G+ f) ≥ GE(G+ f ′) ∀f ′ ∈ F and f ′ 6= f

return T

3 Results

Static measures of impact

We first evaluate the sensitivity of the static measure of performance—i.e., the
performance of the system at the moment the disruption occurs—to the spatial
distribution of the disruption generated randomly as well as via BFS and DFS
algorithms (Figure 4). To provide an equal comparison—and in accordance to
real data from Hurricane Katrina—we present results which impact 60% of the
network regardless of the method of outage generation. However, our exten-
sive sensitivity analysis suggested that the results remained consistent when
evaluating network failures ranging from 10% to 90%.

Computed for 100 stochastic disruptions of each type, there is significant
evidence that the disruption methods alter the resilience of the system. The
mean efficiency of BFS- and DFS-constructed disruptions are 485% and 457%
higher than randomly constructed disruptions respectively. Mean values vary
significantly at each failure size as seen in Table 1. Mean LCC increases similarly
with BFS disruptions—BFS increase of 595% over random, DFS increase of
494% over random (Table 3). Results additionally indicate sample variance
increases for tree-constructed disruptions in both performance metrics as seen
in Tables 1 and 3. In the case of the mean comparison, the distributions of
efficiency and LCC values are compared using Kolmorogov-Smirnov (KS) two-
sample tests and all comparisons are found to be statistically significant at a
significance level of 0.01. Results of the KS tests are seen in Table 2.

The lower efficiency values and LCC of the random disruption method in-
dicate greater disruption in the system. Consequently any claim resulting from
a measure of resilience is sensitive to the spatial characteristics of the initial
disruption. Likewise, accounting for the spatial distribution of disruptions in-
troduces greater uncertainty into our estimation of the resilience of a system.
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Figure 3: An overview of simulation methodology. The process here represents
one simulation iteration.

Table 1: Summary statistics for the distribution of efficiency for respective
failure modes. Failure fraction represents the fraction of the network which was
induced as failed in each iteration. Results presented here are for failures in
60% of the network. Complete results are presented in Appendix Table A1.

Generation
method

Mean Standard
deviation

Median Min Max

Random 0.0070 0.0011 0.0070 0.0047 0.0100
BFS 0.0414 0.0071 0.0420 0.0240 0.0494
DFS 0.0393 0.0038 0.0401 0.0270 0.0463

The sensitivity of the resilience to disruption method additionally manifests
when measuring the number of customers with restored power. Mapping the
geographical location of each of the vertices in our network to their respec-
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Figure 4: Static disruption comparison. Relative density of network perfor-
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size of the largest connected component.

Table 2: P-values for two-sample, two tailed, Kolmogorov-Smirnov tests between
the efficiency and LCC of given initial failure methods and failure fraction.
Results at the 0.6 failure fraction are presented in this article. Results use a
significance level of α = 0.05. Values of zero listed with one significant digit
indicate p < 1.11022e− 16; this cutoff is the numerical precision of the machine
used for computations.

Efficiency LCC
Failure
fraction

Random vs
BFS

Random
vs DFS

BFS vs DFS Random
vs BFS

Random
vs DFS

BFS vs
DFS

0.1 0 0 0.0039 0 0 0.0541
0.2 0 0 0.0004 0 0 0.0001
0.3 0 0 0.0014 0 0 0.0000
0.4 0 0 0.0014 0 0 0.0000
0.5 0 0 0.0001 0 0 0.0000
0.6 0 0 0.0000 0 0 0.0000
0.7 0 0 0.0000 0 0 0.0008
0.8 0 0 0.0000 0 0 0.0000
0.9 0 0 0.0000 0 0 0.0000

tive census tract allows us to allocate customers to each substation relative to
their population density. Using this this approximation, an average of 40.60%
of the customers retain power when disrupted randomly, versus 39.21% and
39.47% for BFS and DFS outages respectively. This similarity is expected as
the disruptions are constructed to disconnect 60% of the substations in the net-
work, leaving approximately 40% of the network operational. However similar
to measurements of efficiency and LCC, the variance among population affected
is higher for tree-based disruptions. Table 4 shows the distribution of the num-
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Table 3: Summary statistics for the distribution of largest connected component
(LCC) for respective failure modes. Results presented here are for failures in
60% of the network. Complete results are presented in Appendix Table A2.

Generation
method

Mean Standard
deviation

Median Min Max

Random 9.05 2.32 9.00 5.00 15.00
BFS 62.94 17.71 66.50 28.00 83.00
DFS 53.75 9.54 53.00 28.00 76.00

ber of customers without power after the network is made inoperable. After
random outages are induced in the system 33.57%–48.35% of the population’s
distribution level power remains operational, while after BFS and DFS outages
26.54%–53.77% and 26.94%–48.95% of the population’s power remain opera-
tional respectively. This represents an 88% increase in the uncertainty of the
performance estimates. Providing estimates of uncertainty is critical to decision
makers for the accurate characterization of the resilience of a system Flage et al.
(2014).

Table 4: Summary statistics for the distribution of percent of county customers
without power in a static analysis. All numbers represent the fraction of the
total population of the county without power.

Mean Std Dev Median Min Max

Random 0.5928 0.0351 0.5940 0.5165 0.6643
BFS 0.5909 0.0676 0.6079 0.4623 0.7346
DFS 0.6151 0.0651 0.6053 0.5105 0.7306

Dynamic measures of impact

We also evaluate the dynamic performance —i.e., time dependant performance
metrics—under separate initial disruption methods as the power grid is repaired
(Figure 5). The system performance—characterized by efficiency and LCC—is
then measured over time as the system recovers. This is done to characterize the
dynamic resilience of the grid under each disruption generation method, ceteris
paribus.

Despite holding the recovery process constant, these results show the effi-
ciency of the network differs greatly in overall functional form between random
and spatially generated disruptions, indicating the recovery is significantly cou-
pled to the spatial distribution of disruptions. Recovery from a random disrup-
tion pattern increases over time, reaching a maximum prior to all nodes being
repaired (Figure 5e). This is an indication of the network exhibiting antifrag-
ile properties in which a full reconstruction of the network is not optimal with
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Figure 5: Performance metrics measured after the disruption over time for each
disruption method. In a-f, the bands of uncertainty represent 95% confidence
intervals sampled from the empirical density at each point in time. The black
line is the mean of the observations. The x-axis is the relative-completeness of
the network repair scaled by the total restoration time for each replication.

respect to the chosen performance metric Aven (2015); Taleb (2012); Fang and
Sansavini (2017). Spatially-constructed outages generally have a much higher
efficiency throughout but follow an entirely different functional form than the
recovery from random disruptions. The deviation between mean efficiency is
highest at the initial disruption and decreases over time. Similar to the static
analysis, the variance is larger in the recovery from spatially characterized out-
ages. Thus, failing to account for the spatial characteristics of the network
disruption can drastically change implications drawn from the associated re-
silience analysis. A key difference is the lack of antifragility in the distribution
electric power network with spatially characterized outages.

The difference between the disruption generation techniques is diminished
when comparing the dynamics of the mean LCC rather than mean network ef-
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ficiency (Figure 5 b,d,f). Beyond the initial value of the LCC at the time of
failure, there is little difference in the functional form of the recovery of the
network. The size of the LCC in the network generally increases at an increas-
ing rate when vertices are repaired in the network, the primary difference being
the initial size of the LCC after failures are generated in the network. These
estimates of system recovery are therefore dependant on the spatial characteris-
tics of the initial disruption; however, this result is sensitive to the performance
metric used to measure recovery.

4 Conclusion

A key element of resilience is the ability of a system to respond to and recover
from disruptions of unprecedented magnitude or unforeseen cause. By their na-
ture, all disruptions will require recovery. This positions system recovery as a
critical measurement in evaluating the multifaceted resilience of infrastructure
systems. A holistic understanding of all types of community recovery is im-
perative for the continued adaptation to unforeseen challenges. However, these
holistic understandings must be built upon a foundational knowledge of the in-
teraction of disasters with the built environment. We contribute to the knowl-
edge related to the interaction of the power distribution grid and hurricanes
by providing a novel framework for network resilience analysis which is agnos-
tic to the specifics of the system, allowing for general insights about all facets
of community recovery. Our framework for considering spatially-constrained
disruptions can be applied to any hierarchical network within a community ad-
versely effected by natural hazards.

We show that the post-disruption performance of the electrical power distri-
bution grid is highly sensitive to the spatial characteristics of disruptions in the
system. Consequently, any insights about general grid resilience which fail to
account for the spatial characteristics of the hazard significantly misrepresent
the impact of natural hazards on distribution-level electric power infrastructure.
More specifically, through the repeated simulation of multiple methods of failure
and recovery, we show that previous methods of evaluating disaster impact over-
estimate the certainty associated with the measurements of system recovery. We
show via multiple avenues that improved characterizations of disaster impact
significantly increase both the magnitude and uncertainty of the initial impact in
the system. This difference holds through the duration of the recovery process;
and when considering the dynamics of the system we find that emergent system
properties such as antifragility are also dependant on the characteristics of the
initial disruption. These differences are most striking when contextualized by
their impact on the power distribution grid at a customer level. Our estimates
indicate that the estimated range of customers with access to electricity varies
from 33-48% of the county using previous methods, and up to 26-53% when
using improved outage characterizations, highlighting the need for continued
study of both the pattern of impacts due to natural disasters and the vulnera-
bility of the electric power distribution grid. By demonstrating the sensitivity
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of the spatial distribution of outages on the electric power grid, we hope to
encourage consideration of the spatial distribution of disruptions in conducting
infrastructure resilience analytics.

Appendix

Table A1: Summary statistics for the distribution of efficiency for respective
failure modes. Failure fraction represents the fraction of the network which was
induced as failed in each iteration. Results presented in the body of the work
represent a failure fraction of 0.6

Generation
method

Failure
fraction

Mean Standard
deviation

Median Min Max

Random 0.1 0.0178 0.0025 0.0174 0.0138 0.0245
BFS 0.1 0.0298 0.0046 0.0297 0.0215 0.0363
DFS 0.1 0.0308 0.0042 0.0320 0.0217 0.0363

Random 0.2 0.0124 0.0016 0.0121 0.0095 0.0191
BFS 0.2 0.0294 0.0050 0.0278 0.0213 0.0408
DFS 0.2 0.0312 0.0066 0.0293 0.0216 0.0410

Random 0.3 0.0099 0.0013 0.0097 0.0076 0.0134
BFS 0.3 0.0307 0.0056 0.0295 0.0236 0.0427
DFS 0.3 0.0324 0.0075 0.0286 0.0232 0.0443

Random 0.4 0.0084 0.0010 0.0083 0.0059 0.0119
BFS 0.4 0.0313 0.0043 0.0294 0.0257 0.0410
DFS 0.4 0.0310 0.0033 0.0304 0.0243 0.0390

Random 0.5 0.0076 0.0009 0.0075 0.0058 0.0099
BFS 0.5 0.0360 0.0055 0.0358 0.0255 0.0467
DFS 0.5 0.0340 0.0023 0.0343 0.0279 0.0384

Random 0.6 0.0070 0.0011 0.0070 0.0047 0.0100
BFS 0.6 0.0414 0.0071 0.0420 0.0240 0.0494
DFS 0.6 0.0393 0.0038 0.0401 0.0270 0.0463

Random 0.7 0.0068 0.0015 0.0069 0.0043 0.0119
BFS 0.7 0.0479 0.0127 0.0462 0.0264 0.0751
DFS 0.7 0.0506 0.0052 0.0508 0.0322 0.0659

Random 0.8 0.0071 0.0016 0.0069 0.0035 0.0126
BFS 0.8 0.0561 0.0174 0.0533 0.0294 0.0880
DFS 0.8 0.0699 0.0126 0.0724 0.0427 0.0867

Random 0.9 0.0097 0.0031 0.0097 0.0045 0.0184
BFS 0.9 0.0659 0.0208 0.0609 0.0392 0.1389
DFS 0.9 0.0971 0.0140 0.0961 0.0600 0.1372
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Table A2: Summary statistics for the distribution of largest connected compo-
nent (LCC) for respective failure modes.

Generation
method

Failure
fraction

Mean Standard
deviation

Median Min Max

Random 0.1 84.46 23.86 83.00 42.00 138.00
BFS 0.1 158.22 35.67 160.50 82.00 202.00
DFS 0.1 164.34 35.36 181.00 80.00 202.00

Random 0.2 41.89 12.49 40.00 20.00 87.00
BFS 0.2 122.21 32.35 125.00 82.00 179.00
DFS 0.2 125.23 43.74 111.50 66.00 180.00

Random 0.3 25.54 8.05 24.00 13.00 50.00
BFS 0.3 105.79 29.70 91.00 64.00 154.00
DFS 0.3 105.84 40.11 80.50 54.00 159.00

Random 0.4 16.90 4.33 16.00 9.00 29.00
BFS 0.4 85.47 19.73 82.00 44.00 129.00
DFS 0.4 73.91 13.19 70.00 44.00 124.00

Random 0.5 12.22 2.83 12.00 7.00 21.00
BFS 0.5 76.04 17.13 82.00 39.00 100.00
DFS 0.5 62.14 7.92 64.00 41.00 80.00

Random 0.6 9.05 2.32 9.00 5.00 15.00
BFS 0.6 62.94 17.71 66.50 28.00 83.00
DFS 0.6 53.75 9.54 53.00 28.00 76.00

Random 0.7 6.80 1.51 7.00 4.00 12.00
BFS 0.7 46.78 15.55 47.00 17.00 68.00
DFS 0.7 47.43 7.66 49.00 24.00 66.00

Random 0.8 5.03 1.01 5.00 3.00 8.00
BFS 0.8 28.57 9.98 28.00 10.00 46.00
DFS 0.8 35.42 9.02 38.00 16.00 46.00

Random 0.9 3.40 0.57 3.00 3.00 5.00
BFS 0.9 11.49 4.49 10.00 5.00 24.00
DFS 0.9 16.25 3.35 16.00 9.00 24.00
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