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Explicit two-source extractors
and resilient functions

By ESHAN CHATTOPADHYAY and DAVID ZUCKERMAN

Abstract

We explicitly construct an extractor for two independent sources on n
bits, each with min-entropy at least log® n for a large enough constant C'.
Our extractor outputs one bit and has error n~ %™, The best previous
extractor, by Bourgain, required each source to have min-entropy .499n.

A key ingredient in our construction is an explicit construction of a
monotone, almost-balanced Boolean function on n bits that is resilient to
coalitions of size n'~% for any 6 > 0. In fact, our construction is stronger
in that it gives an explicit extractor for a generalization of non-oblivious
bit-fixing sources on n bits, where some unknown n — ¢ bits are chosen
almost polylog(n)-wise independently, and the remaining ¢ = n'~° bits are
chosen by an adversary as an arbitrary function of the n — ¢ bits. The best
previous construction, by Viola, achieved ¢ = nt/279,

Our explicit two-source extractor directly implies an explicit construc-
tion of a 2(egles M

obtained by Barak et al. and matching an independent work by Cohen.

) . . .
-Ramsey graph over N vertices, improving bounds

1. Introduction

We explicitly construct three related combinatorial objects: Ramsey
graphs, bipartite Ramsey graphs, and two-source extractors. We do this by
constructing an object that may seem unrelated, a resilient function. We begin
by defining the first three objects and deferring the fourth to Section 1.2. We
start with the combinatorial motivation, and we discuss the computer science
and randomness motivation in the next subsection.
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654 ESHAN CHATTOPADHYAY and DAVID ZUCKERMAN

In 1930, Ramsey [Ram29] showed that any graph on N nodes has a
clique or independent set of size (logy N)/2. In 1947, Erdos [Erd47] used the
probabilistic method to show that there exist graphs on N nodes with no clique
or independent set of size 2logy N. We call such a graph a Ramsey graph.

Definition 1.1 (Ramsey graph). An undirected graph on N vertices is
called a K-Ramsey graph if it does not contain any independent set or clique
of size K.

It is natural to ask for an explicit construction, and indeed Erdés offered
$100 for an explicit construction achieving K = O(log N). In what follows, we
use the strongest computer science definition of explicit, namely, that there is
a polynomial-time algorithm that determines whether there is an edge between
two nodes. Since a node can be described using log N bits, this means that
the algorithm’s running time is polynomial in log V.

Lindsey’s lemma implies that a symmetric Hadamard matrix defines a
v/ N-Ramsey graph on N vertices. There were constructions achieving smaller
powers of N, until Frankl and Wilson [FW81] used intersection theorems

to construct K-Ramsey graphs on N vertices, with K = 20(VlogNloglogN),
This remained the best known construction for a long time, with many other
constructions [Alo98], [Gro00], [Bar06] achieving the same bound. Gopalan
[Gopl4] explained why approaches were stuck at this bound, showing that
apart from [Bar06], all other constructions can be seen as derived from low-
degree symmetric representations of the OR function. Finally, subsequent
works by Barak et al. [BKS*10], [BRSW12] obtained a significant improvement

ogl ™% (Io
and gave explicit constructions of K-Ramsey graphs, with K = g2os —(loe D)

for some absolute constant «.
Next we define the related bipartite Ramsey graphs.

Definition 1.2 (Bipartite Ramsey graph). A bipartite graph with N left
vertices and N right vertices is called a bipartite K-Ramsey graph if it does
not contain any complete K x K-bipartite subgraph or empty K x K subgraph.

)

While non-explicit existence bounds for bipartite Ramsey graphs are simi-
lar to those for ordinary Ramsey graphs, constructing bipartite Ramsey graphs
is harder. In particular, Barak et al. [BKS'10] showed how to use a given bi-
partite K-Ramsey graph on two sets of N vertices to construct a 2K-Ramsey
graph on NN vertices. Moreover, the above constructions of ordinary Ramsey
graphs with K = 20(VlogNloglog N) 44 not work in the bipartite setting. In
fact, until 2004, the best known construction was the Hadamard matrix, giv-
ing K = v/N. This was slightly improved to O(v/N/2V1°¢ ") by Pudlak and
Rédl [PRO4]. Barak et al. [BKST10], [BRSW12] did in fact construct bipartite
K-Ramsey graphs, and hence achieved the bound mentioned above.
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EXPLICIT TWO-SOURCE EXTRACTORS AND RESILIENT FUNCTIONS 655

Finally, we define two-source extractors. These are like bipartite Ramsey
graphs, except now we require the “right” number of edges between sets of
size K, rather than at least one edge and one non-edge. For reasons that
will become clearer in the next section when we discuss the computer science
motivation, the parameter is defined as k = log, K rather than K.

Definition 1.3 (Two-source extractor, graph formulation). A bipartite
graph with N left vertices and N right vertices is called a (k,e) two-source
extractor if every K x K subgraph contains (1/24¢)K? edges, where K = 2F.

Observe that this is equivalent to an N x N matrix over {0, 1} such that
every K x K submatrix has 1/2 + ¢ fraction of 1’s.

Clearly, a (k, )-two-source extractor is a bipartite 2¥-Ramsey graph if ¢ <
1/2. Two-source extractors have been even harder to construct than bipartite
Ramsey graphs. A simple probabilistic argument shows the existence of (k, ¢)-
two-source extractors with k > logn + 2log(1/€) + 1. Chor and Goldreich
[CG8S] first defined these objects and used Lindsey’s Lemma to show that a
Hadamard matrix is a two-source extractor for k > n/2. However, no further
progress was made for around 20 years, when Bourgain [Bou05] broke the
“half-barrier” and constructed a two-source extractor for k = (1/2 — a)n for
some small, unspecified o > 0. This remained the best known result prior to
our work.

Our main result is a two-source extractor for k = polylog(n). We think of
e = 1/poly(n) but state it more generally.

THEOREM 1 (Main theorem). There exists a constant C' > 0 such that for
all n € N, there is a construction of a (k,e)-two-source extractor on two sets
of 2" wvertices with k = log®(n/e). It is explicit in that there is an algorithm
running in time poly(n/e) that determines whether there is an edge between
two nodes.

Specifically, we can take k = C1(logn)°® for a large enough constant Oy’
As corollaries, we get bipartite Ramsey graphs and ordinary Ramsey graphs.

THEOREM 2. There exists a constant C' > 0 such that for all large enough
n € N, there are explicit constructions of a bipartite K-Ramsey graph on

2N wertices and a Ramsey graph on N wvertices, where N = 2" and K =
2(log10gN)C'

Hn the preliminary version of the work, we required k = C1(log n)74 in Theorem 1. The
improved bound in the current version is a result of recent improvements in constructions of
non-malleable extractors, a key component in our construction that we describe later.
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656 ESHAN CHATTOPADHYAY and DAVID ZUCKERMAN

Independent work. In independent work, Cohen [Coh16b] used the chal-
lenge-response mechanism, a technique introduced in [BKST10], with new
advances in extractor constructions to obtain explicit constructions of bipar-

— 9(loglog N)om)

tite Ramsey graphs with K . This is the same bound that we

achieve. However, Cohen’s construction is not a two-source extractor.

1.1. Randomness extraction. Here we develop a computational perspec-
tive about extracting randomness, which makes the proof intuition clearer. The
area of randomness extraction addresses the problem of obtaining nearly uni-
form bits from sources that are only weakly random. This is motivated by the
ubiquitous use of randomness in many branches of computer science. Random-
ness is essential for cryptography and distributed computing. Many random-
ized algorithms, such as those to factor polynomials over large fields, are faster
or simpler than their deterministic counterparts. Scientists and economists
use randomness extensively in Monte Carlo simulations of complex systems
like the climate or the economy.

Almost all of these uses of randomness require uniformly random, uncor-
related bits, but most easily-obtainable sources of randomness do not satisfy
these conditions. In particular, programmers in practice try to accumulate en-
tropy by using thermal noise or clock drift, but then this needs to be purified
before using it to seed a pseudorandom generator; see, e.g., [JK99], [BHO05].

As is standard, we model a weak source on n bits using min-entropy.
A source X on n bits is said to have min-entropy at least k if for any =,
Pr[X =z] <27%.

Definition 1.4. The min-entropy of a source X is
H(X) = rr;in(— log(Pr[X = z])).

The min-entropy rate of a source X on {0,1}" is Hy(X)/n. A source X on
{0,1}" with min-entropy at least k is called an (n, k)-source.

An extractor Ext : {0,1}" — {0,1}™ is a deterministic function that
takes input from an unknown weak source with sufficient min-entropy and
produces nearly uniform bits. Unfortunately, a simple argument shows that it
is impossible to design an extractor to extract even 1 bit for sources with min-
entropy n — 1. Specifically, one of Ext~1(0) or Ext~!(1) has size at least 2"~ 1.
If X is the uniform distribution on that set, then Ext(X) is always the same
fixed value, but X has min-entropy at least n — 1, contradicting the extractor
requirement.

Broadly speaking, there are three approaches to circumvent this difficulty.
First, one can add a small amount of high-quality randomness, called a seed,
and extract out a much larger amount. Second, one can limit consideration to
sources that have some structure, defined in algebraic or computational terms.
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EXPLICIT TWO-SOURCE EXTRACTORS AND RESILIENT FUNCTIONS 657

We take a third approach: assume that there are two or more independent
sources, each with sufficient min-entropy.> Santha and Vazirani [SV86] sug-
gested this for a different but related model, and Chor and Goldreich [CG88]
suggested it for our current model. A two-source extractor extracts random-
ness from two independent sources. An efficient two-source extractor could be
quite useful in practice, if just two independent sources of entropy can be found.

We use the notion statistical distance, or variation distance, to measure
the error of the extractor. The statistical distance between two distributions
Dy and D5 over some universal set () is defined as

1
|D1 — D2| = 5 E |PI‘[D1 = d] - PI‘[DQ = d”
deQ

We say D is e-close to Dy if |D; — Ds| < € and denote it by D; ~, Ds.

Definition 1.5 (Two-source extractor). A function Ext : {0,1}" x {0,1}"
— {0,1}™ is called a two-source extractor for min-entropy k and error e if for
any independent (n, k)-sources X and Y, we have

Ext(X,Y) ~. U,

where U,, is the uniform distribution on m bits. Further, Ext is said to
be strong in Y if it also satisfies (Ext(X,Y),Y) ~. (Up,,Y), where U,, is
independent from Y.

It is straightforward to verify that this corresponds to the graph-theoretic
formulation in Definition 1.3 when m = 1.

As mentioned above for the case m = 1, a simple probabilistic argu-
ment shows the existence of two-source extractors for min-entropy k& > logn +
2log(1/e) + 1. However, from a computer science perspective, it is important
that the function Ext be efficiently computable, i.e., polynomial-time com-
putable. This corresponds to the same notion of explicitness introduced in the
graph-theoretic setting.

This question has drawn a lot of attention in the last three decades. Re-
capping the history above, Chor and Goldreich [CG88] used Lindsey’s Lemma
to show that the inner-product function is a two-source extractor for min-
entropy more than n/2. Using additive combinatorics, Bourgain [Bou05] broke
the “half-barrier” for min-entropy, and constructed a two-source extractor for
min-entropy 0.499n. Raz [Raz05] obtained an improvement in terms of total
min-entropy and constructed two-source extractors requiring one source with
min-entropy more than n/2 and the other source with min-entropy C'logn.

2The first and third approaches could also be viewed as special cases of the second ap-
proach, but we do not view this as helpful.
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658 ESHAN CHATTOPADHYAY and DAVID ZUCKERMAN

The lack of progress on constructing two-source extractors motivated re-
searchers to use more than two sources. Several researchers managed to
construct excellent extractors using a constant number of sources [BIW06],
[Rao09al, [RZ08], [Lill], [Lil3a], [Lil3b] culminating in Li’s construction of
a three-source extractor for polylogarithmic min-entropy [Lil5]. Recently
Cohen [Coh15] also constructed a three-source extractor with one source hav-
ing min-entropy dén, the second source having min-entropy C'logn and the
third source having min-entropy C'loglogn.

Summarizing, despite much attention and progress over the last 30 years,
it remained open to explicitly construct two-source extractors for min-entropy
rate significantly smaller than 1/2. Our main result is an explicit two-source
extractor for polylogarithmic min-entropy. We restate our main theorem in
computer science terminology.

Theorem 1 (Main theorem, computer science formulation). There erists a
constant C' > 0 such that for all n,k € N and any € > 0, satisfying log® (n/e) <
k < m, there exists a two-source extractor 2Ext : {0,1}" x {0,1}" — {0,1}
computable in time poly(n,1/€) for min-entropy at least k and error e.

As mentioned earlier, it is in fact enough to take k = Cj(log(n/€))*® in
the above theorem for a large enough constant C7.

By an argument of Barak [Rao09b], every two-source extractor outputting
one bit is also a strong two-source extractor with similar parameters. Thus
the extractor 2Ext in Theorem 1 is also a strong two-source extractor.

Note that if our extractor is to run in polynomial time, then the error
will not be negligible, meaning smaller than the reciprocal of any polyno-
mial. Improving the error to negligible while outputting many bits would have
applications in cryptography and distributed computing. For example, sev-
eral researchers have studied whether cryptographic or distributed computing
protocols can be implemented if the players’ randomness is defective [DO03],
[GSVO05], [KLRZ08], [KLR09]. Kalai et al. [KLRZ08] used C-source extractors
to build network extractor protocols, which allow players to extract private
randomness in a network with Byzantine faults. A better 2-source extractor
with negligible error would improve some of those constructions. Kalai, Li,
and Rao [KLR09] showed how to construct a 2-source extractor under com-
putational assumptions and used it to improve earlier network extractors in
the computational setting; however, their protocols rely on computational as-
sumptions beyond the 2-source extractor, so it would not be clear how to match
their results without assumptions.

Subsequent work. There have been many exciting developments after our
work. Li [Lil6] extended our construction to achieve an explicit strong two-
source extractor with output length (k) bits. A sequence of works [Mek17],
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EXPLICIT TWO-SOURCE EXTRACTORS AND RESILIENT FUNCTIONS 659

[BADTS17], [CL16a], [Cohl6a], [Cohl17], [Lil7], [Lil8] built on our framework,
improving the various components used, to lower the min-entropy requirement
of the two-source extractor (for constant error) to C'log n(loglogn)/loglog log n.

Li used our construction to build an affine extractor for polylogarithmic
min-entropy [Lil6]. In another work, Chattopadhyay and Li [CL16b] used
components from our construction to construct extractors for sumset sources,
which allowed them to give improved extractors for sources that are generated
by algorithms with access to limited memory. Ben-Aroya, Doron and Ta-
Shma [BADTS18] used components from our work to construct two-source
extractors, when the sources are of unequal length, and they found interesting
applications of these extractors to the theory of error-correcting codes. Ben-
Aroya et al. [BCDT18] extended our construction to give explicit constructions
of two-source condensers® with exponentially small error.

1.2. Resilient functions . We assume basic familiarity with circuit com-
plexity in this section. We refer the reader to Section 2.6 for a quick recap of
relevant notions that are used in this section.

As part of our construction of two-source extractors, we construct new
“resilient functions,” which are interesting in their own right. Ben-Or and
Linial [BALS5] first studied resilient functions when they introduced the perfect
information model of distributed computation. In the simplest version of this
model, there are n computationally unbounded players that can each broadcast
a bit once. At the end, some function is applied to the broadcast bits. In the
collective coin-flipping problem, the output of this function should be a nearly-
random bit. The catch is that some malicious coalition of players may wait
to see what the honest players broadcast before broadcasting their own bits.
Thus, a resilient function is one where the bit is unbiased even if the malicious
coalition is relatively large (but not too large). We now introduce this notion
more formally.

Definition 1.6 (Influence). Let f : {0,1}" — {0,1} be any Boolean func-
tion on variables x1,...,2,. The influence of a set @ C {z1,...,2,} on f,
denoted by Ig(f), is defined to be the probability that f is undetermined after
fixing the variables outside ) uniformly at random. Further, for any integer g,

define Ty(f) = maxqc (ay,...an}Iq1=¢ Lo (f)-
Definition 1.7 (Resilient Function). Let f : {0,1}" —{0,1} be any Boolean

function on variables x1,...,x, and ¢ any integer. We say f is (g, €)-resilient
if I,(f) <e.

3The notion of a condensers is weaker than an extractor, and the output is only required
to have high-min-entropy
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660 ESHAN CHATTOPADHYAY and DAVID ZUCKERMAN

For example, the PARITY function (which outputs the sum modulo 2
of the input bits) is not even (1,e)-resilient for any ¢ < 1. The constant
function f(x) = 0is (n, 0)-resilient, but uninteresting; we want a function that
is almost balanced in the sense of having probability close to 1/2 of being 1.
The most natural choice here is MAJORITY (which outputs the majority of
its input bits), which is (c¢y/n,.01) resilient. Somewhat surprisingly, there are
almost-balanced functions significantly more resilient than MAJORITY. Ben-
Or and Linial [BALS5] showed that the iterated majority function is (cn'°&s?2,
.01)-resilient. Furthermore, Ajtai and Linial showed the existence of almost-
balanced functions that are (cn/log?n,.01)-resilient. Kahn, Kalai, and Linial
[KKL88] showed that no function is (w(n/logn), .99)-resilient.*

Since the Ajtai-Linial construction is not explicit, it is natural to ask
whether we can come close to this bound explicitly. In unpublished work,
Meka showed that for any § > 0, a suitable iteration of small Ajtai-Linial func-
tions is (n'79,.01)-resilient [Mek09]. While this requires a brute-force search
to find the small Ajtai-Linial function, it is explicit because this function is on
few bits. We derandomize Ajtai-Linial without any small brute-force search.
Moreover, our construction is monotone and is computable by a constant-depth
circuit. Neither Ajtai-Linial nor Meka’s constructions have these properties,
and both of these properties are necessary for our use in the two-source ex-
tractor construction.

THEOREM 3 (Explicit resilient function). For any constant § € (0,1) and
every large enough integer n € N, there exists a polynomial-time computable
monotone Boolean function f :{0,1}"™ — {0,1} satisfying

o [ is a depth 4 circuit of size n®1)
e [E[f(x)] - %| < n91(1)§

e for any q¢ > 0, we have I,(f) < q/n'~°.

?

1.2.1. Resilient functions against t-wise independence. In fact, our two-
source extractor construction requires a stronger notion of resiliency, which is
also interesting on its own. This is where we allow the n — ¢ good bits to be
chosen from an arbitrary t-wise independent distribution.

Definition 1.8. A distribution D on n bits is ¢-wise independent if the
restriction of D to any t bits is uniform. More generally, D is (t,~)-wise
independent if the distribution obtained by restricting D to any t coordinates
is y-close to uniform.

When D is a (t,)-wise distribution, we sometimes informally say that D
is an almost t-wise independent distribution.

4Recall that f(n) = w(g(n)) means that lim, o f(n)/g(n) = cc.
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EXPLICIT TWO-SOURCE EXTRACTORS AND RESILIENT FUNCTIONS 661

Definition 1.9 (Influence, general). Let Igp(f) denote the probability
that f is undetermined when the variables outside @ are fixed by sampling
from the distribution D. Define Ig(f) = maxpep, I p(f), where D; is the
set of all t-wise independent distributions. Finally, for any integer ¢, define

I (f) = maxgQc{zy,...cp}|Q|=q I (f)

Definition 1.10 (Resilient Function, general). Let f : {0,1}" — {0,1} be
any Boolean function on variables z1,...,z, and ¢ any integer. We say f is
t-independent (g, €)-resilient if I (f) < e.

Viola [Viol4] first studied this model in the context of constructing ex-
tractors for circuit sources. He showed that the majority function is O(1)-
independent (g, .01)-resilient for ¢ < D%fT, 7 > 0. No other ¢t-independent re-
silient functions were known for ¢ < \/n. We show that any almost-balanced re-
silient function that is monotone and constant depth remains almost-balanced
and resilient with respect to polylog-wise independence. Therefore, our explicit
almost-balanced resilient function remains almost-balanced and resilient with

respect to polylog-wise independence.

THEOREM 4. There exists a constant ¢ such that for any constant § € (0, 1)
and every large enough integer n € N, there exists an efficiently computable
monotone Boolean function f : {0,1}"™ — {0,1} satisfying the following: For
any q > 0,t > c(logn)'®,

o [ is a depth 4 circuit of size n°W;

1 .
nQ(l) )

e for any t-wise independent distribution D, |Exp[f(x)] — 1| <
o L(f) <gq/n'™".

Subsequent work. Meka [Mek17] built on our ideas to give an explicit
construction of a monotone almost-balanced resilient function that is polylog-
independent cn/ log? n-resilient, matching the non-explicit resiliency obtained
by Ajtai and Linial (except Ajtai and Linial achieved ordinary resiliency, not
polylog-independent resiliency).

1.3. Seeded and non-malleable extractors. Before describing our construc-
tion, we define two important ingredients, seeded extractors [NZ96] and non-
malleable extractors [DW09]. A seeded extractor uses one (n, k)-source and
a short seed to extract randomness. Seeded extractors have found numerous
applications in seemingly unrelated areas; see, e.g., Shaltiel’s survey [Sha02].

Definition 1.11 ([NZ96]). A function Ext : {0,1}" x {0,1}¢ — {0,1}™ is
a (k,e)-seeded extractor if for any source X of min-entropy k, we have
Ext(X,Uy) ~: Up,.

Ext is strong if we have (Ext(X,Uy), Uy) =~ (U, Uy), where U, and U, are
independent.
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662 ESHAN CHATTOPADHYAY and DAVID ZUCKERMAN

We use explicit constructions of seeded extractors with almost optimal
parameters: d = O(log(n/e)) and m = Q(k) [LRVWO03], [GUV09], [DKSS09].

Note that Ext being strong implies that the output of Ext is close to uni-
form even conditioned on the seed (with high probability). Specifically, we can
view a strong extractor as consisting of D = 2¢ functions f, : {0,1}" — {0,1}™
where fs(x) = Ext(z, s). By an averaging argument, the strong extractor prop-
erty ensures that for any source X of min-entropy k, for at least 1 — /¢ of the
seeds s, we have fs(X) =~ z Up,.

A non-malleable extractor is a strengthening of a strong seeded extractor
where these outputs are not only uniform, but almost t-wise independent.
Instead of giving the proper definition as given by Dodis and Wichs [DW09],
here we state the property that we need. Let nmExt : {0,1}"x {0,1}% — {0,1}
be a (t, k, €)-non-malleable extractor that outputs 1 bit with seed-length d, and
set D = 29, We show in Lemma 2.17 that there exists a large subset of seeds
S C {0,1}%, S| > (1 — O(y/€))D, such that for any ¢ distinct seeds s1,...,s;
in S, we have

(nmExt(X, s1), ..., nmExt(X, s;)) =5 Ut,

where § = O(t+/€). In other words, if we define f(x) = nmExt(z,y), then not
only are almost all f4(X) close to uniform, but almost all of them are almost
t-wise independent.

Non-malleable extractors are much stronger than seeded extractors; for
example, a non-malleable extractor cannot ignore even one bit of its seed,
or else the seeds could be grouped in pairs with the same functionality. The
first constructions [DLWZ14], [CRS14], [Li12b] worked only for min-entropy at
least .49n. The first construction to break this barrier was in the work of Chat-
topadhyay, Goyal, and Li [CGL16], who constructed non-malleable extractors
requiring min-entropy k = Ctlog®(n/e) and seed-length d = O(t*log?(n/e)).
Subsequently, there have been further improvements and we use the state-of-
art construction from the work of Li [Lil8] (see Theorem 2.19). We will end
up needing ¢ to be polylogarithmic, so the min-entropy and seed-length will
both be polylogarithmic.

1.4. Construction overview.

Previous techniques. As mentioned earlier, Bourgain’s two-source extrac-
tor for min-entropy 0.499n relied on new advances in additive combinatorics.
Following this, Rao [Rao09a] introduced a novel elementary approach for ex-
tractin from multiple independent sources that relied on only explicit seeded
extractors. His approach was to first convert the independent sources into ma-
trices with many uniformly random rows, called somewhere-random sources,
and then iteratively reduce the number of rows in one of the somewhere-random
sources (while still maintaining a good fraction of uniform rows) using the other
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EXPLICIT TWO-SOURCE EXTRACTORS AND RESILIENT FUNCTIONS 663

somewhere-random sources. This allowed him to construct an explicit extrac-
tor for a constant number of sources with min-entropy n” for any constant
v > 0.

In a series of works [Lil3b], [Lil3al, [Lil5], Li introduced a new way of
iteratively reducing the number of rows in the somewhere-random sources.
His idea was to use a few independent sources to construct a more structured
somewhere-random source with the additional guarantee that the uniform rows
are t-wise independent and then iteratively reduce the number of rows using
leader election protocols from the work of Feige [Fei99]. Using this approach
and clever compositions of extractors, Li [Lil5] constructed an explicit extrac-
tor for three independent sources with polylogarithmic min-entropy.

We note that Li [Lil5] had already shown how to use two independent
sources to construct a single string where 2/3 of the bits are close to uniform,
and all of these good bits are almost polylog-wise independent. By using
a better seeded extractor, we could obtain a single string where at least a
(1 — n=%W) fraction of the bits are almost polylog-wise independent.

Our approach. There are three technical parts to our construction.

e First, we show how to use a non-malleable extractor to reduce two inde-
pendent sources X and Y, each on n bits, to a single string Z on poly(n)
bits such that (1 — n~1))-fraction of the bits are almost polylog(n)-wise
independent. This gives the same reduction as done by Li [Lil5], but our
construction is more modular. Li did not use non-malleable extractors, but
instead used alternating extraction in clever ways. Our modularization led
to the later improvements of two-source extractors.

Further, we observe that a (g, ¢)-resilient function (see Definition 1.10),
for appropriate parameters, is an extractor for the source Z.

We sketch our reduction using a non-malleable extractor and extraction
using resilient functions in Section 1.4.1.

e Second, we show that a monotone resilient function in AC® is also resilient
when the good bits are chosen polylog(n)-wise independently. (Recall that
a function is in AC if it is computable by a family of polynomial-sized cir-
cuits with constant depth, allowing unlimited fan-in AND and OR gates.)
We discuss this in Section 1.4.2.

e Third, we show how to construct a monotone resilient function in ACY.
This is described in Section 1.4.3.

We note that Li did not use resilient functions, but instead iteratively
used leader election protocols, which is why he obtained a 3-source extractor
instead of a 2-source extractor.
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664 ESHAN CHATTOPADHYAY and DAVID ZUCKERMAN

1.4.1. A non-malleable extractor and a resilient function give a two-source
extractor. To motivate our construction of 2-source extractors, let us first try
to build a 1-source extractor (even though we know it is impossible). Let X be
an (n, k)-source, where k = polylog(n). Let Ext be a strong seeded extractor
designed to extract 1 bit from min-entropy k with error €, and view it as D
functions fs(z) = Ext(x, s). From the earlier discussion about extractors, the
concatenation of fs(X) over all seeds s gives a D-bit string Z where most
individual bits are close to uniform. Note that since the seed length of Ext is
O(logn), D = poly(n). (Think of the error parameter € = 1/n%1).) At this
point, we might hope to take the majority of these D bits of Z to obtain a bit
that is close to uniform. However, the bits fs(X) for different seeds s may be
correlated in arbitrary ways (even if individually the bits are close to uniform),
so this approach does not work.

We can try to fix this approach by introducing some independence among
the uniform bits. For example, if we obtain a source Z such that D — D% bits
are uniform, and further these bits are (almost) constant-wise independent,
then it is known that the majority function can extract an almost-uniform
bit [Viol4]. In an attempt to obtain such a source, we use a non-malleable
extractor. Let nmExt be a (¢, k, €)-non-malleable extractor that outputs 1 bit
with seed-length d, and let D = 2¢. We proceed as in our first attempt, viewing
the non-malleable extractor as D functions fs(z) = Ext(x, s). From the earlier
discussion about non-malleable extractors, the concatenation of fs(X) over all
seeds s gives a D-bit string Z where not only are most individual bits close to
uniform, but almost all the bits are also almost t-wise independent. We could
now try to set parameters so that the majority function extracts a bit from Z.
However, the majority function is resilient to at most v/D bad bits, but the
number of bad bits in Z exceeds that (since D > 1/¢?).

It is therefore natural to use a more resilient function. Specifically, we can
use our new explicit resilient function that is resilient against D=9 bad bits,
even if the good bits are only polylog-wise independent, for our choice of § > 0.
We can indeed ensure that there are at most D'~ bad bits and that the good
bits are almost polylog-wise independent. The problem is that they are not
exactly polylog-wise independent, but almost polylog-wise independent with
too large an error. Specifically, we want to use a lemma of Alon, Goldreich,
and Mansour [AGMO03] saying that if every restriction of Z to t bits is y-close
to uniform, then the entire string Z is D!y-close to some ¢-wise independent
distribution. The problem is that Dty > 1.

This is where the second source comes in. We use the second source to
sample D' < D pseudorandom indices 7' C [D] in a way that the fraction of
bad bits in the projected string Z; remains almost the same as in Z, with high
probability. This can be done using an extractor-based sampler [Zuc97]. Now
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EXPLICIT TWO-SOURCE EXTRACTORS AND RESILIENT FUNCTIONS 665

we apply Alon-Goldreich-Mansour to conclude that the good bits of Zp are
§-close to a t-wise independent distribution, where § = (D)!y < 1. Thus, the
output of our 2-source extractor is the new resilient function applied to Zr.

1.4.2. A monotone resilient function in ACY suffices. The only part miss-
ing from the description above is how to construct the resilient function. First,
we show that a monotone resilient function in ACY is resilient even if the good
bits are just polylog-wise independent. The key ingredient is Braverman’s
result that polylog-wise independence fools AC? [Bral(].

To elaborate, let f : {0,1}" — {0,1} be a monotone resilient function in
AC? that is almost unbiased. To explain the key observation, let Q C [n] be
any set of input variables, let xg and zg denote the projections of x € {0,1}"

to @ and @, and write z = z¢ o Ty We observe that there is another AC?
circuit £ that decides whether an input Tg leaves f undetermined, i.e., whether
there exist g and yg such that f(zgoxpy ) # flygozy ) Spemﬁcally, since f
is monotone, &£ simply compares f(09 oz~ ) with f (1Qox ). Now Braverman s
result implies that the bias of the ClI‘CU.lt £ is roughly the same when X
drawn from a polylog-wise independent distribution and when it is drawn from
the uniform distribution. This implies the resiliency of f is almost the same
in these two scenarios.

1.4.3. Constructing the resilient function. Thus all that remains is to con-
struct a monotone ACY circuit f that is almost balanced under the uniform
distribution, and I,(f) = o(1) for ¢ < D'=°. The high level idea for this
construction is to derandomize the probabilistic construction of Ajtai-Linial
[AL93] using extractors. The tribes function introduced by Ben-Or and Linial
[BALS5] is a disjunction taken over AND’s of equi-sized blocks of variables.
The Ajtai-Linial function is essentially a conjunction of non-monotone tribes
functions, with each tribes function using a different partition and the variables
in each tribes function being randomly negated with probability 1/2. Ajtai and
Linial choose the partitions using the probabilistic method.

We sketch informally our ideas to derandomize and monotonize this con-
struction. For each i € [R], let P’ be an equi-partition of [n], n = MB,
into blocks of size B. Let P; denote the j’th block in P'. Define f as the
conjunction of the corresponding monotone tribes:

AV A

LSiSR1<j<M (P!

First, we abstract out properties that these partitions need to satisfy for f to

be almost unbiased and also (n'~%, €)-resilient. Informally, we show that

(1) if for all 41,19, 1,72 with (i1,71) # (i2,j2), ]P“ N PZQ\ < 0.9B, then f is
almost unbiased;
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666 ESHAN CHATTOPADHYAY and DAVID ZUCKERMAN

(2) if for any set @ of size ¢ < n'~%, the number of partitions P* containing a
block P} such that |P]Z NQ| > 6B/2 is o(R), then f is (n'=?, ¢)-resilient.

An ingredient in the proof of (1) is Janson’s inequality (see Theorem 5.13).
It is important that unlike in Ajtai-Linial and earlier modifications [RZ01], we
do not need to negate variables, and thus f is monotone.

The second property seems related to the sampler property of extractors
captured in Theorem 2.12. However, a sampler or extractor would just give us
one subset, whereas we want to partition the space into subsets. Our main idea
here is to use shifts of the subset to create a partition. Specifically, we construct
a family of equi-partitions of [n] = [BM], with each block of a partition being
of size B, from a seeded extractor Ext : {0,1}" x {0,1}* — {0,1}™ as follows.
Each P" corresponds to some w € {0,1}". One block of P" is

PY = {(y, Ext(z,y)) : y € {0,1}"}.

The other blocks are shifts of this, i.e., for any s € {0,1}™, define

PY = {(y,Ext(x,y) @) : y € {0,1}"}.

This gives R = 2" partitions of [n] with n = 27*?.

For any good enough extractor, we show that (2) is satisfied using a basic
property of extractors and an averaging argument. To show that the partitions
satisfy (1), we need an additional property of the extractor, which informally
requires us to prove that the intersection of any two arbitrary shifts of neighbors
of any two distinct nodes wy,wy € {0,1}" in Gyt is bounded. This essentially
is a strong variant of a design extractor of Li [Lil2a]. We show that Trevisan’s
extractor has this property. This completes the informal sketch of our resilient
function construction. We note that our actual construction is slightly more
complicated and is a depth 4 circuit. The extra layer enables us to simulate
each of the bits z1, ..., x, having Pr[z; = 1] close to 1, which we need to make
f almost unbiased.

1.5. Organization. We use Section 2 for preliminaries. In Section 3, we
use non-malleable extractors to reduce the problem of constructing 2-source
extractors to the problem of constructing a resilient function. In Section 4 we
show that if f is computable by a polynomial sized constant depth monotone
circuit, then in order to prove an upper bound for I, +(f), it is in fact enough to
upper bound I, (f). In Section 5 we explicitly construct such a function f with
small I,(f) that is computable by a polynomial sized constant depth monotone
circuit. We prove Theorem 4 in Section 6. Finally, we prove Theorem 1 in
Section 7.
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EXPLICIT TWO-SOURCE EXTRACTORS AND RESILIENT FUNCTIONS 667

2. Preliminaries

We reserve the letter e for the base of the natural logarithm.

We use In(x) for log,(z), and log(x) for logy(x).

We use U, to denote the uniform distribution on {0, 1}™.

For any integer ¢ > 0, [t] denotes the set {1,...,t}.

For a string y of length n, and any subset S C [n], we use yg to denote the
projection of y onto the coordinates indexed by S.

For any binary strings z,y € {0,1}", we use A(x,y) to denote the Hamming
distance.

2.1. An inequality. We frequently use the following inequality.

CrLam 2.1. Foranyn >1 and 0 <z < n, we have

2 n
e ? (1— w) < (1—5) <e®.
n n

2.2. Some probability lemmas.

Definition 2.2 ((n, 7)-Bernoulli distribution). A distribution on n bits is an
(n, 7)-Bernoulli distribution, denoted by Ber(n, 7), if each bit is independently
set to 1 with probability 7 and set to 0 with probability 1 — 7.

LEMMA 2.3 ([GRSO06)). Let X be a random variable taking values in a
set S, and let Y be a random variable on {0,1}. Assume that |(X,Y) —
(X,U)| <e. Then for every y € {0,1},

(XY =y) — X| <20 le

LEMMA 2.4 ([Sha08]). Let X1,Y1 be random variables taking values in a

set S1, and let Xo, Yo be random variables taking values in a set So. Suppose
that

(1) X2 — Yy <e;
(2) tor every sy € S, |(X1|X2 = s2) — (Y1|Y2 = s2)| < .
Then

[(X1,X2) — (Y1,Y2)]| <e€1 + e

Using the above results, we record a useful lemma.

LEMMA 2.5. Let Xq,...,X; be random variables, such that each X; takes
values 0 and 1. Further, suppose that for any subset S = {s1,...,s,} C [t],
(Xoy, Xs, s X)) e (U, X, .., X))

Then
(Xl, e 7Xt) 5te Ut.
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Proof. We prove this by induction on ¢. The base case when t = 1 is
direct. Thus, suppose t > 2. It follows that

(X, Xqy oo, Xym1) & (U, Xy, .00, X 1),
By an application of Lemma 2.3, for any value of the bit b,
(X1, X1 X =0) — (X, .0, Xim1)| < Ade.
Further, by the induction hypothesis, we have
(X1, ., Xim1) — Uy <5(E—1)e.

Thus, by the triangle inequality for statistical distance, it follows that for any
value of the bit b,

(X1, X1 X =0) = Upq| < (5 — 1)e.
Using Lemma 2.4 and the fact that |X; — U;| <, it follows that
|(X1,...,X¢) — Uy < (5t —1)e+ e = 5te.
This completes the induction, and the lemma follows. ([

We record a fact about almost t-wise independent distributions.

THEOREM 2.6 ([AGMO3]). Let D be a (t,~)-wise independent distribution
on {0,1}". Then there exists a t-wise independent distribution that is n'~y-close
to D.

2.3. Eaxtractors for NOBF sources via resilient functions.

Definition 2.7 (NOBF Sources). A source Z on {0, 1}? is called a (q,t,7)-
non-oblivious bit-fixing source (NOBF source for short) if there exists a subset
of coordinates ) C [D] of size at most g such that the joint distribution of
the bits indexed by @ = [D]\ Q is (¢,7)-wise independent. The bits in the
coordinates indexed by @ are allowed to depend arbitrarily on the bits in the
coordinates indexed by Q. If v = 0, we just say it is a (¢,t)-NOBF source.

The following is a simple corollary of Theorem 2.6, which states that it is
enough to reason about (g,t)-NOBF sources instead of (g, t,y)-NOBF sources
(on n bits) by paying an additional error of yn!.

COROLLARY 2.8. Let X be a (q,t,v)-NOBF source on n bits. Then, there
exists a (q,t)-NOBF source Y on n bits such that |X — Y| < ynt.

We recall a simple connection between the problem of constructing ex-
tractors for (g,t,v)-NOBF sources and constructing (¢, )-independent (g, €;)-
resilient functions.
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LEMMA 2.9. Let f : {0,1}" — {0,1} be a Boolean function that is
(t,7y)-independent (q,€1)-resilient. Further, suppose that for any (t,~)-wise
independent distribution D, |Exp[f(x)] — 3| < 2. Then f is an extractor for
(q,t,7)-NOBF sources with error €1 + €.

Proof. Let X be a (g, t,~)-non-oblivious bit-fixing source on n bits. Then
X is sampled in the following way: For some fixed subset @ C {z1,...,2,}
of q variables, the variables Q = [n] \ Q are drawn from some fixed (,)-wise
independent distribution D; on n — ¢ bits, and the variables in ) are chosen
arbitrarily depending on the values of the variables in Q.

Let E be the following event: f is determined on fixing the variables in Q
by sampling from D; and leaving the remaining variables free. Since f is (¢,7)-
independent (g, €1)-resilient, we have Pr[E] > 1 —¢;. Let D be any (¢, )-wise
independent distribution on n bits whose projection on to @ matches D;. It
follows that

Pryop[f(x) =1] — 3 < e
We have
Pryp|f(x) = 1] = Prep|f(x) = 1|E]Pr[E] + Prxp|f(x) = 1|E|Pr[E]
= Prex|[f(x) = 1|E]Pr[E] + Prx.p[f(x) = 1| E|Pr([E]
= Prox[f(x) = 1]
+Pr[E] (Prxplf(x) = 1|E] — Preox([f(x) = 1[E])
Hence,
[Pryplf(x) = 1] = Prex[f(X) = 1]| < Pr[E] < g
Thus, 1
’Prxwx[f(x):l]—z‘ < €1 + €9. O

2.4. Seeded extractors and samplers. We use the following strong seeded
extractor constructed by Trevisan [Tre01], with subsequent improvements by
Raz, Reingold and Vadhan [RRV02].

THEOREM 2.10 ([Tre01], [RRV02]). There exists a constant X > 0 such
that for every n,k,m € N and € > 0, with m < k < n, there exists an explicit
strong-seeded extractor TExt : {0,1}" x {0,1}¢ — {0,1}™ for min-entropy k

10g2(n/6))
log(k/m) ) *

We also use optimal constructions of strong-seeded extractors.

and error €, where d = X\ - (

THEOREM 2.11 ([GUV09]). For any constant o > 0, and all integers n,
k>0 and any € > 0, there exists a polynomial time computable strong-seeded
extractor Ext : {0,1}" x {0,1}¢ — {0,1}™ with d = O(logn + log(1/¢)) and
m = (1—-a)k.
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To ensure that for each = € {0,1}", Ext(z,s1) # Ext(z, s2) whenever
s$1 # s9, one can concatenate the seed to the output of Ext, though it is no
longer strong.

2.4.1. Sampling using weak sources. Sampling is a fundamental task in
computer science, and a long line of work has been dedicated to constructing
randomness efficient samplers. We require samplers that work with access to
weak sources of randomness. Sipser [Sip88] introduced the notion of dispersers
and showed applications to randomness efficient sampling for one-sided error.
We use a technique of sampling for two-sided error using randomness extractor.

We first introduce a graph-theoretic view of extractors. Any seeded ex-
tractor Ext : {0,1}" x {0,1}¢ — {0,1}™ can also be viewed as an unbalanced
bipartite graph Gy with 27 left vertices (each of degree 2¢) and 2™ right
vertices. We use N (z) to denote the set of neighbors of x in Gry. We call
Gyt the graph corresponding to Ext.

THEOREM 2.12 ([Zuc97]). Let Ext : {0,1}" x {0,1}¢ — {0,1}™ be a
seeded extractor for min-entropy k and error e. Let D = 2%. Then for any set
R C{0,1}™,

{x € {0,1}" : ||IN(z) N R| — urD| > eD}| < 2~+1,
where pp = |R|/2™.

2.4.2. Shift-design extractors. We introduce the notion of a shift-design
extractor. This generalizes the notion of design extractors introduced by Li
[Lil2a]. We first informally discuss the notion of design extractors and our
generalization to shift-design extractors. Given a strong-seeded extractor Ext :
{0,1}"x{0,1}¢ — {0, 1}™, define the extractor Ext’ that concatenates the seed
to the output of Ext (i.e., such that Ext’(z,y) = Ext(x,y)oy). It is now useful
to think in terms of the extractor graph Ggyy. (See Section 2.4.1, where this
view is introduced.) Ext’ is a design extractor if the collection of 2" sets,
each set corresponding to the set of neighbors N (z) of a vertex x € {0,1}"
on the left in Ggy, forms a design (i.e., the pairwise intersection of any two
sets is bounded). We extend this to a more robust notion, and require that
the design property holds even under arbitrary “shifts” of the sets. We now
formally define shift-design extractors.

Definition 2.13 (Shift-design extractor). Let Ext : {0,1}" x {0,1}¢
— {0,1}™ be a strong-seeded extractor. Let D = 2¢. If for any distinct
y,y" € {0,1}" and arbitrary h,h’ € {0,1}"™ the following holds,
{(z Ext(y, 2) @ h) : 2 € {0, 13} 0 {(2, Ext(y, 2) & 1) : 2 € {0, 1}7}]

then Ext is called an n-shift-design extractor.
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We prove that Trevisan’s extractor [Tre01] (see Theorem 2.10) is a shift-
design extractor. We first describe the construction of Trevisan’s extractor.
Our proof in fact requires us to reason about the way a single bit (say, the first
bit) of the output is produced, and hence we present a simplified view of the
construction. We refer the reader to Trevisan’s paper [Tre01] for more details
on the construction.

A one-bit version of Trevisan’s extractor. Let r, b be integers, where we set
the parameter b later. Let B = 2. On inputs y € {0,1}" and z € {0,1}?, we
describe the construction of the one-bit version of Trevisan’s extractor TExt :
{0,1}" x {0,1}> — {0, 1}.

e Fix an asymptotically good binary linear error correcting code C with con-
stant relative rate «, block length 7 = r/« and relative minimum distance

% — B with 8 < 1/10 such that €’ = span{C, I} is also a code with distance

1/2 — B (where T denotes the all 1 string).” Let Enc : {0,1}" — {0,1}7 be

the encoding function of C.

e Let b = log(7), assuming without loss of generality that 7 is a power of 2.
e The output of TExt is the bit at the z’th coordinate (interpreting the
string z as an integer in [B] the natural way) of the string ¢, = Enc(y).

Remark 2.14. We use the following fact about the multi-bit version of
Trevisan’s extractor (i.e., TExt : {0,1}" x {0,1}* — {0,1}™, m > 1): let
TExt; : {0,1}" x {0,1}* — {0,1} be the function that just outputs the first
output bit of TExt. Then TExt; is exactly the same function as the one-bit
Trevisan extractor described above.

LEMMA 2.15. Let TExt : {0,1}" x{0,1}* — {0,1}™ be Trevisan extractor
from Theorem 2.10. Then, TExt is a %-shift-design extractor.

Proof. We first prove the lemma for the case m = 1. It is then straight-
forward to extend this to m > 1. Let y,y’ € {0,1}", y # ¢/ and h,h’ € {0,1}.
Let ¢, = Enc(y) and ¢,y = Enc(y/’).

Consider the case h = h/. From the above description of TExt (for the
case m = 1), it follows that

{z € {0,1}° : (2, TExt(y, 2)) # (2, TExt(y/, 2))}|
= A(cy,cy) 2 (% - ﬁ) B > B/10,

using the fact that ¢, and ¢, are distinct codewords in C.

SIn other words, one can start with any good linear code C’ with block length 7 that

has minimum distance 2+ — 8 and contains . Let {v1,...,v,41} be a basis of C’ with v,

= 1. Now C is defined to be the binary linear code generated by {vi,...,vr}, that is, C =

span{vi, ..., vr}.
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Now suppose h # h'. It follows that

{z €{0,1}": (2, TExt(y, 2)) # (2, TExt(y/, 2))}
— Aley ey dT) > (% ~8) B> B/,

using the fact that ¢, and ¢,v = ¢y @ T are distinct codewords in C’. The fact
that ¢, # cy» can be seen as follows: ¢, and ¢, are codewords in C and hence
cy @ ¢y is a codeword in C (since it is a linear code). Since I is not a codeword
in C, it follows that ¢, ® ¢, # 1. This completes the proof for the case m = 1.

This extends to the case m > 1 almost immediately in the following way:
Let y,y' € {0,1}", y # ¢/, and h,h' € {0,1}"™. Let a and a’ be the first bits
of h and I respectively. Further, let TExt; be the function that outputs the
first bit of TExt (i.e, TExt1(y,2) = TExt(y, z)}3)). It follows that

1{(z, TExt(y,2) ® h) : z € {0,1}°} N {(z, TExt(y/, 2) ® 1') : z € {0,1}"}]
< {(z, TExt;(y,2) @ a) : z € {0,1}°} N {(z, TExt1(y/, 2) ® ') : z € {0,1}%}]

< 9B/10,

where the final inequality, by Remark 2.14, follows from the m = 1 case (for
which we have proved the lemma). This completes the proof. ([

2.5. Non-malleable extractors. Non-malleable extractors were introduced
by Dodis and Wichs [DW09] as a generalization of strong-seeded extractors.
We define t-non-malleable extractors, which generalize the notion introduced
in [DWO09] (which corresponds to the case ¢t = 2). The work of Cohen, Raz
and Segev [CRS14] was the first to introduce the the notion of t-non-malleable
extractors.

Definition 2.16. A function nmExt : {0,1}" x {0,1}¢ — {0,1}™ is a
(t, k, €)-non-malleable extractor if it satisfies the following property: If X is a
(n, k)-source and Y is uniform on {0, 1}¢, and f1,..., f; are arbitrary functions
from d bits to d bits with no fixed points,® then

(nmExt(X,Y), nmExt(X, f1(Y)),...,nmExt(X, f;(Y)),Y)
~¢ (Up,, nmExt(X, f1(Y)),...,nmExt(X, f;(Y)),Y).

We prove a lemma that provides a useful alternate view of ¢t-non-malleable
extractors.

6we say that x is a fixed point of a function f if f(z) = x.
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EXPLICIT TWO-SOURCE EXTRACTORS AND RESILIENT FUNCTIONS 673

LEMMA 2.17. Let nmExt : {0,1}" x {0,1}¢ — {0,1} be a (t,k,€)-non-
malleable extractor. Let {0,1}¢ = {s1,...,sp}, D =29, Let X be any (n,k)-
source. There exists a subset R C {0,1}¢, |R| > (1 — \/€)D such that for any
distinct r1,...,1: € R,

(nmExt(X,r1),...,nmExt(X, 7)) ~5. e U
Proof. Let

BAD = {r € {0,1}¢: 3 distinct 71,...,7; € {0,1}%,
Vi€ [t] ri #r, st |[(nmExt(X, r), nmExt(X, 1), ..., nmExt(X, 7))
— (Uy,nmExt(X,71),...,nmExt(X, r))| > e}

We define adversarial functions fi,..., f; as follows. For each r € BAD, set
filr) = ry, i = 1,...,t. (The f;’s are defined arbitrarily for »r ¢ BAD, only
ensuring that there are no fixed points.) Let Y be uniform on {0,1}%. It
follows that

|(mmExt(X,Y), nmExt(X, f1(Y)),...,nmExt(X, f;(Y)),Y

)
—(Uy, nmExt(X, f1(Y)), ..., nmExt(X, £,(Y)),Y)| > *Q/fyBAD\.

Thus |BAD| < /€2? using the property that nmExt is a (k, ¢, €)-non-malleable
extractor. Define R = {0,1}¢\ BAD. Using Lemma 2.5, it follows that R
satisfies the required property. O

Remark 2.18. In fact, the above proof gives us something stronger. It
shows that for any seed s € R, and any other ¢ seeds s, ..., s; (not necessarily
in R), we have

|(nmExt(X, s), nmExt(X, s1),...,nmExt(X, s;))
—(Uy,nmExt(X, s1), ..., nmExt(X, s¢))| < Ve.

However, we do not use this stronger property in our analysis.

The first construction of explicit ¢-non-malleable extractor for polyloga-
rithmic min-entropy (in fact, for any min-entropy significantly smaller than
n/2) was given by Chattopadhyay, Goyal and Li [CGL16]. Subsequently, a
long line of work improved on their methods, and we use the state-of-the-art
non-malleable extractor from the work of Li [Lil8].

THEOREM 2.19 ([Lil8]). There exists a constant ¢ > 0 such that for alln,
t > 0, there exists an explicit (t, k,€)-non-malleable extractor nmExt : {0,1}"
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674 ESHAN CHATTOPADHYAY and DAVID ZUCKERMAN

x {0,1}¢ — {0, 1}, where

log(1/¢)loglog(1
kuC/t (10g10gn+ Og( /6) Og Og( /€)>

logloglog(1/€)
and

=0 (igign ¢ PO/ NEIR0/0))

logloglog(1/e€)

2.6. Boolean circuits, the class AC? and other definitions. For the sake
of being self-contained, we define Boolean circuits and related notions that we
use in this paper. We refer the reader to the book by Arora and Barak [AB09]
for a more comprehensive introduction to circuit complexity.

Definition 2.20. For an integer n > 0, a Boolean circuit C' with n inputs is
a directed acyclic graph with n nodes having in-degree 0 called the input nodes,
and one node, called the output node, having out-degree 0 and in-degree 1.
The other nodes are called gates and are labeled with one of A (logical AND),
V (logical OR), or = (logical NOT).

e The fan-in of C is defined to be the maximum in-degree of a node in the
graph corresponding to C.

e The size of C is defined to be the sum of the number of nodes and edges
in the graph corresponding to C.

e The gate with an out-edge to the output node is called the root node.

e The depth of a gate is the length of the longest directed path from the
gate to the root node.

e The length of the longest directed path from an input node to the root
node is defined to be the depth of the circuit C.

e For the sake of convenience, given an input x = (z1,...,x,) € {0,1}" to
the circuit C, we allow {—z1,...,—z,} to be additional input variables
available to C. (We still say that C is a circuit defined on n input bits.)

Boolean functions computed by circuits. A Boolean circuit C' with n inputs
naturally computes an output bit given an input z € {0,1}". We use C(z)
to denote this output bit. We say that a function f :{0,1}" — {0,1} can be
computed by a circuit of size s and depth d if there exists a Boolean circuit C
on n inputs with size at most s and depth at most d such that f(z) = C(x)
for all x € {0,1}".

Families of circuits. A circuit family {C), }nen of size s(n) and depth d(n)
is a sequence of circuits with C), being a circuit with n inputs, size at most s(n)
and depth at most d(n). We say that a language L = U,>0L;, L, C {0,1}"
is recognized by a circuit family of size s(n) and depth c¢(n) if there exists a
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EXPLICIT TWO-SOURCE EXTRACTORS AND RESILIENT FUNCTIONS 675

circuit family {C, }en of size s(n) and depth d(n) such that for any integer
i>0andy € {0,1}%, y € L; if and only if C;(y) = 1.

Definition 2.21. The class AC? consists of all languages recognized by
some circuit family {C), },en with depth d(n) = O(1), size s(n) = poly(n), and
unbounded fan-in. By a slight abuse of notation, we say that the circuit family
circuit {Cy, }nen is in ACP.

Definition 2.22. A conjunctive normal form (abbreviated CNF) is a depth
2 circuit with an A gate at the root node and V gates at depth 1. A disjunctive
normal form (abbreviated DNF) is a depth 2 circuit with an V gate at the root
node and A gates at depth 1.

Definition 2.23. A Boolean function f : {0,1}" — {0,1} is called mono-
tone if for any = € {0,1}" and y € {0, 1}" satisfying Vi € [n], x; < y;, we have

flx) < fy).

2.7. A simple lemma. We use the following lemma, which shows that a
small CNF can simulate a biased bit with high enough accuracy.

LEMMA 2.24. Suppose v < 9/10. Then for any v > 0, there exists an
explicit size h monotone CNF C on h bits, where h = O (% In (%)), such that
v —v < Pryoy, [C(x) =0] < 7.

Proof. Let he = [log(2/v)], and let h; be the largest integer such that
(1 —27h2)"m > 1 — 4. Thus,

1-—vy)<(@=2")" <(1-9)/(1-27")
<=1 +21)
<Q-7Q1+v)
<l—v+4+v

and h; = O(2h2).
Define
hi1  ho
C(x) = /\ \/ Lg1,92
g1=1g2=1

and h = hnhy = O(h2"?) = O (% log (%)) Thus
Pry.u,[C(x) =0/ =1—(1—-27")",

and hence

v—v < Pryoy, [C(x) =0] <. O
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676 ESHAN CHATTOPADHYAY and DAVID ZUCKERMAN

3. Reduction to an NOBF source

The main result in this section is a reduction from the problem of extract-
ing from two independent (n, k)-sources to the task of extracting from a single
(¢,t)-NOBF source. We formally state the reduction in the following theorem.

THEOREM 3.1. Let nmExt : {0,1}" x {0,1}% — {0,1} be a (¢, k,€e1)-
non-malleable extractor, and let Ext : {0,1}" x {0,1}% — {0,1}% be a seeded
extractor for min-entropy k/2 with error es. Let {0,1}% = {s1,...,sp,},
Dy = 2%, Suppose that Ext satisfies the property that for all y € {0,1}",
Ext(y, s) # Ext(y, s") whenever s # s'. Define the following function:

reduce(z,y) = nmExt(z, Ext(y, s1)) o ... o nmExt(z, Ext(y, sp,)).
If X and Y are independent (n, k)-sources, then
Pry.y[reduce(X,y) is O(ty/e1D})-close to a (q,t)-NOBF source]

>1-2.2702
where ¢ = (y/€1 + €2)Do.

Proof. Let R C {0,1}% be such that for any distinct r1,...,7; € R,
(nmExt(X, 1), ..., nmExt(X, 7)) ~5 e Ut

It follows by Lemma 2.17 that |R| > (1 — \/€1)D;.
Define

Samp(y) = {Ext(y,s1),...,Ext(y, sp,)} € {0,1}4,
Using Theorem 2.12, we have
(1) Pr [[Samp(y) N R| < (1 Vi — e2)Dy] < 227472,
yN

Consider any y such that

[Samp(y) N R| > (1 — /&1 — €2) Da.
Let Zy = reduce(X,y). Since the output bits of nmExt corresponding to
seeds in Samp(y) N R are (t,5t,/€1)-wise independent, we have that Zy is a
((\/€1 + €2) D2, t,5t,/e1)-NOBF source on Dj bits.
Thus using (1), it follows that with probability at least 1 — 2 - 27%/2 over
y ~ Y, reduce(X,y) is a ((\/€1 + €2)Da,t,5t,/€1)-NOBF source on Dy bits.
The lemma now follows from Corollary 2.8. O

4. Monotone constant-depth resilient functions are
t-independent resilient

Using the reduction from Section 3, we have now reduced the problem
of extracting from two independent sources to extracting from a (q,t)-NOBF
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EXPLICIT TWO-SOURCE EXTRACTORS AND RESILIENT FUNCTIONS 677

source. By Lemma 2.9, this translates to constructing a nearly balanced func-
tion f with small I .(f).

We show that if f is computable by a polynomial sized constant depth
monotone circuit, then in order to prove an upper bound for I,.(f), it is in
fact enough to upper bound I,(f), which is a simpler quantity to handle.

THEOREM 4.1. There exists a constant b > 0 such that the following
holds: Let C : {0,1}" — {0,1} be a monotone circuit in AC® of depth d
and size m such that |Ex.u,[C(z)] — 3| < e1. Suppose ¢ > 0 is such that
I,(C) < e Ift > b(log(m/e3))3?t6, then 1,4(C) < €3 + €3 and I;;,(C) <
€o + €3 +ynt. Further, for any distribution D that is (t,~)-wise independent,
|E2p[C(x)] — 3| < €1 + 3+ 0.

We briefly sketched the main ideas of the proof of the above theorem in
the introduction. We proceed to formally prove Theorem 4.1.

A crucial ingredient in our proof is the seminal result of Braverman [Bral0]
that polylogarithmic independence “fools” constant depth circuits. We state
the result using refined bounds proved by Tal [Tall7].

THEOREM 4.2 ([Bral0], [Tall7]). Let D be any g(m, d, €)-wise independent
distribution on {0,1}". Then for any circuit C € AC® of depth d and size m,

[Ex~u, [C(x)] = Ex~p[C(x)]| <€,
where g(m, d,e) = O(log(m/e))3?+3.
Proof of Theorem 4.1. The bound on Ex.p|C(x)] is direct from Theo-
rems 4.2 and 2.6. We now proceed to prove the influence property.
Consider any set @ of variables, |Q| = ¢. Let Q = [n] \ Q. We construct
a function &y : {0,1}"7¢ — {0,1} such that Eg(y) = 1 if and only if C is
undetermined when To is set to y. Thus, it follows that
Ey v, ,[E(y)] = Pry.u, ,[Eo(y) =1 =Ig(C) < e2.
Let D be any t-wise independent distribution. We have

Eyp[€q(y)] = Pry~p[q(y) = 1] = 19,p(C).
Thus to prove that Igp(C) < e + €3, it is enough to prove that

(2) [By~u,,[Eo(y)] — Ey~p[€o(¥)]] < €.

We construct £g as follows: Let Cy be the circuit obtained from C by setting
all variables in @ to 0. Let C; be the circuit obtained from C by setting all
variables in @ to 1. Define &g := —(Cy = C1). Since C is monotone, &g satisfies
the required property. Further, £g can be computed by a circuit in ACP of
depth d + 2 and size 4m + 3. It can be checked that the depth of &g can
be reduced to d + 1 by combining two layers. Thus (2) now directly follows
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678 ESHAN CHATTOPADHYAY and DAVID ZUCKERMAN

by applying Theorem 4.2 on the depth-(d + 1) AC? circuit &g noting that
t > g(m,d+ 1,€3), where g is the function defined in Theorem 4.2. O

5. A monotone resilient function in AC°

The main result in this section is an explicit construction of a function f
that is resilient to coalitions, computable by a polynomial sized constant depth
monotone circuit, and is almost balanced under the uniform distribution.

Theorem 3 (restated). For any constant § € (0,1), and every large enough
integer n, there exists a polynomial time computable monotone Boolean func-
tion f:{0,1}"™ — {0,1} satisfying

o [ is a depth 4 circuit in AC® of size n®1)
* Exwu, [f(®)] ~ 3l < s

e forany g >0, I(f) < Q/”l_(s'

We initially construct a depth 3 circuit that works, but then the inputs

7

have to be chosen from independent Bernoulli distributions where the proba-
bility p of 1 is very different from 1/2. By observing that we can approximate
this Bernoulli distribution with a CNF on uniform bits, we obtain a depth 4
circuit that works for uniformly random inputs, and thus Theorem 3 follows.

We use Section 5.1 to describe the construction of the resilient function
that works when the bits are biased. We use Section 5.2 to set up various
parameters and state required relations that these parameters need to satisfy
for our construction to hold. We state the main lemmas in Section 5.3. We use
Sections 5.4, 5.5, 5.6 and 5.7 to prove these lemmas. In Section 5.8, we describe
Construction 2, which satisfies Theorem 3. We use Appendix A to provide
supplementary material for the proofs and arguments done in Section 5. In
particular, Appendix A provides proofs of various bounds that are important
for our argument to work but involve messy and routine calculations.

5.1. Our construction. Our starting point is the work of Ajtai and Linial
[AL93], who proved the existence of functions computable by linear sized
depth 3 circuits in ACY that are (Q(n/log?n), €)-resilient. However, this con-
struction is probabilistic, and deterministically finding such functions requires
O("*) " Further, these functions are not guaranteed to be monotone (or
even unate’).

We provide intuition of our construction in the introduction. We now

time n

present our construction (see Table 1). We carefully set parameters in

A Boolean function f : {0,1}" — {0, 1} is unate in a variable z; if there exists b € {0, 1}
such that for all z € {0,1}", f(z1,...,2i-1,b,Tit1, ..., @n) > f(z1,...,@iz1,1 — b, Tit1,...,
Zn). We say that f is unate if it is unate in each of the input variables.
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Construction 1: Let Ext : {0,1}" x {0,1}* — {0,1}™ be a J-shift-
design extractor set to extract from min-entropy k& with error e.
Let {0,1}" = {v1,...,vr}. We define a collection of R equi-partitions
of [s], P ={P",...,P"r} as follows:
e Let Gpxt be the bipartite graph corresponding to Ext and let
N(z), for any z € {0,1}", denote the neighbors of z in Gyt.
e For some v € {0,1}", let N'(v) = {z1,...,zp}. Define the parti-
tion P¥ with blocks P}, for each w € {0,1}" where

(3) Pl ={(j,2; ®w):j€{0,1}°}
(Here & denotes the bit-wise XOR of the two strings).

Claim 5.1 shows that P forms an equi-partition of [s] with M blocks,
each of size B.
Define the function fry : {0,1}* — {0,1} as

fe@)= NV A we

L<iSR1<<M (P

Instantiation of Ext in Construction 1: We set Ext : {0,1}" x
{0,1}> — {0,1}™ to be the Trevisan extractor from Theorem 2.10 set
to extract from min-entropy k with error e.

Table 1.

Section 5.2. In this section, assume that r, b, m, k, e are parameters that are

fixed later. Let R =2",B =20, M = 2™ and s = M B.

We record a simple claim that shows that each PV defined in Construc-

tion 1 is an equi-partition of [s] = [BM] into blocks of size B.

CLAIM 5.1. For any v € {0,1}", P (described in Construction 1) is an

equi-partition of [s] into blocks of size B.

Proof. We think of [s] as the product set [B] x [M] and associate [B] with
{0,1}* and [M] with {0,1}™ in the natural way. We now prove that P? is an

equi-partition of {0,1}” x {0,1}™. Recall that for each w € {0,1}™,
Py ={z ®w):j €{0,1}}

is a block of PV (where N (v) = {z1,...,2p} as defined in Construction
Clearly, for 4,7 € {0,1}®, i # j, and any w,w’ € {0,1}™,

(i, 2 P w) #* (], z; @ w').

This gives us that each P} is of size exactly B.
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Now suppose | P2 N P%| > 0 for distinct w,w’ € {0,1}°. Then it must be
the case that there is a j € {0,1}° such that (j,z; ® w) = (j,2; ® w'), which
is clearly a contradiction since w # w’. Thus, Py, and PY, are disjoint sets for
distinct w, w’ € {0,1}™. This completes the proof that PY is an equi-partition
of [s]. O

5.2. Various parameters and their relations. The construction in Section 5.1
involves many parameters that need to be set with care. We use this subsection
to introduce parameters and present the way they are set up. Further, we list
the key inequalities that they need to satisfy.

We begin with the simple observation that it is enough to prove Theo-
rem 3 assuming 6 € (0,1/10). This is straightforward since any f satisfying
Theorem 3 for § € (0,1/10) also satisfies the theorem for § € (0,1). Thus, we
assume 0 < 6 < 1/10 for the rest of Section 5.

In the remaining parts of Section 5, we assume that these parameters are
set up in the way specified here. In Appendix A.0.1, we show that Construc-
tion 1 described in Section 5.1 can indeed be instantiated with parameters as
specified here.

We now proceed to set up the various parameters:

Let constants § € (0,1/10) and €; € (0,1/10), and any integer r > 0, be
given as input parameters.

Set k = 26r, m = k/2.

Let A be the constant from Theorem 2.10.

Let &5 > 0 be a new parameter that we pick as follows: Define e = 2%2v7

and b = %. Pick any d2 such that

(4) 627 /40 < b= A(03r + log? r + 205+/7 log ) < 627 /20.

e Define §; = b/m.

e Let R=2",B=2" M =2 and K = 2*.
e Let s = BM. Since B = M, thus s = M1,
e Define v = lnM—lnlél(R/ ln2)'

[ )

Pick any p; that satisfies

(5) (1=B " )y<p <.
o Let po = (1 —p1)Z, ps = (1 —p2)M.
e For convenience, define o = p3R.

The following are the inequalities that the above parameters need to satisfy
for our construction to work:

(6) §/40 < 8, < §/20,
(7) s17O/M < e < §/4.

This content downloaded from
136.152.143.33 on Thu, 25 Jul 2019 23:17:27 UTC
All use subject to https://about.jstor.org/terms



EXPLICIT TWO-SOURCE EXTRACTORS AND RESILIENT FUNCTIONS 681

5.3. Key lemmas. We now state our key lemmas.

LEMMA 5.2. For any constants 0 < 0,¢; < 1/10, and any integer r > 0,
let (1—B )y <p; <~. Then for any q > 0,

7

Iq,Ber(s,l—pl)(fExt) < sl

LEMMA 5.3. For any constants 0 < 0,¢; < 1/10, and any integer r > 0,
let (1 — B~y < p1 <~. Then, the following holds:

1 _
EyNBer(s,l—pl)[fExt(y)] - 5 <B Q(l)

The proof of Lemma 5.2 is presented in Section 5.5, and Lemma 5.3 is
proved in Section 5.7.

5.4. Preparation for the proof: Some definitions and easy claims. In this
short section, we record a few useful definitions and claims.
Define the following;:

féxt(y) = \/ /\ Ye,

L<j<M ¢epi

where i € {0,1}". Let y be sampled from Ber(s,1 — p;). Define F; be the
event fh () = 0.

We record the following simple claims, which are direct from the above
definitions.

CrLAM 5.4. For any i € {0,1}",j € {0,1}"™,
)B

Prwaer(s,lfpl)[ /\ ye= 1] = (1 —Pp1) = D2

teP;
CrLAaM 5.5. For any i € {0,1}",
a

Pr[Fi] = PryNBer(s,lfpl)[fIf]xt(Y) = 0] = (1 - pQ)M =PpP3 = E

CramMm 5.6. We have EyNBer(s,l—pl)[fEXt(Y)] =1—-Pr [VISiSR FZ] .

5.5. Proof of Lemma 5.2: Bound on influence of coalitions on frxt. Let
@ be any set of variables of size ¢ < s'~%. We prove that IQ,Ber(s,l—pl)(fExt) <
q/s'7°. Recall that fr.(z) = Niego, 13 ft . (z). The following is an easy
observation: if for some fixing of the variables in Q = [n] \ Q, fex¢ remains
undetermined, then it must be that at least some féxt is undetermined. Thus,
by a union bound, we have

(8) IQ7Ber(s’17p1)(fExt) < Z IQ,Ber(s,lfpl)(fIi]xt)'
1€{0,1}7
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We first show that for any i € {0,1}", IQ,Ber(s,l—pl)(f]E]xt) < %. This follows
from a direct calculation using the structure of fg ..

CrLam 5.7. For any i € {0,1}", 1o Ber(s1—py) (fExt) < £

Proof. The variables in ) can influence the outcome of fgy only if the
AND of each block that does not contain a variable from @ evaluates to
0. There are at most ¢ blocks of P! that contain a variable from @, and
hence at least M — g blocks with no variables from ). For a y sampled from
Ber(s,1 — p;1), the probability that the AND of a block evaluates to 0 is ex-
actly po. Thus, the probability that the AND of each block not containing a
variable from @ evaluates to 0 is at most (1 — po)M~9. Claim A.3 shows that
(1 —p2)M=7 < 1/R. Thus the influence of Q is bounded by 7. O

However, just using the bound from the above claim in (8) implies that

I Ber(s,1—p1) (fExt) < 1,

which is trivial. We show that the influence of the set () is in fact much smaller
than % for most féxt. Informally, we prove the following: In Claim 5.10, we
show that for most (i.e., 1 — o(1) fraction of) i € {0,1}", the set @ is “well-
spread” across the blocks of the partition P’. (Definition 5.8 below makes
the notion of well-spread precise.) We call such a P! as “good” (with respect
to Q). In Claim 5.9 we show that the influence of Q on ff , (corresponding to
a good P?) is in fact smaller than i. (See Claim 5.9 for the precise bound.)
The proof now follows using (8). The proof of Claim 5.10 uses the fact that
seeded extractors are good samplers; see Section 2.4.1. Claim 5.9 follows from
a direct calculation using the structure of f]éxt' We now present the details.

Definition 5.8. For any i € {0,1}" and j € {0,1}", define a block Pj to
be bad with respect to a subset of variables @ if |PjZ N Q| > 2eB. Further, call
a partition P’ bad with respect to @ if it has a block that is bad. Otherwise,
P! is good.

CLAIM 5.9. Let P? be a partition that is good with respect to a subset of
variables Q, |Q| = q. If ¢ < s179 then Lo Ber(s,1—p1) (fExt) < QRS%.

Proof. We note that there are at least M — ¢ blocks in P! that do not
have any variables from ). Each of the remaining blocks have at most 2¢B
variables from Q. An assignment of z leaves f5 . undetermined only if

(a) there is no AND gate at depth 1 in f& , that outputs 1, and
(b) there is at least one block with a variable from @ such that the non-Q
variables are all set to 1.

These two events are independent. Since there are at least M —q blocks that do
not have any variables from @, the probability of (a) is bounded by (1—p)™ 4.
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From the calculation done in Claim 5.7, we have (1 — po)™ =% < 1/R. We
now bound the probability of (b). If there are h variables of @ in P;, the
probability that the non-Q variables are all 1’s is exactly (1 — p;)®~". Thus
the probability of event (b) is bounded by ¢(1 — p;)?1=29). By Claim A.4, we
have ¢(1 — p;)B01=29 < 5:1=5- This completes the proof. O

CLAIM 5.10. Consider any subset of variables Q of size q. If ¢ < s'79,
then there are less than 2K M bad partitions with respect to Q).

Proof. Suppose to the contrary that there are at least 2K M bad partitions
with respect to Q). It follows by an averaging argument that there exists j €
{0,1}"™ such that the number of bad blocks among the {P]Z ci € {0,1}"} is
at least 2K. Recall that P} = {(z,Ext(i,z) ® j) : z € {0,1}°}. We now
define the function Ext;(x,y) = (y, Ext(z,y) ® j). Since we have chosen Ext
to be a strong-seeded extractor (recall that a shift-design extractor is also a
strong-seeded extractor — see Definition 2.13), it follows that Ext; is a seeded
extractor for min-entropy k with error e.

Let Nj(i) denote the set of neighbors of ¢ € {0,1}" in the graph corre-
sponding to Ext;. By construction of Ext;, for any ¢ € {0,1}", P]Z =N;(i). Tt
follows from the above discussion that

{i € {0,137+ [Nj(i) N Q| = 2€BJ}| = 2K.
Let pg = q/M. We have
o = q/M < "7 /M < ¢ (using (7))
Thus, we have

{i € {0,137+ [N;(i) N Q| = (e + nq) B}
> i €{0,1}": N;(i) N Q| = 2¢B[}| > 2K.

However this contradicts Theorem 2.12 used on Ext;. Thus the number of bad
blocks is bounded by 2K M. ([

Thus, we have

IQ,Ber(s,l—pl) (fExt)
- Z IQvBer(Svl_pl)(fEXt)

1€{0,1}":P? is bad

+ Z IQ,Ber(s,l—pl)(fExt) (using (8))
i€{0,1}7:P? is good
1
<(2KM)-—=+ Z I Ber(s,1—p;) (fExt) (using Claims 5.10, 5.7)
1€{0,1}":P? is good
2KM q . .
< T +R- W (USIDg Claim 59)
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684 ESHAN CHATTOPADHYAY and DAVID ZUCKERMAN

2 1 3 1 20
= Ri=as T 915 (since M =R®, K = R®)
q
< [
g0’

where the last inequality follows since s = BM = M0 = RI(1+01) ~ R2
by (6), and hence ﬁ < % < 5= This completes the proof of Lemma 5.2.

5.6. Towards bounding bias of frxt. In this section, we take an important
step towards proving that fgy¢ is almost balanced with respect to Ber(s, 1—p1),

that is,

1

Ey~Ber(s,17p1) [fExt (y)] ~ 5

To refresh the reader’s memory, we first recall the construction of fgy and a
few other definitions from Sections 5.1 and 5.4. For each v € {0,1}", define
the partition P with blocks P, w € {0,1}" where

Py ={(,z & w):j €{0,1}"}
By Claim 5.1, PY forms an equi-partition of [s] with M blocks of size B. Then,

fexe(y) = \/ /\ Ye,

1<j<M teP?
where v € {0,1}". Finally, we have fgy : {0,1}* — {0,1} as
fee@) = N\ T ()-
1<i<R
Recall that py = (1 — p1)?, p3 = =0 — p2)™. Further, F; is the event
ftxt () = 0, where y is sampled from Ber(s,1 — p1).
By Claim 5.6, for any v € {0,1}", we have

b3 = Prwaer(s,l—m)[fExt(Y) = 0]'

Using Claim A.2, we have p3 ~ 1%2. Thus, if it was the case that the functions
[ were on disjoint sets of variables, then one could estimate Pr|fgy = 1] &
(1—- I%Q)R = % and conclude that fgy is almost balanced with respect to
Ber(s,1 —p1).

However, the functions ff,, are on the same set of variables, and hence
the analysis described above (assuming independence) breaks down. Our key
result in this section is that if the partitions are “pairwise-good,” then in fact
the ff,.’s behave as though they are independent in the following sense: for

any c that is not too large and arbitrary,

1<iy<---<i.<R, Pr

o~ H Pr [Eg].

1<g<c

N

1<g<c

We formally state this in Lemma 5.12.
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EXPLICIT TWO-SOURCE EXTRACTORS AND RESILIENT FUNCTIONS 685

We make the notion of “pairwise-good” precise in Definition 5.11. Roughly,
the notion of pairwise-good corresponds to the requirement that no two blocks
from any two partitions have a large intersection. The fact the partitions are
pairwise-good follows from the fact that they are generated using the neigh-
bor graph of a shift-design extractor. We prove this in the next section (see
Lemma 5.15). We now make things more precise.

For ease of presentation, we slightly abuse notation and relabel the parti-
tions in Construction 1 as P!,..., PE where for any i € [R], P’ corresponds
to the partition P¥* with v; being the r bit string for the integer : — 1. We use
this notation in Section 5.7 as well.

Definition 5.11. Let P%, P/ be two equi-partitions of [s] with blocks of
size B. Then (P, P7) is said to be pairwise-good if the size of the intersection
of any block of P? and any block of P7 is at most 0.9B.

A collection of equi-partitions P = {P',..., PF} is pairwise-good if for
any distinct 4,5 € [R], (P!, P7) is pairwise-good.

The following is the main result of this section.

LEMMA 5.12. There exist constants 1, B2 > 0 such that for any ¢ < s,
and arbitrary 1 < i1 < --- < i, < R, the following holds:

(7) <Pr < (%) (1+3).

We also recall Janson’s inequality [Jan90], [BS89], which will play a crucial
role in the proof. We follow the presentation in [AS92].

THEOREM 5.13 (Janson’s Inequality [Jan90], [BS89], [AS92]). Let Q2 be a
finite universal set, and let O be a random subset of () constructed by picking
each h € Q independently with probability py. Let Q1,...,Q¢ be arbitrary
subsets of ), and let &; be the event Q; C O. Define

L
A= Y Pri&Aag, D=]][Pr[&].
i<j:QiNQ;#0 i=1

Assume that Pr[&] < T for alli € [¢(]. Then
D <Pr[\&] < Det=.

Proof of Lemma 5.12. Without loss of generality suppose iy =g for g € [c].
We use Janson’s inequality with = [s], and O constructed by picking each
h € [s] with probability 1 — p;. Further, let & ; be the event that P; co.
Intuitively, O denotes the set of coordinates in y that are set to 1 for a sample
y from Ber(s,1 — p1). With this interpretation, the event fg . (y) = 0 exactly
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686 ESHAN CHATTOPADHYAY and DAVID ZUCKERMAN

corresponds to the event Aj<;j<ns ?J Thus, we have

A F A s]

1<g<c i€[c],j€{0,1}™

Pr = Pr

We now estimate D, A~ to apply Janson’s inequality. For any i € [c], j €
{0,1}™, we have Pr[&; ;] = Pr[P] C O] = (1 —p1)2 = po. Note that 7 = po
< % Further,

— - o C
D= II #®r [gi,j] =(1—-p)M=1p5= (E> :
i€[c],je{0,1}™
Finally, we have

A= Z Pr[gihh N Si27j2]

i1<i2€[d] 1,52 €{0,1} P I NP; 1 0

IN

(Bumsay,  Z,, Pt
j1,j2€{0,1}m:Pj110Pj117é@

We observe that any P;ll can intersect at most B blocks of a partition P2,

where i1 # i5. Thus, the total number of pairs of blocks that intersect between

two partitions Pt and P, i; # iy, is bounded by M B = s. Thus, continuing

with the estimate, we have

C
A< (2> © S max i i {Pr[gihjl A giz;]é]}'
7L1<i26[c]7117j26{0,1}m:Pj11ﬂPjZQ#Q

Further, recall that P is pairwise-good. Thus it follows that for any distinct
i1,12 € [c], and j1, j2 € {0,1}™, we have [P} N P;2| < 0.9B. Thus, [P} UP?| >
1.1B, and hence for any i1 < is € [c], j1,j2 € {0,1}™,

11B 11

(9) Pr[gil,ﬁ A giz,jz] < (1 - pl)ﬁ = p210 .
Thus,

>

AN
oY
N O
N~

»

3
DO ==
sl=

(using (9))

< Y= (by Claim A.7).
We set 51 = 1/90. It follows that
A< M7,
where 8/ =1/70 .
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EXPLICIT TWO-SOURCE EXTRACTORS AND RESILIENT FUNCTIONS 687

Invoking Janson’s inequality, we have

(7) <Pr| A Bl <(3) & < (1+5) (7)

1<g<e
where the last inequality follows using the fact that for 0 < 6 < 1, ¢’ < 1+ 26.
This concludes the proof. O

5.7. Proof of Lemma 5.3: Bound on the bias of frxt. The following two
lemmas directly imply Lemma 5.3.

LEMMA 5.14. If P is pairwise-good, then |p — %] < B2 where
p= PryNBer(s,l—pl)[fExt(Y) = 0]

LEMMA 5.15. The set of partitions P = {P*,..., PR} in Construction 1
18 patrwise-good.

Lemma 5.12, which is proved in Section 5.6, is a key component in proving
Lemma 5.14. We begin by proving Lemma 5.15, which is easy to derive from
the fact that our construction of P%’s uses shift-design extractors.

Proof of Lemma 5.15. Let P"1 and P"2 be any two blocks such that iy #io.
We need to prove that \P” N P”\ <0. QB Recall that

Pt = {(z,Ext(i1,2) @ j1) : 2 € {0,1}"},
and similarly

P2 = {(z,Ext(is, z) @ ja) : z € {0,1}}.
The bound on \P” N P22| now directly follows from the fact that Ext is a
%O—Shift—design extractor. O

We use the rest of the section to prove Lemma 5.14.

Proof of Lemma 5.14. Let P = {P', ..., P®} be pairwise-good. We have

b= PryNBer(s,l—pl)[fExt(Y) = 0] =

For 1 <c¢ <R, let

S. = Z Pr

1<i1<...<ie<R

Using the inclusion-exclusion principle, it follows that for any even a € [R],

a a+1

(10) S (=S, <p < S (-1,
c=1

c=1
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688 ESHAN CHATTOPADHYAY and DAVID ZUCKERMAN

Fix a = s (assume that a is even), 83 = min{B;/2, B2/2}, where f31, fa
are the constants in Lemma 5.12. Now the idea is to use Lemma 5.12 to obtain
tight estimates for S.. Combining this with (10) proves the desired bound on

p. (Recall that p = Pry ger(s1p) [ fext(y) = 0].)

CrLAM 5.16. We have
1 a a+1 1

—a c]_ C]. —Q
e M52/2_Z S<Z SCSG +W

c=1

Proof. For any ¢ < a + 1, using Lemma 5.12, we have

(M) (&) =52 (M) (5) (14 1ms):

By Claim A.8, it follows that for any ¢ < a,

af 1
(11) ol < MB2'
Also note that
1 1 2
(12) Sat1 < T B S A

using a = s% and the inequahty a! > (a/e)®. (Thus, using s = MB and
B > e, we have al > MPsM™ > MPB2.)
Finally, by the classical Taylor’s theorem and the inequalities above, we

have
a

e~ Z(_l)cfl%!c

c=1

Oéa'+1 1
CE < (ae/(a+1))" < ——

We are now ready to prove Claim 5.16. We have

a a
1
S-S — e < S-S, - Z )e 10‘ + o5 (using (13))
c=1 c=1
- af 1 1
< (Zl Se—— +M52> + 25
c=
a+1 .
< Wi (using (11)).
Using (12), we also have
1
Ci(_l)c—ls e ¢ a+3
¢ - MB2
c=1
Finally, using the fact that (a + 3)M %2 < M~52/2 it follows that
1 a ) a+1 . 1
—« c— c— —a
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EXPLICIT TWO-SOURCE EXTRACTORS AND RESILIENT FUNCTIONS 689

We are now very close to proving Lemma 5.14. Using (10) and Claim 5.16,
we have

1
_
b~ < a7
Using Claim A.6, we have
1 1
—a_ 1] o ‘
¢ ‘ = 2B%
Hence, we have ‘p — %‘ < QB% + W = B2 gince M > B. This concludes
the proof. O

5.8. Proof of Theorem 3. In Table 2, we obtain our resilient function with
respect to the uniform distribution by a simple modification of Construction 1
using the fact that we can simulate biased bits quite accurately via small CNFs
(see Lemma 2.24).

Construction 2: A constant § € (0,1/10) and an integer n > 0 are
input parameters. We set €; = §/4. We think of r as an unfixed variable
and set up the remaining variables, as in Construction 1, following the
description in Section 5.2. We do not fix the parameter p; as yet.

Next, we fix the parameter r as follows. Let the parameter v in
Lemma 2.24 be set to v/B, and let C be the size h monotone
CNF circuit guaranteed by Lemma 2.24, where h < B'*2¢. Thus,
(1-B~ )y < Prx.u,[C(x) = 0] < 7. Choose the largest integer r such
that we have n’ = sh = BMh < n. It follows that for this choice of r,
n’ = Q(n). Set p1 = Prx.u, [C(x) = 0]. It is immediate that p; satisfies
().

Let fext : {0,1}* — {0,1} be the function from Construction 1, with
Ext instantiated as in Construction 1 (using the Trevisan extractor).
Define f be the function derived from fry by replacing each variable y;
by a copy of the monotone CNF C set up above. Thus f is defined on
n’ bits.

Table 2.

We observe the following;:

e The size of the coalition (denoted by the parameter ¢) is at most n!=% =

(n')'=%", where & = § — o(1). Thus, we may assume n = n' = BMh and
d=24".

e Since TExt is a polynomial time function, frxt can be constructed in polyno-
mial time. Thus f is computable by a polynomial time algorithm. Further,
f is an O(RM Bh) = n°® sized monotone circuit in AC® of depth 4.
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The required bounds on the bias of f and on I,(f) are now straightforward
using Lemmas 5.3 and 5.2 respectively, and we omit the details. ([

6. Proof of Theorem 4

In this short section we prove Theorem 4, which gives an explicit nearly
balanced function f with small I,;(f). The proof is almost direct from the
results of Sections 4 and 5. Informally, the result in Section 4 is that if f is a
constant depth monotone circuit, then in order to prove an upper bound for
I,:(f), it is in fact enough to upper bound I,(f). In Section 5, we exactly
construct such a constant depth monotone circuit that has small I,(f). We
now present the details.

Fix 6 = v/2. Let f : {0,1}" — {0,1} be the function from Theorem 3
such that for any ¢ > 0, I;(f) < q/n*~%. Also we have that f is monotone and
can be computed by a depth 4 ACP circuit C of size m = poly(n).

Fix e3 = 1/n. Thus by Theorem 4.1, it follows that there exists a constant
b such that for any t > b(log(m/e3))*®, ¢ > 0,

q 2q q
I <e3+ < < )
q’t(f) = nl-9o nl=o nl-v

where the last inequality uses the fact that 6 = /2 and hence, assuming n is
large enough, n*/2 > 2.

We conclude by noting that f is unbiased under any t-wise independent
distribution. Recall that f is computable by a polynomial sized circuit C. Thus,
by Theorem 4.1, the following bound must hold:

1 1 1

where D is any t-wise independent distribution.

7. Proof of Theorem 1

We informally recall Theorem 1. We show that for all n and e, there exists
a two-source extractor 2Ext : {0,1}" x {0,1}" — {0,1} computable in time
poly(n,1/€) for min-entropy at least Cylog®(n/€) and error e.

We set up the required ingredients and parameters as follows:

e Let ¢, k, ¢, be parameters that we fix later. Let nmExt : {0,1}"x{0,1}% —
{0,1} be a (t,k,e1)-non-malleable extractor from Theorem 2.19. Thus
d1 = O(t*loglogn)+O(t?log(1/e1)) - o(loglog(1/e1)) for some constant c;.
For such an extractor to exist, we require

k > c'tloglogn + c'tlog(1/e€1)) - o(loglog(1/e1)).
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o Let Ext : {0,1}" x {0,1}¢ — {0,1}% be the seeded extractor from The-
orem 2.11, with the modification that the seed is concatenated with the
output, set to extract from min-entropy k/2 with error e;. Thus, d =
colog(n/es) for some constant co. Let D = 2% = (n/ey)°2. Such an extrac-
tor exists for k > 3d;.

e Let t = b(log(D/¢))*® for a large enough constant b.

e Choose § > 0, such that ¢’ = 2dcy < 9/10.

e Let f: {0,1}¥ — {0, 1} be the function from Theorem 4 such that Iq (f) <
q / D=9 and for any t-wise independent distribution D, ’EUND %‘ <

—B for some small constant f.
o Let €3 = Ct /61 D" for a large enough constant Cs.
e Pick €1, €5 such that the following inequalities are satisfied:
- D=(n/e)” > maX{(8/6)1/5 (8/€)*/°3,
— e <D™ 2‘5/2 = (e2/n)?,
—JVea<s 403tDt+1'

Thus, we can pick
1 2 ! !
€2 = min{ne=2? ,ne23, 1/n%/1=9)} and ¢ = 1/(4C5t D)2,
e With this setting of parameters, it can be checked that we require k& >

C1(log(n /€))% for a large enough constant Cj.

Let {0,1}%2 = {ry,...,7p,}. Define
reduce(z,y) = nmExt(z, Ext(y,r1)) o ... o nmExt(z, Ext(y, rp,))
and
2Ext(z,y) = f(reduce(z,y)).

Let X and Y be any two independent (n, k)-sources, where k > C; log®(n/e).
We prove that
|(2Ext(X,Y),Y) — (U,Y)| <e

Let Z = reduce(X,Y). Theorem 3.1 implies that with probability at least
1—2-27F2 > 1 - S over y ~ Y, the conditional distribution Z[Y =
is e3-close to a (g, t)-non-oblivious bit-fixing source on M bits, where by our
choice of parameters,

e ¢= (A +e)D < D%,

o e3 = Cst\/e1 D < ¢/4.
Thus, for each such y,

q _
|f(reduce(X,y)) — Uj| < €3+ D1 +D7P

€ €
< —4+D04 -
1" *3
<6+6+6_
—4 8 8 2
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Thus, we have
|(2Ext(X,Y),Y) — (U, Y)| <e

We finally note that it is direct from the description of the construction
that the extractor runs in time poly(n,1/€). This completes the proof.

Acknowledgments. We thank anonymous referees for helpful comments
that led to improvements in the presentation of the paper. In particular, a
referee for the Annals of Mathematics gave detailed valuable comments and
suggestions. We are grateful to Xin Li for an observation that led to our
theorem working with general e. We also thank Ran Raz for reminding us that
every two-source extractor is strong.

Appendix A. Auxiliary material for Section 5

This section contains supplementary material to the proofs and arguments
done in Section 5.

A.0.1. Validity of instantiation of Ext in Construction 1.

CLAIM A.1. The instantiation of Ext in Construction 1 (see Section 5.2)
is valid, and the parameters satisfy the inequalities (6) and (7).

Proof. Recall that Ext : {0,1}"x{0,1}® — {0,1}™ is set to be the Trevisan
extractor. It is set to extract from min-entropy k with error e = 2-02V7T with
output length m = k/2. By Theorem 2.10, it follows that the seed length of
Ext is

B A10g2(r/e) B )\logQ(r/2_52ﬁ)
~ log(k/m) log 2

= X627 + log? r + 269+/r log ),

where ) is the constant from Theorem 2.10.
By our choice of do, we have

627 /40 < b = A(03r + log? r + 205+/7 log ) < 627 /20.

Further, §; = b/m. This implies that 6; = b/m = b/(dr) satisfies §/40 < §; <
d/20 as required in (6).

Next we claim that M9 < e < §/4. Observe that this immediately
implies (7) since

s'70/M = (MB)'™° /M < B/M® = M®=9 < 1/M"/20 < 1/M%

Since e = 27 it follows that e < §/4. Further, since m = Q(r), it follows
that € > 279%™ = M0,

We conclude by observing that by Lemma 2.15, we have Ext is a %—shift—
design extractor. O
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(14) 0< 6,6 <1/10.
(15) §/40 < 8, < §/20.
(16) s'70/M < € < 6/4.
(17) m = ér, r = M°W.
(18) b= 51m.
(19) (1-B" ")y <p <.
(20) b = Q(r). Thus, for any constant v > 0, BY > r,

~ InM-Inln(R/In2) _p InR—Inln2
) 4- L oop - R lnln2

In M
(22) v < 2 < r/B.
B
(23) For any positive 8 < 1,29 <1+4.
(24) For any positive 8 < 1, <1 + 26.
For any n > 1 and 0 < x < n, we have
25 2 n
(25) 6x<1_x>§<1_x) <e 7
n n

Table 3.

A.0.2. Useful bounds for Construction 1. In this section, we assume that
the parameters are picked in the way described in Section 5.2, and we prove

various bounds that complements arguments and proofs done in Section 5.

We first list some useful inequalities that are direct or almost directly
implied by our choice of parameters and inequalities imposed on them in Sec-

tion 5.2. We also list a few general inequalities that we frequently use in calcu-

lations. The claims in this section are routine calculations given the following

list of inequalities.

CLAIM A.2. The following inequalities hold: Let e; = €1/2. Then

(1) p2 <
(2) ZRs(“‘%) (1-35) <ps< (") 1+ g=) < %

Proof. We in fact prove the following:

(1) 1nR7\l4nln2 (1 _ 362) <py < lnR]&nan (1+ - ) < ﬁ’
@ = () (- ) =m= () 1+ ) <5
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We start out by proving bounds on ps. We have

pa = (1-p1)”®
>(1-9)" (using (19))
>e7P(1-+°B) (by (25))
InR—Inln2 .
=——; (1-7°B) (using (21))
InR—Inln2 r2
> (- ' ,
> i (1 B) (using (22))
We now upper bound py. We have
p2=(1—p1)"
<(1-~(1—B)" (using (19))
< e 7BU=BTY) (by (25))
InR—1Inln2\'"5"
_ (%) (using (21))
InR— lnln2> B-c1
— M
< ( M
InR—Inln2 —
< (%) BT (using (17))
InR—1Inln2
< % <1 + BTq) (using (24) and 2§ < 1).
Thus,
lnR—lnln2(1_ 1 >< <lnR—lnln2<1 1 )
M Bz =P2=""n B/’

using ez = €1/2 and (20).
Further, since InR=r-1In2 < 0.9r and (1 + 3162) < 1.01, it follows that

InR—Inln?2 (1 1
M Be2

We now proceed to establish bounds on p3. We have

)<7’/M.

p3 = (1—p)M

InR—Inln2 1 W\
> (1 — <HR#) (1 + e )) (using the upper bound
established on ps)

(IHR — lnln 2)2 ( 1 )2 (11]2) 7(111R;lnln2)
Z <1 — M 1 + Bee ? e B®2 (by (25))
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In R — Inln 2)? 1\ /1 c
> 1_(nR Mnn ) (1+B€2)><I]1%2>€_T/BQ (since e" > R)
> (1-5) ()
1
> (1 ) < n2 (1 B€2> (since for any 6 € R,
! >1+0)

> (1 ) ( ) < BEQ) (since M > 2rB
using (17) and (18))

> (%) <1 — ;;) (using (20)).

We now prove the upper bound on ps:

InR—1Inln2 1\
p3 < (1 - (HR#) (1 ~ Ba )) (using the lower bound
established on ps)
In2\'~8
<(%) (by (25))
1n2) B—<2
— R
< ( R
ln2) B—<2
(%
In2
< (%) 1+ BT@) (using (23) since
by (20) <1).
Thus,

(B 1 2 e () F < (52) (0 2)
R Be) =P3=\R =R Be )

Using (20), it follows that

L (B () e (B 10 ) <
2R = \R Be) =P3=g Be) = R"

CLam A.3. (1 —p)M-7< 4.
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Proof. We have

S1-6

_ 1—S—-
(1—p)M 0 <p, ™

s1-6 ].
< p3(2R) (since p3 > 3R by Claim A.2)
< pger/ﬂ/ﬁ/2 (since s = M9 < M1+g/2 using (15))
2r . .
< p3(1+ W) (using ? <1426, if § € [0,1])
0.9 2r )
<1/R (using (17)). O
CrLAM A4, q(1 —py)P0729 < o
Proof. We have
q(1—p1)P0729 = qpy
< % (since pa < /M by Claim A.2)
qr . .
= since € < §/4 using (16
e /1 sing (16))
q .
< — (using (17))
M*3
< % (since s = M1 < MU using (15)). O

We record a simple claim that is direct from Claim A.2. Recall that
a = p3R (see Section 5).

CLAIM A.5. There exists a small constant €3 > 0 such that 1 — 5o <

o 1
m2 =1+ 5

—a 1 1
CLAM A.6. ’e — 5’ < 5pe-

Proof. Recall that from Claim A.5, we have

12(1 1)< <12(1 1)
n fﬁ <a<in +B€3'

Using this, we have
1 11
e — 2' < max {2071 — 375~
— max {(2 — 1)/2, (1 - 27)/2)
= (2 —1)/2<46/2,

2—(9+1)}

where the final inequality uses the fact that 27 < 1+ 7 for any positive n < 1.
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Thus,
1 1
o 1
e 2’ S 5pa |
C 1126142 1 -
LAIM A.7. We have e T where (1 is the constant from
Lemma 5.12.

Proof. We have

14261 ,.2 M B)1+281,.2
s T T
— = ( ) - (using s = M B)
M 10 M 10
B B1+261,.2

- MTlo_Qﬁl
M51(1+251) 2
10
1

< P
M%*351

(using that by (15), 1 < 1/20; and (17)). O
CLAIM A.8. Let a = s be the parameter used in the proof of Lemma 5.14.

a’ 1
SC_F = B2

For any ¢ < a,

Proof. Recall from the proof of Lemma 5.14 that 83 = min{3;/2, 82/2},
where 1, B2 are constants defined in Lemma 5.12. We have

R (Oz)c R¢ af
) <«
(c) R/ — ¢ Re

e
T
and
R (a)c_R(R—l)...(R—c—i—l)ac
(c) R/ Re o
2(1—(6_}%1)2>O; (using (1—a)(1-p8)>1—a—-p
if o > 0)
2( —i)cj (since ¢ < a+1)

by our choice of a.
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Thus, for any ¢ < a, we have

g af <ac < 1 1 )
e~ a| = \um T RUE
1 1 1 .
§§<m+ﬁ) (smcea<2)
< 1
< 3

where the last inequality uses the fact that R = M'/? (using (17)), and hence
R'=P2 > MP2 using the inequality (1 — (52)/f2 > 1 > 4. O

A.0.3. A bound for Construction 2. We provide the proof of a bound used
in arguing the correctness of Construction 2. The inequalities listed in the
previous section continue to hold, and we use them in proving the following
lemma.

CrLamM A.9. We assume the setup of parameters as described in Construc-
)
tion 2. Then, s'~2 > nl=9,

Proof. We have

s = (MB)'3
)

> (MB (1+£)(1-9)
> (MB?)'~° (since M°/? > M* = B? by (15), (18))
> (MBh)'™® = !0 (using h < B and n = MBh). O
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