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We describe a systematic development of kinetic entropy as a diagnostic in fully kinetic particle-in-cell (PIC) simula-
tions and use it to interpret plasma physics processes in heliospheric, planetary, and astrophysical systems. First, we
calculate kinetic entropy in two forms – the “combinatorial” form related to the logarithm of the number of microstates
per macrostate and the “continuous” form related to f ln f , where f is the particle distribution function. We discuss the
advantages and disadvantages of each and discuss subtleties about implementing them in PIC codes. Using collision-
less PIC simulations that are two-dimensional in position space and three-dimensional in velocity space, we verify the
implementation of the kinetic entropy diagnostics and discuss how to optimize numerical parameters to ensure accurate
results. We show the total kinetic entropy is conserved to three percent in an optimized simulation of anti-parallel
magnetic reconnection. Kinetic entropy can be decomposed into a sum of a position space entropy and a velocity space
entropy, and we use this to investigate the nature of kinetic entropy transport during collisionless reconnection. We find
the velocity space entropy of both electrons and ions increases in time due to plasma heating during magnetic reconnec-
tion, while the position space entropy decreases due to plasma compression. This project uses collisionless simulations,
so it cannot address physical dissipation mechanisms; nonetheless, the infrastructure developed here should be useful
for studies of collisional or weakly collisional heliospheric, planetary, and astrophysical systems. Beyond reconnection,
the diagnostic is expected to be applicable to plasma turbulence and collisionless shocks.

I. INTRODUCTION

Dissipation of energy in nearly collisionless plasmas is a
key component of understanding many fundamental plasma
processes, such as magnetic reconnection, plasma turbulence,
and collisionless shocks. In magnetic reconnection, dissipa-
tion can change magnetic topology1,2 and may play a role in
thermalizing plasma in the exhausts3. In plasma turbulence,
dissipation at kinetic scales is required to terminate the en-
ergy cascade4,5. A number of mechanisms for this conver-
sion in weakly collisional plasmas have been discussed, in-
cluding resonant and non-resonant wave-particle interactions
and dissipation in coherent structures (i.e., intermittency) such
as through reconnection6. In collisionless shocks, dissipa-
tion is necessary to convert the upstream plasma bulk flow
energy into thermal energy7. These three fundamental pro-
cesses underlie a staggering array of important applications
in heliospheric, planetary, and astrophysical sciences, includ-
ing supernova shocks8, astrophysical jets9, pulsar winds10, in-
terstellar shocks11, shocks in galaxy cluster mergers12, solar
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eruptions13, coronal heating14, solar wind turbulence15, so-
lar wind-magnetosphere coupling and magnetospheric storms
and substorms16, and planetary shocks17.

The study of dissipation is at the forefront of research
in these processes and settings, but it has been challenging
to study it observationally, experimentally, numerically, and
theoretically2,6. Recently, dissipation has become more ac-
cessible to study numerically through increases in computer
power and observationally through the development of high
cadence satellite measurements. For example, the primary
objective of the Magnetospheric Multiscale (MMS) mission18

is dissipation accompanying reconnection19, and it has also
been used to study magnetosheath turbulence20,21 and the bow
shock22. Studying dissipation in solar wind turbulence would
have been a key goal of the Turbulence Heating ObserveR
(THOR) mission23.

From a theoretical perspective, there have been efforts to
identify regions where dissipation occurs. These measures
have had some success in identifying the electron diffusion
region (EDR)24 of magnetic reconnection19,25–27 and dissi-
pation in reconnection exhausts28, and dissipation in plasma
turbulence29–31. However, it is not clear which, if any,
uniquely identifies genuine dissipation.

The present study is based on the premise that entropy is a
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natural candidate to identify and quantify dissipation. Entropy
in a closed system is conserved in the absence of dissipation
and monotonically increases when dissipation is present32,33.
Here, we interpret “dissipation” as a process that causes a total
entropy increase in a closed, isolated system.

The fluid (thermodynamic) form of the entropy per parti-
cle for an isotropic plasma is related to p/ργ , where p is
the (scalar) pressure, ρ is the mass density, and γ is the ra-
tio of specific heats. This quantity has been studied in vari-
ous settings for a long time. For example, stability of Earth’s
magnetotail plasma sheet to the interchange instability is gov-
erned by fluid entropy34–43. Fluid entropy was specifically
investigated in the context of magnetic reconnection, find-
ing that it is conserved very well in magnetohydrodynamic
(MHD) and particle-in-cell (PIC) simulations of reconnecting
flux tubes44,45. Fluid entropy has been used to identify non-
adiabatic heating during reconnection46,47. Lyubarsky and
Kirk 48 used fluid entropy in their study of reconnection in pul-
sar winds. Rowan, Sironi, and Narayan 49 subtracted adiabatic
heating from measured heating in the exhaust of a reconnec-
tion event in PIC simulations to find the leftover non-adiabatic
contribution. A similar approach was used to study entropy
production in collisionless shocks in PIC simulations50,51.

Many heliospheric, planetary, and astrophysical settings are
only weakly collisional, so the fluid approximation may or
may not be applicable. Instead, a kinetic approach is likely
necessary in such settings, especially in regions with fine-
scale spatial or temporal structures. We follow the convention
by Kadanoff 52 and refer to the version of entropy in kinetic
theory as “kinetic entropy”. The theory will be reviewed in
Appendix A 1.

Kinetic entropy has been a useful diagnostic in studies us-
ing the gyrokinetic model. In this model, the second order
perturbed distribution function is related to the perturbed ki-
netic entropy53,54 and the kinetic entropy production rate is re-
lated to the heating rate55. Using gyrokinetic and related mod-
els, energy dissipation and plasma heating have been stud-
ied in simulations of magnetic reconnection56,57 and plasma
turbulence58–66. Kinetic entropy has also been investigated in
studies of turbulence using the Vlasov-hybrid (Vlasov ions,
fluid electrons) approach67 and in shocks68.

Meanwhile, the investigation of kinetic entropy in fully ki-
netic plasma systems, i.e., without any degrees of freedom
integrated out, has been carried out in some observational and
theoretical studies. Observational data was used to study ki-
netic entropy in Earth’s plasma sheet69,70 and Earth’s bow
shock71. Dynamics of the magnetosphere was investigated
using various entropy measures from statistics72. General-
izations of kinetic entropy to kappa-distributions in the solar
wind have been studied73. The permutation entropy was used
to analyze solar wind turbulence74. The entropy production
in a kinetic-based fluid closure75 was recently investigated76.
Kinetic mechanisms for the increase of entropy have been dis-
cussed for reconnection with an out-of-plane (guide) magnetic
field77. A recent model of the turbulent cascade employs the
kinetic entropy in a renormalization group approach78. How-
ever, we are not aware of any studies calculating kinetic en-
tropy from first principles in fully kinetic PIC simulations.

There are challenges to use entropy as a diagnostic in a real
system. First, the entropy can vary due to inhomogeneous
plasma parameters, such as density and temperature, but mere
convection should not be mistaken for dissipation. Moreover,
equating an entropy increase with dissipation requires a closed
system, but naturally occurring systems tend not to be closed.
Despite these challenges the present approach is based on the
view that studying entropy in fully kinetic models (from col-
lisionless to collisional) in closed systems is useful to under-
stand entropy production. The insights gained can be applied
to understanding dissipation in real systems. Therefore, we
argue that kinetic entropy can be a useful measure in colli-
sionless systems, and can be crucial in collisional systems to
identify dissipation. This is especially the case in the modern
age of observational assets like MMS that measure particle
distribution functions with a cadence of a fraction of a second
and with high resolution in velocity space.

In this work, we describe a systematic development of ki-
netic entropy as a diagnostic in fully kinetic PIC simulations
and investigate some of its uses to interpret plasma physics
processes in heliospheric, planetary, and astrophysical sys-
tems. We implement two forms of kinetic entropy32,79 in our
PIC code, the “combinatorial” and “continuous” forms.80,81

We use the kinetic entropy diagnostic on a two-dimensional
in position space, three-dimensional in velocity space colli-
sionless PIC simulation of antiparallel magnetic reconnection,
though we expect it will be equally useful for simulations of
plasma turbulence and collisionless shocks. Here, we sum-
marize the new numerical and physical contributions resulting
from this study:

1. We perform the first implementation (that we are aware)
of the direct calculation of the combinatorial kinetic en-
tropy in a PIC simulation, and provide a definitive as-
sessment of its advantages and disadvantages relative to
the more standard continuous kinetic entropy form.

2. We perform a careful validation of the kinetic en-
tropy diagnostics as a function of numerical parame-
ters, which is important to ensure proper application of
this approach in future studies of reconnection or other
applications. The discussion includes how to choose
the velocity space grid scale and the number of macro-
particles per grid cell PPG. We point out that macro-
particles (also known as super-particles) in a PIC sim-
ulation represent a large number of actual particles in
the system being simulated, and this needs to be prop-
erly accounted for to compare to observations or exper-
iments.

3. We show the kinetic entropy increases by only 3% in
a carefully constructed collisionless PIC simulation of
magnetic reconnection. This gives the first estimate that
we are aware of the fidelity one can expect from a col-
lisionless PIC simulation in conserving kinetic entropy.
The impact of this result on physics is that it shows it
will be possible to include collisions into a PIC code
and expect to be able to resolve its effect on the pro-
duction of entropy through irreversible collisional pro-
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cesses. This is crucial for PIC studies of irreversible
dissipation (which is a topic of future work).

4. We show that kinetic entropy is not reliably produced in
simulations with a low number of particles per grid cell.
We confirm simulations with a reduced number of par-
ticles can reproduce macroscopic quantities like the re-
connection rate, but it may (depending on the PIC algo-
rithm) give unphysical results for dissipation. This sug-
gests caution is needed for low macro-particle per grid
cell simulations on matters of kinetic entropy produc-
tion, including particle acceleration and plasma heating.
The present study provides a blueprint for how studies
with a low number of particles per grid can determine if
their numerics are impacting their physical results.

5. We decompose the total kinetic entropy into the sum
of a position space and velocity space kinetic entropy.
That this decomposition is possible seems to have
been known previously in mathematical applications of
plasma physics including Landau damping80,81, but to
our knowledge this has not been exploited in applica-
tions to magnetized physical processes like magnetic
reconnection (or turbulence or shocks). There are sig-
nificant reasons this contribution is important to stud-
ies of entropy and dissipation. We show that this de-
composition is helpful to understand the dynamics. For
both electrons and ions, the position space entropy de-
creases in time during reconnection, while the velocity
space entropy increases. This result has a clear physi-
cal interpretation, as the heating of particles leads to an
increase in temperature and therefore an increase in ve-
locity space entropy, while the compression of upstream
particles into the current sheet and the magnetic islands
leads to a decrease in position space entropy. There-
fore, in collisionless systems in which total kinetic en-
tropy is conserved, there is a conversion between the
two types of kinetic entropy. This result is potentially
important for observational studies of kinetic entropy.
It reveals that an increase in the local velocity space ki-
netic entropy need not be associated with dissipation,
as it also includes contributions from reversible energy
conversion due to compression. Thus, caution must be
employed when studying velocity space kinetic entropy.

Another reason decomposing kinetic entropy into po-
sition and velocity space contributions is useful is that
in nearly collisionless plasmas of heliophysical, astro-
physical, and planetary interest, particle distributions
can become strongly non-Maxwellian. The decompo-
sition of a distribution into a thermal and non-thermal
part is not possible for such complicated distributions.
In a closed system that does not include collisions, the
conservation of total kinetic entropy implies that any in-
crease in velocity space entropy is balanced by an equal
decrease to the position space entropy, and vice versa.
In a closed collisional system, the two will not be bal-
anced, and the net change of kinetic entropy gives a
measure of the rate of dissipation. An example of a
use of this is that one can tell by comparing the position

and velocity space entropy what portion of the increase
in velocity space kinetic entropy is reversible (the part
that goes to position space kinetic entropy) and what
portion is irreversible. This can be done from a calcu-
lation of the distribution function as a whole, without
having to break it up into a thermal and non-thermal
part, so it even works for distributions that are strongly
non- Maxwellian.

It is worth noting that in the present study we develop a
framework and perform a preliminary study, but we do not
address the physical cause of dissipation because its presence
in these simulations is purely numerical. One can show an-
alytically that kinetic entropy increases only in the presence
of collisions33. Since we use a collisionless PIC code for this
study, the small kinetic entropy production we detect is due to
numerical effects. We leave studies of mechanisms of dissi-
pation for future work using a collisional PIC model.

This paper is organized as follows: in Sec. II, we briefly
list the forms of kinetic entropy that we investigate. The ex-
isting theory of kinetic entropy including the fact that kinetic
entropy can be decomposed into position and velocity space
entropies is reviewed in Appendix A. Appendix B contains a
thorough discussion of implementing the kinetic entropy di-
agnostic into PIC codes. Section III describes the setup of the
simulations we employ. Section IV shows the simulation re-
sults, including a discussion of how to choose the diagnostic
and simulation parameters to achieve robust results and a dis-
cussion of using kinetic entropy to obtain physical insights.
Finally, conclusions, applications, and future work are dis-
cussed in Sec. V.

II. KINETIC ENTROPIES IN THIS STUDY

In this section, we review the forms of kinetic entropy that
we calculate in this study. The detailed derivation and dis-
cussion of the kinetic entropy expressions are given in Ap-
pendix A.

The “combinatorial Boltzmann entropy” S is defined in
Eq. (A4) as

S = kB

[
lnN!−∑

j,k
lnN jk!

]
, (1)

where N jk is the number of particles in phase space bin span-
ning (~r j,~vk)→ (~r j +∆~r,~vk +∆~v) and N = ∑ j,k N jk is the total
number of particles. Since the total number of particles in a
closed system is fixed, percentage changes in entropy are cal-
culated based solely on the second term.

By using Stirling’s approximation and ignoring constant
terms, one obtains the “continuous Boltzmann entropy” S in
Eq. (A8) as

S =−kB

∫
d3rd3v f (~r,~v) [ln f (~r,~v)] , (2)

where f (~r,~v) is the distribution function at position~r and ve-
locity ~v in phase space. The continuous Boltzmann entropy



4

per unit volume, i.e., the continuous Boltzmann entropy den-
sity s(~r), is defined in Eq. (A9) as

s(~r) =−kB

∫
d3v f (~r,~v) [ln f (~r,~v)] . (3)

The continuous Boltzmann entropy density sM(~r) for a 3D
drifting Maxwellian velocity distribution in local thermody-
namic equilibrium (LTE) for a species of mass m, number
density n(~r), bulk flow velocity ~u(~r), and temperature T (~r),
with f (~r,~v) = fM = n(~r)[m/2πkBT (~r)]3/2e−m[~v−~u(~r)]2/2kBT (~r),
follows directly. The result is in Eq. (A10):

sM(~r) =
3
2

kBn(~r)
[

1+ ln
(

2πkBT (~r)
mn2/3(~r)

)]
. (4)

We use Eq. (4) to validate the implementation of the kinetic
entropy diagnostic in our PIC code.

Both the combinatorial and continuous kinetic entropies
can be decomposed into a sum of a position space entropy
and a velocity space entropy. The derivation and discus-
sion of the physical meaning of these two terms are re-
viewed in Appendix A 2. We define the combinatorial posi-
tion space entropy Sposition and velocity space entropy Svelocity
in Eqs. (A12) and (A13) as

Sposition = kB

[
lnN!−∑

j
lnN j!

]
, (5)

Svelocity = ∑
j

kB

[
lnN j!−∑

k
lnN jk!

]
, (6)

where N j is the total number of particles in the jth spatial
bin by summing N jk only over velocity space. The continu-
ous position space entropy Sposition and velocity space kinetic
entropy Svelocity are expressed in Eqs. (A18)-(A20) as

Sposition = kB

[
N ln

(
N

∆3r

)
−
∫

d3rn(~r) lnn(~r)
]
, (7)

Svelocity =
∫

d3rsvelocity(~r), (8)

svelocity(~r) = kB

[
n(~r) ln

(
n(~r)
∆3v

)
−
∫

d3v f (~r,~v) ln f (~r,~v)
]
, (9)

where ∆3r and ∆3v are the volumes of the bins in position
and velocity space, respectively , and svelocity(~r) is the con-
tinuous velocity space kinetic entropy density whose spatial
integral gives Svelocity. While it is possible in principle to de-
fine a continuous position space kinetic entropy density, it is
not unique and it does not have a physical interpretation as the
permutation of particles in position space, so we do not define
a position space kinetic entropy density. Rather, we point out

that the first term in Eq. (7) is a constant, so the time evolution
of the position space kinetic entropy is solely determined by
the spatial integral of −n lnn.

Details about how to implement kinetic entropy diagnostics
into a PIC code are discussed in Appendix B. The discussions
include the importance of the actual number of particles per
macro-particle, binning particles in phase space, obtaining the
distribution function and kinetic entropies, and a comparison
between combinatorial and continuous Boltzmann entropies.

III. SIMULATIONS

Simulations are carried out using the P3D code82, though
we expect the diagnostic and analysis would be possible with
any explicit PIC code. The code uses the relativistic Boris
particle stepper83 for the particles and trapezoidal leapfrog84

on the electromagnetic fields, with the fields allowed to have
a smaller time step than the particles (half as big for our simu-
lations). The divergence of the electric field is cleaned (every
10 particle time steps unless otherwise noted for our simula-
tions) using the multigrid approach85. Boundary conditions
in every direction are periodic. The normalization is based
on an arbitrary magnetic field strength B0 and density n0.
Spatial and temporal scales are normalized to the ion iner-
tial length di = c/ωpi and the ion cyclotron time Ω

−1
ci , respec-

tively, where ωpi =
√

n0e2/ε0mi is the ion plasma frequency
and Ωci = eB0/mi is the ion cyclotron frequency based on n0
and B0. Thus, velocities are normalized to the Alfvén velocity
vA = diΩci. Electric fields are normalized to vAB0. Pressures
and temperatures are normalized to B2

0/µ0 and mv2
A/kB, re-

spectively. Entropies are normalized to Boltzmann’s constant
kB, though see Appendix B 4 for a discussion of the units of
the continuous Boltzmann entropy.

For simplicity in this initial study, we only consider 2D in
position space, 3D in velocity space simulations of symmetric
anti-parallel magnetic reconnection. The simulation domain
is Lx×Ly = 51.2×25.6. A double current sheet initial condi-
tion is used, with magnetic field given by Bx(y) = {tanh[(y−
3Ly/4)/w0]− tanh[(y−Ly/4)/w0]+1}, where w0 = 0.5 is the
initial half-thickness of the current sheet. The initial velocity
distribution functions are drifting Maxwellians with tempera-
tures Te = 1/12 and Ti = 5/12 for electrons and ions, respec-
tively; both temperatures are initially uniform over the whole
domain. We use these temperature values so that vth,e and
vth,i are similar and a common velocity space bin size can be
used (see Appendix B 2). The density is set to balance plasma
pressure in the fluid sense, with n(y) = sech2(y−Ly/4)/w0 +

sech2(y−3Ly/4)/w0 +nb, where nb = 0.2 is the background
(lobe) density. Therefore, the total upstream plasma β for
this simulation is nbkB(Te +Ti)/(B2

0/2µ0) = 0.2. Unlike the
Geospace Environmental Modeling (GEM) magnetic recon-
nection challenge simulations86, there is only one Maxwellian
component in the current sheet. The ion-to-electron mass ra-
tio mi/me = 25 and the speed of light c is 15. These choices
enforce that the plasma is non-relativistic (the speed of light
exceeds the thermal and Alfvén speeds), which is appropri-
ate for the non-relativistic treatment of kinetic entropy being
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considered here.

We use a small enough spatial grid scale and time step to
ensure excellent conservation of energy and minimize numer-
ical dissipation. We employ a time step of ∆t = 0.001 Ω

−1
ci =

0.025 Ω−1
ce = 0.075 ω−1

pe , which is a factor of about 2.67
smaller than what would typically be used for these simu-
lation parameters. The smallest electron Debye length for
this simulation (based on the maximum density of 1+ nb) is
λDe = 0.018. We select a grid scale of ∆x = ∆y = 0.0125 ≈
0.6944 λDe, again smaller than what is typically used for these
simulation parameters to improve energy conservation.

Additional to the parameters for the PIC simulation, the ki-
netic entropy diagnostic requires a number of other param-
eters, which are discussed in detail in Appendix B. These
parameters are only for the kinetic entropy diagnostic; they
do not influence the rest of the simulation. As discussed in
Appendix B 1, in order to calculate the combinatorial Boltz-
mann entropy S properly, the number of actual particles per
macro-particle a has to be specified at run time.

We first estimate a using the method described in Ap-
pendix B 1. For the “base” simulation, the particle weight is
proportional to the local density at t = 0, with a value of W =
0.2/1.44 in the lobe and W = 1.2/1.44 at the center of current
sheet. We use PPG= 100 in the base simulation and, as calcu-
lated above, a grid scale of ∆x = 0.6944 λDe. To relate to the
actual number of particles, we appeal to the system of inter-
est being simulated. For a simulation representing the plasma
in a solar active region, Table 1 gives nλ 3

De ' 1.3× 107, so
Eq. (B1) gives Ncell ' 4.3×106 actual particles per grid cell.
Using W = 0.2/1.44, Eq. (B3) gives a = 3.13× 105 actual
particles per macro-particle. For the plasma sheet in Earth’s
magnetotail, Table 1 gives nλ 3

De ' 1.0×1013, so assuming the
same weight and grid scale gives a = 2.5×1011. For what we
refer to as the “base” simulation, we use a = 3.13×105.

We also need to choose the velocity space bin size ∆v and
the initial number of macro-particles per grid cell PPG per
species. For each, we must optimize these parameters, which
is discussed in detail in Secs. IV D - IV F. For the base simu-
lation, we use ∆v = 1 and PPG = 100.

IV. RESULTS

The layout of this section is as follows. We start with
a validation of the implementation of the kinetic entropy
diagnostics in the code in Sec. IV A. The time evolution
and conversion of energy and kinetic entropy is discussed
in Sec. IV B. We discuss the position and velocity space
entropies in Sec. IV C. Sections IV D-IV F contain results
on varying a, PPG, and ∆v, respectively. Unless otherwise
noted, the results presented here employ the implementation
discussed in Appendix B on the base simulation described in
Sec. III.
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FIG. 1. 2D plots, zoomed in near the reconnection X-line at (x0,y0)
of (a) electron kinetic entropy density se and (b) electron density ne
at time t = 0. (c) and (d) are the same except at t = 41. (e) A vertical
cut of se through the X-line (black) at t = 0, with the theoretical
prediction (red) overplotted.

A. Validation of the Kinetic Entropy Diagnostic

Fig. 1(a) shows a 2D plot of the continuous Boltzmann en-
tropy density se(~r) from Eq. (3) at time t = 0 for electrons;
results for ions are analogous. The center of the plot is shifted
to the position of the X-line (x0,y0) of the top current sheet
at y0 = 3Ly/4. Panel (b) shows the electron density ne at the
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same time. The structure of se is strongly determined by the
density, as expected from Eq. (4) for Maxwellian distributions
such as those at the initial conditions of the present simula-
tions. Panels (c) and (d) show similar plots, but for t = 41,
showing a similar relationship between kinetic entropy and
density even though distribution functions are no longer all
Maxwellian at this time.

The initial distribution functions for this simulation are
drifting Maxwellians, so we can validate the implementa-
tion of the diagnostic by comparing the calculated se with
the analytic calculation in Eq. (4). In the upstream region
where the density is 0.2, Eq. (4) predicts a value (in nor-
malized code units) of (3/2)(0.2)[1+ ln(2π(1/12)/(0.04×
0.22/3))] = 1.39; in the center of the sheet where the density
is 1.2 the analytic prediction is 6.21. Panel (e) shows a verti-
cal cut of the continuous Boltzmann entropy density at t = 0
in black, with the analytical prediction overplotted as the red
line, revealing excellent agreement of the theory and simula-
tions. In Sec. IV D, we confirm that the combinatorial S and
continuous S Boltzmann entropies are in agreement, as they
should be. We conclude that the kinetic entropy diagnostics
implemented here successfully determine the kinetic entropy.

B. Energy and Kinetic Entropy Conservation and Conversion

A principal diagnostic of momentum-conserving PIC codes
is the conservation of total (particle plus electromagnetic) en-
ergy. Departures from perfect conservation occur only as a
result of numerical effects including finite time step, finite
grid scale, and noise introduced by having a finite number of
macro-particles. In a collisionless PIC code, as is the case for
the one employed in this study, kinetic entropy should also be
conserved33, with departures from perfect conservation again
only arising due to numerical effects. Here, we investigate en-
ergy and kinetic entropy conservation in our base simulation.

The time evolution of the system is shown using the recon-
nection rate as a function of time t in Fig. 2(a). The reconnec-
tion rate is the time rate of change of magnetic flux between
the X-line and O-line, identified at each time t using the sad-
dle and extremum of the magnetic flux function ψ(~r) defined
by ~B = ẑ×∇ψ , where ~B is the magnetic field. As is typical
in 2D PIC simulations in periodic domains, the reconnection
rate starts to grow from zero (visibly at t ≈ 10), reaches a peak
(at t ≈ 21.5), and then falls back down to a reasonably steady
state (for t > 34).

Fig. 2(b) shows total energy density Etotal (black solid
curve), total kinetic energy density Ekin (red dashed curve)
including both bulk and thermal kinetic contributions, and to-
tal electromagnetic energy density EEM (blue dashed curve),
as a function of time t for the base simulation. The total en-
ergy only increases 0.24% by t = 41; this is excellent total
energy conservation. This is the result of our intentional use
of a small time step and grid scale. The expected conversion
of electromagnetic energy to kinetic energy during the recon-
nection process (starting in earnest at about t = 20) is also
seen in the time histories.

Now, we investigate how the kinetic entropy changes in

Etotal

Ekin

EEM

0            10           20           30            40
t (Ωci

-1)

total
velocity
position

total
velocity
position

0.15
0.10
0.05
0.00R

ec
on

ne
ct

io
n 

R
at

e

(a)

0.8
0.6
0.4
0.2
0.0

(b)

0.05
0.04
0.03
0.02
0.01
0.00

(d) 3.0
2.0
1.0
0.0

-1.0
-2.0
-3.0

(c)

Electrons:

Ions:

Total

Electons

Ions

En
er

gy
D

en
si

ty
FIG. 2. Time histories from the base simulation of the following
quantities: (a) reconnection rate, (b) total energy density Etotal (black
solid line), total kinetic energy density Ekin (red dashed line), and
electromagnetic energy density EEM (blue dashed line), (c) relative
change of the non-constant term in the combinatorial Boltzmann en-
tropy S(t) in Eq. (1) for electrons (red), ions (blue), and total (black),
(d) deviation from its initial value of velocity space entropy Svelocity
(red), position space entropy Sposition (blue), and total combinato-
rial Boltzmann S (black) for electrons (solid curves) and ions (dia-
monds).

time during the simulation, including both relative and ab-
solute changes in kinetic entropy since both provide use-
ful insights. For the relative change of the combinatorial
Boltzmann entropy S in Eq. (1), it is important to note that
[S(t)−S(t = 0)]/S(t = 0) is not a meaningful measure of the
relative kinetic entropy change . This is because the combi-
natorial Boltzmann entropy S can be written as a sum of two
terms [see Eq. (1)], and the first term is a large constant term.
Thus, calculating the relative change in kinetic entropy merely
as [S(t)−S(t = 0)]/S(t = 0) would be misleading, because
each has a large term that does not change but skews the ratio.
For this reason, we subtract out the constant term and report
the change in kinetic entropy relative to the initial portion of
the combinatorial kinetic entropy that can change, which is
S(t = 0)− kB lnN!.

Fig. 2(c) shows the change of the combinatorial Boltzmann
entropy in time from Eq. (1) normalized to S(t = 0)−kB lnN!
for the base simulation, with values for electrons in red, ions in
blue, and their total in black. The relative changes are about
4.5%, 2.1% and 3.2% by t=41 for electrons, ions, and total,
respectively. In general, the kinetic entropies are conserved
reasonably well, given that reconnection occurs and there is a
conversion of nearly one-third of the electromagnetic energy
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into particle kinetic energy. Interestingly, the kinetic entropy
due to numerical effects is monotonically increasing. If the
code had physical collisions, one would expect the kinetic en-
tropy would monotonically increase. We find that the numer-
ical effects, in this sense, mimic physical collisions.

The absolute change to the kinetic entropy is now used
to study the partition between electrons and ions. Fig. 2(d)
shows the total combinatorial Boltzmann entropy S (in black)
for electrons (solid line) and ions (diamonds) as a function of
time t. Each has its initial value subtracted so that the plotted
values are the change relative to the initial time. Notice the
change in the absolute kinetic entropies are quite large, at the
1013 level in code units (corresponding to the 10−10 level in
units of J/K). This ostensibly large number is a result of the
number of actual particles represented in the simulation be-
ing large. In particular, the base simulation has 100 PPG and
4096× 2048 cells, for a total of 838,860,800 macro-particles.
With a = 3.13×105, the total number of particles represented
is N = 2.6× 1014. The first term in the kinetic entropy in
Eq. (A5) is lnN!, which is approximately 8.5× 1015. This
sets the scale of kinetic entropies for this system; we find the
total kinetic entropies after the subtraction due to the second
term in Eq. (A5) are at the 1014 level, and the change in kinetic
entropy in time is at the 1013 level, as seen in Fig. 2(d).

Comparing the total kinetic entropies for each individual
species, we see that both increase in time as might be ex-
pected, but the electrons gain more than the ions in an absolute
sense. This is very reasonable, as numerical effects arising
at small scales are expected to disproportionately affect elec-
trons.

C. Position and Velocity Space Entropies

We now discuss the position and velocity space entropies
discussed in Appendix A 2. The two terms are calculated from
Eqs. (5) and (6) using the combinatorial Boltzmann entropy
S. Their evolution is shown in Fig. 2(d), with position space
entropies in blue and velocity space entropies in red with elec-
trons given by the solid lines and ions by the diamonds. First,
we note that the position space entropy is essentially the same
for electrons and ions. This is consistent with expectations as
a result of quasi-neutrality of the plasma.

The velocity space entropy increases for both electrons and
ions, a result of a temperature increase of both species due
to the reconnection process, as expected from Appendix A 2.
The increase in velocity space entropy is associated with a
decrease in the position space entropy. If kinetic entropy is
perfectly conserved, as the governing equations would have
in this closed system, then any increase in velocity space en-
tropy would necessarily be offset by a decrease in position
space entropy. In the simulation, total kinetic entropy is not
conserved perfectly, but we still observe a decrease in posi-
tion space entropy for both electrons and ions. Physically,
this decrease is associated with the enhanced density in the
island as reconnection proceeds and upstream plasma is com-
pressed. Compression leads to more particles in some phase
space bins, lowering the position space entropy as discussed
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FIG. 3. 2D plots of various electron kinetic entropies: (a) continuous
Boltzmann entropy density se(~r), (b) velocity space entropy density
se,velocity(~r), (c) the −ne(~r) lnne(~r) term that arises in the calculation
of Sposition, all evaluated at t = 41. (d) - (f) are analogous plots at t =
35, near the minimum in total position space kinetic entropy when
there is a secondary island further compressing the plasma.

in Appendix A 2.
This explanation is predicated on the notion that the tem-

perature increase is physical rather than numerical, so we in-
vestigate this here. The increase of total entropy due to nu-
merical effects is less than 5%, as discussed in Sec. IV B. One
might expect the thermal energy change from numerical ef-
fects ∆Eth,numerical to scale like Qnumerical ' T ∆Snumerical from
the first law of thermodynamics, so ∆Eth,numerical would be at
the 5% level. However, in the simulation, the thermal energy
gain for electrons and ions are 103% and 77%, respectively.
This implies that physical heating is much more significant
than the contribution due to numerical effects.

This result also underscores a point about temperature and
entropy that is important to take into account in laboratory and
satellite measurements of kinetic entropy. In this simulation,
there is a significant increase in thermal energy, but only a
small change in kinetic entropy. This shows that a temperature
increase is not necessarily associated with an increase in total
kinetic entropy.

To get a sense for what the different kinetic entropies look
like as a function of space, Fig. 3 includes plots of (a) con-
tinuous Boltzmann entropy density se(~r) [from Eq. (3)], (b)
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velocity space entropy density se,velocity(~r) [from Eq. (9)], and
(c) the−ne(~r) lnne(~r) density related to the position space en-
tropy [from Eq. (7)], each evaluated at t = 41. These plots are
all for electrons and are showing the whole domain in x and
are zoomed in to the upper current sheet in y.

Caution is needed in interpreting these plots. The regions
of highest entropy in panels (a) and (b) do not necessarily re-
flect regions of increased kinetic entropy because the kinetic
entropy at t = 0 is not uniform in space since the plasma den-
sity is higher close to the center of the initial current sheet,
as is shown near the current sheet in Fig. 1(a). Similarly, as-
sessing the temporal change in total kinetic entropy, as plotted
in Fig. 2 is non-trivial solely from these plots, because Fig. 2
represents the total kinetic entropy integrated over all space.
Thus, assessing the change in total kinetic entropy at later
times requires integrating the 2D plots in Fig. 3 over all space
and comparing with the initial integrated kinetic entropy.

Panels (a) and (b) reveal elevated levels of kinetic entropy in
the islands, which is the combined result of the higher density
(higher entropy) plasma initially in the current sheet getting
corralled into the island, and the plasma in the island being
heated which increases its velocity space kinetic entropy. The
blue swath in the island in panel (c) shows that the change in
the position space kinetic entropy is negative there, which is
consistent with the plasma being compressed in the island.

Further evidence of this interpretation is shown in
Figs. 3(d)-(f) which has plots analogous to panels (a) - (c)
but evaluated at t = 35, near the global minimum in position
space kinetic entropy as seen in Fig. 2(d). There is clearly a
secondary island clearly present near (x−x0,y−y0) = (10,0),
and the island has a significant decrease of −ne(~r) lnne(~r)
where compression is most significant. This justifies the stated
comment that compression in the islands leads to a decrease
in position space kinetic entropy. For the parameters in the
base simulation, the difference between se(~r) and se,velocity(~r)
is at about the 10% level.

D. Importance of Including Actual Particles Per
Macro-particle for the Combinatorial Boltzmann Entropy

As discussed in Appendix B 1, to calculate the combina-
torial Boltzmann entropy S, one must include the number of
actual particles per macro-particle a. Here, we show this is
the case in the simulations. Furthermore, since the combi-
natorial S and continuous S Boltzmann entropies should be
nearly identical for a large number of particles, and the two
are coded in separately rather than S following from S from
the explicit use of Stirling’s approximation, we can use this as
a further test of the implementation of the diagnostics.

We perform three simulations that are identical except for
the use of different values of a. An a= 1 case has each macro-
particle representing a single particle, and we also use values
of a = 100 and the base simulation using a = 3.13× 105.
The a = 1 case warrants further discussion; one could be
concerned that there are not enough particles to maintain the
plasma approximation. However, that is not the case for our
simulations. Our simulations employ PPG = 100 for each

4
3
2
1
0

Electrons

Ions

a=1

a=102

a=1

a=102

Stirling’s approximation

4
3
2
1
0

×107

0            10           20           30            40
t (Ωci

-1)

a=3.13×105

a=3.13×105

(a)

(b)

FIG. 4. Combinatorial Boltzmann entropy deviations from their ini-
tial value normalized to a, i.e., [S(t)− S(t = 0)]/a for (a) elec-
trons and (b) ions. Solid, dashed, and dotted lines are for a =
3.13× 105,102 and 1, respectively. The red diamond symbols indi-
cate the value for the continuous Boltzmann entropy S from Eq. (2).

species. The (position space) grid cell in our simulation is
about (2/3)λDe. Thus, these 2D simulations have approxi-
mately (3/2)2× 100 = 225 particles per Debye sphere. This
is much larger than 1, as is required for the plasma approxi-
mation, and is only a factor of two or so lower than the num-
ber of particles per Debye sphere in the MRX experiment and
Earth’s ionosphere, as shown in Table I. Thus, the plasmas
being simulated continue to satisfy the plasma approximation,
even with a = 1.

Fig. 4 contains results for the time evolution of the total
combinatorial Boltzmann entropy S(t) integrated over the en-
tire computational domain, shown as a difference from its ini-
tial value S(t = 0) and divided by a, for the three simulations.
Panel (a) is for electrons and panel (b) is for ions. The reason
to divide by a is that we know from Eq. (B6) that the con-
tinuous Boltzmann entropy S is directly proportional to a in
the limit of large number of particles, so dividing by a allows
us to directly compare simulations that use different values of
a. The red diamonds show the corresponding value of the ki-
netic entropy from Eq. (2), which follows after employing the
Stirling approximation.

First, we note that there is excellent agreement in the large
a simulation between the combinatorial S and continuous S
Boltzmann entropies as there should be, which provides ad-
ditional evidence for the proper implementation of the diag-
nostic. For the a = 100 case, a significant difference between
the two is observed, especially for the electrons. For the a = 1
case, the difference is at least an order of magnitude. The
results show that if a is not included, or is too low, the combi-
natorial Boltzmann entropy S does not agree with the contin-
uous Boltzmann entropy S.

To be more specific, a typical maximum value of macro-
particles in a phase space bin is approximately 3 in the base
simulation. Taking into account the particle weight of W =
0.2/1.44, analogous to the discussion in Appendix B 1 lead-
ing to Eq. (B2), for a simulation with a = 100 implies that
there are a maximum of about 3× (0.2/1.44)×100' 40 ac-
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tual particles in any phase space bin. The error due to the Stir-
ling approximation for an argument of 40 is about 1%. While
this is reasonably good, it represents the minimum error in
any cell. Bins with fewer particles contribute higher errors
(4 actual particles has a 15% error), leading to the larger er-
rors approaching 30% we see for the a = 100 simulation. For
a = 3.13× 105, the maximum particles per cell is 130,000,
for which the error introduced by the Stirling approximation
is exceedingly small (3×10−4%). This motivates the approx-
imate level of disagreement for the a = 100 simulation and
why the larger a gives good agreement. We note that there
are a number of physical systems for which a would be of or-
der 100 for PPG near 100 and a weight of W = 1, such as
Earth’s ionosphere, the MRX reconnection experiment, and
high energy density laser plasmas, as seen in Table 1, so there
are physical systems for which errors could be introduced by
using the Stirling approximation.

Fig. 4 indicates that use of the combinatorial form of the
kinetic entropy requires the use of the number of real parti-
cles per macro-particle a to get physically appropriate results
for real systems. In contrast, the continuous f ln f form of ki-
netic entropy does not require inclusion of a to get physical
appropriate results. (Fig. 4 also provides validation that the
implementation of the a factor in the PIC code was carried
out successfully.) A corollary of this is that it would not be
appropriate to run a PIC simulation with the idea that macro-
particles represent single particles. Instead, one must take into
account the fact that macro-particles represent a large num-
ber of real particles in physical plasma systems, or one gets
a wrong answer for the combinatorial kinetic entropy. Given
that the combinatorial version of the kinetic entropy is a per-
fectly viable approach to calculate the entropy, it is important
to make this point here.

E. Dependence on Macro-particles Per Grid Cell (PPG)

The limited number of macro-particles in PIC simulations
leads to a worse statistical representation of phase space than
in the actual system being simulated. Here, we investigate
how this impacts the calculation of kinetic entropy by com-
paring simulations with different numbers of macro-particles
per grid cell, keeping the actual number of particles fixed by
keeping a times PPG constant. This ensures there are a suffi-
cient number of particles to avoid accuracy issues as discussed
in Sec. IV D. We carry out simulations with PPG of 1, 25, 50,
and the base simulation of 100. For PPG = 50,25, and 1, we
use a = 6.27× 105, 1.25× 106, and 3.13× 107, respectively.
The reasons we include a case with PPG=1 are (1) some stud-
ies have used low PPG in PIC simulations and (2) we can
test what happens to the kinetic entropy calculation when the
statistics are poor.

Some extra details for the PPG = 1 case are warranted.
Since numerical PIC noise is expected to be significant, we
start by performing a simulation with the same divergence
cleaning frequency as the other simulations (every 10 parti-
cle time steps). We find the time history of the reconnection
rate is very different than the higher PPG simulations due to
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FIG. 5. (a) Reconnection rate, (b) deviation of the total combina-
torial Boltzmann entropy S from its initial value, and (c) time rate
of change of the total combinatorial Boltzmann entropy S for sim-
ulations with different PPG of 100 (black), 50 (red), 25 (blue), and
1 (green). In (c), the diamonds show the corresponding value us-
ing the continuous Boltzmann entropy S instead of the combinatorial
Boltzmann entropy S for the PPG=1 case to confirm it is calculated
properly.

the numerical noise and relatively bad energy conservation.
Then, we perform another simulation with divergence clean-
ing at every time step, which reduces the impact of the noise.
The total energy change in this simulation is 7.3%, and the
reconnection rate evolution is similar to the higher PPG sim-
ulations. We find the magnitude of the kinetic entropy change
is similar to the PPG = 1 case with less frequent divergence
cleaning. Consequently, we use the PPG = 1 simulation with
the higher cadence divergence cleaning in what follows.

Fig. 5(a) shows the reconnection rate as a function of time
for the four simulations, with the colors defined in the plot and
caption. The plot clearly shows that the reconnection rate is
quite insensitive to PPG, even for a value of PPG = 1 (with
additional divergence cleaning). That the reconnection rate
can be accurately simulated in PIC simulations with few parti-
cles has been previously noted in astrophysical PIC simulation
studies of reconnection87–89.

Panel (b) shows the deviation of the combinatorial Boltz-
mann entropy S from its initial value for the four simulations
with different PPG. The PPG=1 case deviates from the others
significantly, but the results of the other three cases are similar.
In order to examine the differences among PPG=100, 50 and
25, we further plot the time rate of change of the combinato-
rial Boltzmann entropy dS/dt in panel (c). The results for the
PPG = 50 and 100 cases are quite similar. This suggests that
these numbers for PPG are sufficient to give a relatively stable
regime of the kinetic entropy calculation for our simulations.

In contrast, the PPG = 25 results differ from the higher
PPG results, showing that adverse numerical effects from the
worse particle statistics take place, especially late in time after
reconnection occurs. It is even more dramatic for PPG = 1,
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where there is a large discrepancy approaching an order of
magnitude. Moreover, a 2D plot of the kinetic entropy den-
sity of the PPG = 1 simulation (not shown) is very similar to
the density, as expected, but the departure of the distribution
from a Maxwellian has very large noise which swamps out
all other structures (since a Maxwellian is not well described
by a single macro-particle). These important differences sug-
gest that even though a PPG of 1 can be made to reasonably
produce the reconnection rate, one must proceed with caution
on matters related to kinetic entropy, including effects such
as particle acceleration and plasma heating. A convergence
test of kinetic entropy and the effect of small PPG on ener-
gization, heating, and energy partitioning would be useful in
testing such simulations.

It may seem counter-intuitive that the kinetic entropy de-
creases with fewer PPG since the simulation should be more
noisy when PPG is low and one might think this would in-
crease the entropy. However, there is a subtle reason this is
not the case, as we can see with an extreme example. Consider
a simulation with only a single macro-particle corresponding
to a real particles. All a real particles corresponding to that
macro-particle are in the same cell in phase space. The ki-
netic entropy of this macro-particle is equal to that of all a
particles in a single cell of phase space (which is zero). Now
let time evolve. The macro-particle moves to a new cell in
phase space. Since the macro-particle still corresponds to all
a particles, all a particles move to the same new cell in phase
space. Thus, their contribution to the kinetic entropy at this
later time is exactly the same – it is still zero. Consequently,
kinetic entropy is perfectly conserved for this simulation even
though the number of macro-particles is only 1. Moreover,
the low number of macro-particles makes the total entropy
smaller than it would be if there were more PPG. Thus, a
decrease in PPG counter-intuitively leads to a decrease in ki-
netic entropy despite the increase in particle noise.

F. Dependence on ∆v

While the kinetic entropy should not depend on grid scale
for the continuous form in Eqs. (2) and (A8), the discrete form
in Eq. (A7) is required for implementation in PIC and there-
fore is dependent on the grid scale. Here, we discuss how to
choose the size of the velocity space bin size ∆v. The depen-
dence on spatial grid size could be determined using the same
approach, but this is left for future work. We choose the op-
timal ∆v by comparing simulation results for different ∆v to
analytical results for known Maxwellian distributions at t = 0
in the base simulation.

We show results from multiple simulations using velocity
bin sizes ∆v of 0.125,0.25,0.5,1.0,2.0,4.0, and 8.0 relative
to the ion Alfvén speed vA. Fig. 6(a) shows the continuous
Boltzmann entropy S at the initial time t = 0 for both electrons
(black) and ions (blue) as a function of the velocity space grid
scale ∆v normalized to the ion Alfvén speed vA. As expected,
the continuous Boltzmann entropy S of both species increases
with ∆v for sufficiently large values. Below ∆v/vA of about
0.5 or 1, the variation strongly depends on ∆v.
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FIG. 6. Continuous Boltzmann entropy S for electrons
(black) and ions (blue) in seven simulations with ∆v/vA =
0.125,0.25,0.5,1.0,2.0,4.0,8.0 (a) at t = 0 and (b) at t = 40. The
dashed lines in (a) indicate the analytical values at t = 0 for electrons
(black) and ions (blue).

Also in panel (a) are black and blue horizontal dashed lines
corresponding to the analytical prediction of the continuous
Boltzmann entropy of electrons and ions, respectively, for the
initial conditions from the spatial integral of Eq. (4). By in-
spection, we see that the numerically calculated value of elec-
tron kinetic entropy agrees well with the analytical value for a
velocity grid scale just over 1 vA. This suggests an appropriate
value to use for the velocity space grid of electrons. Similarly,
the ion kinetic entropy agrees with the analytical value for a
velocity grid just under 1 vA. These two results motivated our
choice of a grid scale of ∆v = 1vA, which is ≈ 0.69 vth,e in
terms of the initial electron thermal speed vth,e for this simu-
lation. That this is slightly less than the electron thermal speed
is consistent with expectations, as discussed in Appendix B 2.
Note, for both electrons and ions, the velocity grid scale that
gives best agreement with the analytical calculation is near
the species thermal speed (1.44 vA for electrons, 0.65 vA for
ions). Also, the base simulation used the same velocity space
grid scale for ions and electrons; this is not a requirement and
could be relaxed.

While this approach can be used at t = 0 when all the dis-
tribution functions are Maxwellian and exact solutions are
known, there is no assurance that the velocity space grid scale
will continue to be sufficient at later times. One way to ad-
dress this would be to test systems for which the distribution
functions are known analytically as a function of time, such as
the bump on tail instability90,91. We leave such an approach
for future work. More generally, given that phase space evolu-
tion can lead to very sharp structures in velocity space, this is
a very fundamental issue that has previously arisen in Vlasov
modeling92–94, and it likely has no general solution.

That said, we perform further analysis to assess whether the
velocity space resolution adversely impacts our study at later
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times. First, we note that the temperature (i.e., the spread of
the distribution function in velocity space) in this reconnect-
ing system tends to increase in time throughout the domain, so
this suggests the resolution at t = 0 may remain sufficient at
later times, at least in these simulations. That this is the case
can be seen in Fig. 6(b), which is analogous to panel (a) but
at t = 40. The results are quite similar to those at t = 0, sug-
gesting only a minor global effect. Indeed, the global change
in kinetic entropy is at the 3% level for this simulation.

A more careful approach is to identify the most non-
Maxwellian electron distribution in the system at the end of
the simulation, t = 41, and test the effect of the velocity space
grid scale in finding its kinetic entropy density. For the base
simulation, the most non-Maxwellian distribution occurs at
the X-line at late time, when the electrons undergo meander-
ing orbits and produce familiar characteristic distributions like
those in Fig. 4 of Ng et al.95 This distribution function has
sharp structure and therefore is the hardest to resolve in ve-
locity space, so the error of its kinetic entropy density should
be the most.

Using this local distribution in a single grid cell, we calcu-
late the electron kinetic entropy density as a function of ve-
locity space grid scale (not shown), which represents the local
counterpart to the global result in Fig. 6. As in the global
results, we find that there is a medium range between about
0.5vA and 2vA where the entropy is not strongly dependent on
the velocity space grid. The uncertainty in the kinetic entropy
density as a result of the velocity space grid scale is approxi-
mately 15%, in spite of the fact that the late time distribution
function has structures in velocity space that are not likely to
be completely resolved.

The key point to assess this result is that the change in the
kinetic entropy between t = 0 and t = 41 is approximately a
factor of 2, from about 1.3 (for the electrons far upstream of
the current sheet at t = 0) to about 0.7 (for the meandering
electrons at the X-point t = 41). Thus, the 15% uncertainty
introduced by even the worst velocity space grid resolution in
our entire simulation is considerably smaller than the physical
change in entropy of nearly a factor of 2. This shows that
the velocity space grid scale resolution is sufficient for the
purposes of this study. However, we emphasize that a careful
convergence study is important for future studies and in other
plasma applications.

V. DISCUSSION AND CONCLUSION

A. Summary

This manuscript presents a study of how to implement two
forms of the kinetic entropy into fully kinetic particle-in-cell
simulations and how to use these quantities to diagnose the
physical system. The two forms are the combinatorial Boltz-
mann entropy S = kB lnΩ and the continuous Boltzmann en-
tropy S =−kB

∫
d3rd3v f ln f . These forms of kinetic entropy,

can be decomposed into a sum of two terms describing the ki-
netic entropy in position space and velocity space separately.

We then discuss how to implement the diagnostic into PIC

simulations, including considerations such as the optimal size
of the velocity space grid scale, the number of macro-particles
per grid cell, and the number of actual particles per macro-
particle. We compare and contrast the merits of each of the
two measures of kinetic entropy.

Then, we validate the implementation using two-
dimensional in position space, three-dimensional in velocity
space collisionless PIC simulations of anti-parallel symmet-
ric magnetic reconnection. The initial conditions contain only
drifting Maxwellian distributions which has an analytical so-
lution for the kinetic entropy. This allows for a careful vali-
dation of the implementation at the initial time and provides
an avenue for optimizing the velocity space grid size. Finally,
we discuss the interpretation of the results and how to extract
physical understanding from the kinetic entropy.

The results of the present study include the following:

1. The “base” simulation with very low ∆t demonstrates
good conservation of the total kinetic entropy (to 3.2%).
The increase in kinetic entropy is purely numerical, but
increases monotonically as would be expected for phys-
ical collisions and increases faster when reconnection
proceeds. The level of increase of kinetic entropy is
small enough that simulations with a collision operator
should produce entropy at a level high enough to be re-
solved in future studies.

2. Electrons and ions show different kinetic entropy pro-
duction rates, with electrons gaining more than ions in
the base simulation because their dynamics occurs at
smaller scales and therefore are disproportionately im-
pacted by numerical effects.

3. We apply the decomposition of kinetic entropy into po-
sition space and velocity space portions to a numerical
system and use it to interpret the physics of the system
for the first time. Although the total kinetic entropy is
nearly conserved, the position and velocity space en-
tropies Sposition and Svelocity vary noticeably in time. For
both electrons and ions, Sposition decreases in time (for
most of the simulation), while Svelocity increases in time.
This is physically related to the electrons and ions get-
ting heated during reconnection (increasing their veloc-
ity space entropy) and getting compressed (decreasing
their position space entropy). This approach will be
useful for distinguishing reversible and irreversible dis-
sipation in future studies that incorporate a collision op-
erator, even for distribution functions that are strongly
non-Maxwellian.

4. Calculating the combinatorial Boltzmann entropy S re-
quires specifying the number of actual particles per
macro-particle a for the calculation, while the continu-
ous Boltzmann entropy only needs this quantity to con-
vert to real units for comparison with observations or
experiments.

5. We show how to choose the number of macro-particles
per grid cell PPG. For these simulations, a bin size that
is close to the electron thermal speed is a good size, and



12

we need at least 50 PPG to get reliable kinetic entropy
values for our choice of time step and spatial grid scale.
The minimum PPG that is sufficient to reliably calcu-
late the kinetic entropy likely depends on these quanti-
ties.

6. We show how to choose the velocity space bin size at
the initial time when the simulation has distributions
such as Maxwellians for which the entropy is attain-
able analytically. We find a grid scale slightly smaller
than the species thermal speed is a good bin size for our
base simulation. There is no clear path for ensuring the
velocity space bin size remains adequate for later times
because sharp velocity space structures are common in
weakly collisional systems. However, for the present
study, we have shown that the least resolved distribu-
tion at late time introduces only a 15% error in our sim-
ulation, far smaller than the physical difference in the
kinetic entropy, so the velocity bin resolution is good
enough for the purposes of this study. Future work on
this issue, for reconnection and for other problems in
plasma physics, will be very important.

7. We show that the kinetic entropy is not reliably pro-
duced in simulations with a low number of particles per
grid, even though the same simulations can be made to
reliably produce the reconnection rate. This has impor-
tant implications about studies of heating and dissipa-
tion in systems with few particles per grid cell.

Our study shows that kinetic entropy can serve as a diagnostic
of the fidelity of a collisionless PIC code, alongside the often
used energy, but also can give key physical insights about the
dynamics of a system. The diagnostic developed here should
be applicable to any explicit PIC simulation, which should
make it useful in many heliospheric, planetary, and astrophys-
ical processes including magnetic reconnection, plasma tur-
bulence, and collisionless shocks. It is useful for systems with
distributions with a thermal core and non-thermal tails, but
also more broadly for systems with strongly non-Maxwellian
distributions.

B. Other Insights and Applications

This work provides a number of other insights that are im-
portant for applying the kinetic entropy diagnostic for appli-
cations. Kinetic entropy in a PIC simulation is sensitive to
the phase space bin size, both in position and velocity space.
This is because the calculation is discretized on a finite grid.
Comparisons between different times in a given simulation,
between two different simulations, and between simulations
and data should be done with a fixed position and velocity
space grid scale to the extent possible.

An interesting result is that one needs to be careful to ensure
the bins in phase space have a large number of (actual) parti-
cles to obtain accurate kinetic entropy values. Stirling’s ap-
proximation is good to within 1% when the number of actual
particles in a bin is 40 but has 15% error for 4 actual particles

in a bin. Thus, computational and observational studies alike
should monitor the number of particles per phase space bin. It
is possible in either setting to have insufficient counts to ren-
der the Stirling approximation valid. In such cases, the com-
binatorial Boltzmann entropy S in Eq. (A1) is needed over the
continuous Boltzmann entropy S in Eqs. (2) and (A8). As dis-
cussed in Sec. IV D, this is the case for some important plasma
settings, potentially including laboratory experiments, Earth’s
ionosphere, and laser plasmas.

We point out the importance of ensuring a stable regime
of the kinetic entropy with the number of numerical macro-
particles per grid cell PPG. For the base simulation with small
time step and well-resolved grid, we find we need at least 50
for PPG to have a stable regime of the kinetic entropy. There
have been a number of studies, especially in the plasma as-
trophysics community, with smaller PPG including as low as
1-487–89. We confirm their results that one can get a reason-
able reconnection rate in such systems, but for our code the
low PPG is insufficient to get a proper kinetic entropy. The
Ball, Sironi, and Özel 89 study tested convergence of particle
energy spectra with PPG of 4 and 16; it would be interesting
to also check stability of the kinetic entropy diagnostic. We
suggest that using kinetic entropy to test for stability for low
PPG simulations is a useful technique which is potentially im-
portant for studies of particle acceleration and plasma heating
in reconnection, turbulence, and shocks.

One challenge for applications is that the conservation of
kinetic entropy in ideal (collisionless) systems is only valid
for closed, isolated systems. This can easily be accomplished
in idealized simulations, but it is unlikely to be the case in
naturally occurring systems. The expectation of this line of
research is that the dissipation physics can be studied using
idealized simulations, and then the insights obtained from the
simulations can be compared to real systems. This is already
being carried out with data from MMS and will be the subject
of future publications.

Another challenge is that typically the continuous Boltz-
mann entropy density s =−

∫
d3v f ln f is mostly proportional

to the number density, so a plot of kinetic entropy density by
itself is unlikely to reveal any new insights. We will demon-
strate in a follow up study96 that kinetic entropy can be useful
for identifying non-Maxwellian distributions for electrons and
ions and furthermore that the kinetic entropy can be used to es-
timate the effective numerical collisionality of a collisionless
PIC code.

The initial implementation of the kinetic entropy diagnos-
tic has many ways to be improved, which we outline here.
First, our treatment is non-relativistic, but the PIC code in
use and many natural systems relevant to study with this tool
are relativistic97. In addition, comparisons to implicit PIC
simulations (which can employ much larger spatial grids and
time steps) and Vlasov simulations (which have no PIC noise)
would be interesting. More in depth studies into the depen-
dence of the kinetic entropy diagnostic on spatial grid scale
and time step would be useful, along with higher macro-
particles per grid cell PPG. Significant work is needed to
choose velocity space bin sizes that do not introduce larger er-
rors after the initial time. Our work used only the linear shape
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function; it would be interesting to test other shape functions.
It would also be interesting to examine kinetic entropy in PIC
simulations with open boundary conditions. The present sim-
ulations are 2D in position space and 3D in velocity space;
simulations that are 3D in both position and velocity space
should be carried out. Most importantly, this work employs
only collisionless PIC simulations, which means that any dis-
sipation (i.e., any increase of total kinetic entropy) that occurs
is through numerical effects. Thus, we are unable to address
physical mechanisms for dissipation in the present study. Us-
ing a collisional PIC code would allow for an investigation of
the physical mechanisms of dissipation with the kinetic en-
tropy diagnostic.

There are also numerous physics topics that are important
for future work. Future work should also address parametric
studies of kinetic entropy in magnetic reconnection, as well
as in plasma turbulence and collisionless shocks. Generaliza-
tions to other forms of entropy, such as the Tsallis entropy
which describes long-range interactions and contains memory
effects98, should also be undertaken. Whether chaotic behav-
ior is sufficient to produce an entropy increase should also
be the subject of future work. It is important to see if nu-
merical kinetic entropy production can impact other physical
processes like particle acceleration and heating.
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Appendix A: Theory of Kinetic Entropy

In this section, we discuss the theoretical background of
kinetic entropy and its decomposition into position space en-
tropy and velocity space entropy.

1. Background on Kinetic Entropy

For a closed system (which in Nature could be thermally
insulated, but in a simulation can also be periodic), the form
of kinetic entropy S in a kinetic framework is32,79

S(t) = kB lnΩ(t), (A1)
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FIG. 7. Sketch of phase space (x,v) for a 1D system, discretized
into a grid. The number of particles in the bin spanning position x j
to x j +∆x and velocity vk to vk +∆v is N jk. This can be suitably
extended to higher dimensional systems.

where kB is Boltzmann’s constant and Ω(t) is the num-
ber of microstates of the system that produce the system’s
macrostate at a time t. In what follows, we suppress the time
dependence to simplify the notation. Each individual plasma
species has its own associated kinetic entropy, so there is an
implicit subscript e or i for electrons or ions, respectively, that
is suppressed for clarity when possible. Following the nomen-
clature in Frigg and Werndl 99 , we refer to the kinetic entropy
in this form as the “combinatorial Boltzmann entropy.” This
is one form of kinetic entropy we implement in our PIC code.

To elucidate the meaning of kinetic entropy in this form,
consider a plasma with a fixed number of charged particles N
for each species. We treat classical, non-relativistic systems
(even though the PIC code we use is fully relativistic).

For a three-dimensional (3D) system, phase space is 6D
with each particle described by its position and velocity (~r,~v).
To calculate kinetic entropy, phase space is discretized into
domains we call bins. Fig. 7 shows the discretization of an
analogous 1D system. Define N jk as the number of particles
in the phase space bin spanning positions~r j to~r j +∆~r and ve-
locities~vk to~vk +∆~v at a given time t, where the components
of ∆~r and ∆~v describe the extent of the bin in each direction
in phase space. At this point, we nominally take these bins as
finite in size (i.e., not infinitesimal) with an eye to calculating
kinetic entropy in PIC simulations. The volumes of the bins in
position and velocity space are ∆3r and ∆3v, respectively. In a
1D system, subscripts j and k signify the bin in position space
and velocity space, respectively. In 3D, we continue to use j
and k as shorthand to identify the bin, even though we actually
need to specify each component of the position and velocity
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to identify a bin. Thus, we think of j to mean jx, jy, jz for the
x,y,z directions in position space and k to mean kx,ky,kz for
the vx,vy,vz directions in velocity space. By definition,

N = ∑
j,k

N jk. (A2)

A given macrostate is defined by the collection of all the N jk,
which via integration yields all the fluid quantities of the sys-
tem. A microstate is a possible way to choose the particles in
the system to produce a given macrostate, treating individual
particles classically as distinguishable.

Using this construct, the number Ω of possible microstates
for a given macrostate is calculated using combinatorics33;
it is the number of permutations that produce the macrostate
with N jk particles in the jkth cell by swapping individual dis-
tinguishable particles between any of the bins, i.e.,

Ω =
N!

∏ j,k N jk!
. (A3)

Inserting this expression into Eq. (A1) and simplifying gives
the combinatorial Boltzmann entropy S in terms of the N jk:

S = kB

[
lnN!−∑

j,k
lnN jk!

]
. (A4)

The first term is a constant assuming the total number of par-
ticles N in the closed system is fixed. Since only changes in
entropy are physically important, we can drop the first term
if desired (though we retain it in the calculation of the com-
binatorial Boltzmann entropy in our PIC simulations). Note,
however, that whether the first term is retained or not, quan-
tities like percentage changes in entropy should be calculated
solely relative to the second term.

It is common to approximate Eq. (A4) using Stirling’s ap-
proximation lnN jk! ≈ N jk lnN jk −N jk, which is valid when
N jk � 1, as is typically the case but may have exceptions. A
short calculation using Eq. (A2) yields

S = kB

[
N lnN−∑

j,k
N jk lnN jk

]
, (A5)

where we write the approximate entropy as S instead of S. For
use in a kinetic description of a fluid or plasma, one writes the
kinetic entropy in terms of the distribution function f (~r,~v).
The distribution function at position~r j and velocity ~vk is ap-
proximated as

f (~r j,~vk)≈
N jk

∆3r∆3v
. (A6)

Replacing N jk in Eq. (A5) with this expression and simplify-
ing gives

S =kB

[
N ln

(
N

∆3r∆3v

)
−∑

j,k
(∆3r∆

3v) f (~r j,~vk) [ln f (~r j,~vk)]

]
. (A7)

As in Eq. (A4), the first term is a constant (for a fixed phase
space bin size) and can be discarded. In the limit in which ∆~r
and ∆~v are small, the second term yields the commonly used
form of the kinetic entropy

S =−kB

∫
d3rd3v f (~r,~v) [ln f (~r,~v)] , (A8)

where d3r and d3v are the infinitesimal spatial and veloc-
ity space volumes. Following the nomenclature of Frigg and
Werndl 99 , we refer to Eq. (A8) as the “continuous Boltzmann
entropy” to distinguish it from the combinatorial Boltzmann
entropy S. This is the second form of kinetic entropy we im-
plement in our PIC code. Note that in dropping the first term
of Eq. (A7), there is an issue with the units of S in that the
second term is no longer formally dimensionless. Therefore,
care is necessary when the continuous Boltzmann entropy is
desired in proper units. We discuss this in more detail in Ap-
pendix B 4.

We note in passing that one can alternately normalize f to
be a probability density rather than a phase space density. In
this convention, the entropy would be related to the Shannon
entropy and information theory100,101. We do not employ this
convention here with an eye to experiments and observations
that directly measure distribution functions.

The continuous Boltzmann entropy density, i.e., the contin-
uous Boltzmann entropy per unit volume, is denoted by s(~r)
and given by

s(~r) =−kB

∫
d3v f (~r,~v) [ln f (~r,~v)] . (A9)

We point out that the continuous Boltzmann entropy
density sM(~r) for a 3D drifting Maxwellian distribu-
tion in local thermodynamic equilibrium (LTE) for a
species of mass m, number density n(~r), bulk flow ve-
locity ~u(~r), and temperature T (~r), with f (~r,~v) = fM =

n(~r)[m/2πkBT (~r)]3/2e−m[~v−~u(~r)]2/2kBT (~r), is exactly solvable
with

sM(~r) =
3
2

kBn(~r)
[

1+ ln
(

2πkBT (~r)
mn2/3(~r)

)]
. (A10)

This result shows the fluid entropy per particle s/n is related
to p/ργ , where p = nkBT is the (scalar) pressure, ρ = mn is
the mass density, and γ = 5/3 is the ratio of specific heats. In
an adiabatic process, conservation of s/n is synonymous with
conservation of p/ργ , which is typically used in fluid models.
Equation (A10) is useful for validating the implementation of
the kinetic entropy diagnostic into kinetic codes.

2. Decomposition of Kinetic Entropy into Position and
Velocity Space Entropies

Boltzmann’s kinetic entropy is defined in terms of permu-
tations of particles with any position and velocity in phase
space. It is tempting to interpret the kinetic entropy density in
Eq. (A9) as the entropy purely associated with permuting par-
ticles in velocity space, but this is only correct if the plasma
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density is uniform. If the density is non-uniform (i.e., n is a
function of~r), it has been shown that the total kinetic entropy
can be decomposed into a sum of a position space entropy and
a velocity space entropy80,81, as we now review.

By adding and subtracting a common term in Eq. (A4),
kB ∑ j N j!, where N j =∑k N jk is the total number of particles in
spatial cell j, i.e., with any velocity, the combinatorial Boltz-
mann entropy S can be written as

S = kB

[
lnN!−∑

j
lnN j!

]

+ kB ∑
j

[
lnN j!−∑

k
lnN jk!

]
. (A11)

The first two terms have the same form as Eq. (A4), except
that the second term has N j! instead of N jk!, so they are de-
fined as the position space kinetic entropy,

Sposition = kB

[
lnN!−∑

j
lnN j!

]
. (A12)

Similarly, the last two terms in Eq. (A11) have the same form
as Eq. (A4) with N replaced by N j and the summation being
only over velocity space, so they are defined as the velocity
space kinetic entropy

Svelocity = ∑
j

kB

[
lnN j!−∑

k
lnN jk!

]
. (A13)

Consequently, Eq. (A11) can be written as

S = Sposition +Svelocity, (A14)

so the combinatorial Boltzmann entropy is decomposed into
a sum of position space kinetic entropy and velocity space
kinetic entropy.

Note that there is an asymmetry between the treatment of
position and velocity space in this definition of the position
space entropy and velocity space entropy. The number of
microstates per macrostate is calculated in velocity space for
each spatial cell to obtain velocity space entropy, while the
position space entropy is obtained by summing over velocity
space first. Alternatively, one could interchange the treatment
of position and velocity space in this calculation. Therefore,
the decomposition used here is not unique. However, the de-
composition employed here and elsewhere gives meaningful
information about local velocity space entropy changes that
are indicative of heating or dissipation, which makes it a pre-
ferred decomposition.

As in Appendix A 1, one can readily derive expressions for
the position and velocity space kinetic entropies in terms of
the distribution function and analogous expressions in terms
of the plasma density n; using Stirling’s approximation as-
suming there are a large number of particles, one obtains the
discrete forms of the continuous Boltzmann position and ve-

locity space kinetic entropies as

Sposition = kB

[
N ln

(
N

∆3r

)
− ∑

j
(∆3r)n(~r j) lnn(~r j)

]
, (A15)

Svelocity ≡∑
j
(∆3r)svelocity(~r j), (A16)

svelocity(~r j) = kB

[
n(~r j) ln

(
n(~r j)

∆3v

)
− ∑

k
(∆3v) f (~r j,~vk) ln f (~r j,~vk)

]
, (A17)

where n(~r j) = N j/∆3r is the number density at spatial cell
j. Expressions in terms of continuous variables come from
taking the limit of small bin size gives

Sposition = kB

[
N ln

(
N

∆3r

)
−
∫

d3rn(~r) lnn(~r)
]
, (A18)

Svelocity ≡
∫

d3rsvelocity(~r), (A19)

svelocity(~r) = kB

[
n(~r) ln

(
n(~r)
∆3v

)
−
∫

d3v f (~r,~v) ln f (~r,~v)
]
. (A20)

Note, the second term in svelocity(~r) is merely s(~r) from
Eq. (A9), so the two differ by the first term. The key point
is that the kinetic entropy density −kB

∫
d3v f ln f is not the

velocity space entropy because of this extra term. Only in the
limit in which n(~r) is uniform are the two effectively the same.
.

The physical meaning of the position and velocity space
entropies are given by analogies with the combinatorial Boltz-
mann entropy S. The position space entropy describes the en-
tropy arising from permutations of particles in position space
without regard to their velocity. For example, there is only
one way to have all the particles in a single bin in position
space; Ω = 1 for that system and the position space entropy
is zero. In contrast, a uniform density has the largest number
of microstates that produce that macrostate, so it is the con-
figuration with the largest position space entropy. Therefore,
compressing a plasma increases the local density, so is asso-
ciated with a local decrease in position space entropy.

The velocity space entropy has a similar interpretation – it
is the entropy associated with the permutation of particles in
velocity space at a fixed cell in phase space, then summed
over all spatial bins. As with the position space entropy,
more distributed particles in velocity space are associated with
higher velocity space entropy, while sharper (colder) distribu-
tions have lower velocity space entropies. Increases in density
and temperature both lead to an increase in velocity space en-
tropy, as is seen explicitly for a Maxwellian distribution in
Eq. (A10). Note, for an adiabatic process for a system in
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local thermodynamic equilibrium, the total entropy is con-
served. However, the position and velocity space entropies
can change, with kinetic entropy converted between them.
During adiabatic compression, for example, the position space
entropy decreases as described above. This decrease is per-
fectly balanced by adiabatic heating which increases the ve-
locity space entropy. We find the decomposition into position
and velocity space entropies provides useful insights in the
analysis of the PIC simulations.

Appendix B: Implementation of Kinetic Entropy Diagnostic in
PIC Simulations

In this section, we provide a detailed summary of how we
implement the kinetic entropy diagnostic into our PIC code
P3D82, although the approach should be applicable to any ex-
plicit PIC code. We emphasize that we use periodic boundary
conditions so that the system is closed and one can unambigu-
ously determine if there are global changes in kinetic entropy
(as opposed to open systems where the kinetic entropy can
change via dynamics at the boundary). In what follows, we
break down the procedure into steps and discuss each in turn.

1. Macro-particles vs. Actual Particles

As discussed in Appendix A 1, calculating the combinato-
rial S or continuous S Boltzmann entropies requires a knowl-
edge of the number of particles in each cell in phase space. In
a PIC simulation, the “particles” are actually macro-particles,
each representing a chunk of phase space containing a large
number of actual particles. Therefore, there is a difference be-
tween the number of particles and number of macro-particles
in each cell. As we show here, the relative structure of the con-
tinuous Boltzmann entropy S is not sensitive to this difference.
However, when converting S from a PIC simulation into real
units, the results are sensitive to this difference. Moreover, the
combinatorial Boltzmann entropy S is sensitive to the number
of actual particles represented by each macro-particle.

Here, we discuss how to relate the number of macro-
particles to the number of actual particles. We define a con-
stant a as the number of actual particles per macro-particle.
The approach to estimate a is to find the number of actual par-
ticles, say, electrons, that would be in a given grid cell in the
simulation. For a system with a known number density n, the
number of electrons Ncell in a spatial volume ∆3r correspond-
ing to a grid cell in PIC is

Ncell ∼ n∆
3r. (B1)

A typical grid size for an explicit PIC simulation is close to the
electron Debye length λDe = (ε0kBTe/nee2)1/2. Thus, Ncell is
on a similar scale as the plasma parameter nλ 3

De. For refer-
ence, representative values for the plasma parameter in vari-
ous settings are provided in Table 1, though of course these
are merely representative and may differ for particular appli-
cations.

To get a comparable number for the PIC code in order to
find a, we note that many PIC codes, including the one in
use here, allow for macro-particles to be assigned a different
weight W , which improves the statistics in systems with non-
uniform initial densities. This must be accounted for in the
estimation of Ncell . We now estimate Ncell using the initial
conditions of the simulations carried out for the present study.
At t = 0 in our simulations, W is same for all macro-particles
in each grid cell and is proportional to the local density. Thus,
PPG×W represents the effective number of macro-particles
per grid cell, so at t = 0 the number of actual particles in a cell
is

Ncell = PPG×W ×a. (B2)

Equating the two expressions for Ncell from Eqs. (B1) and
(B2) gives

a =
n∆3r

PPG×W
. (B3)

In simulations for which W is not a constant for all particles
in each cell, a generalization of this approach is necessary.

It is important to note when and how including a is neces-
sary in calculating kinetic entropy. Define N jk as the number
of weighted macro-particles in the jkth bin in phase space;
then

N jk = aN jk. (B4)

The value forN jk is what one gets from the code when count-
ing weighted macro-particles, but does not take into account
the number of actual particles per macro-particle. Physically,
because the limited number of macro-particles in a PIC simu-
lation implies that there is a small number of macro-particles
per phase space bin, the number of permutations of the macro-
particles is much smaller than the number of permutations of
actual particles. Therefore, if one uses N jk instead of N jk to
calculate Eq. (A4), the result is much smaller than that of ac-
tual system. More importantly, the Stirling approximation and
thus the continuous Boltzmann entropy S definition would be
invalid since N jk is small. The importance of including a can
be seen analytically, as well. Writing Eq. (A4) in terms ofN jk
gives S = kB[ln(aN )!−∑ j,k ln(aN jk)!], which is not equal to
akB[lnN !−∑ j,k lnN jk!]. Thus, the value for a must be in-
cluded at calculation time to get the proper value of the com-
binatorial Boltzmann entropy S.

In contrast, the kinetic entropy (i.e., after using the Stir-
ling approximation) is simply linear in a. Using N = aN and
N jk = aN jk in Eq. (A5) gives

S = kB

[
aN ln(aN )−∑

j,k
aN jk ln(aN jk)

]
. (B5)

Carrying out simple manipulations gives

S = akB

[
N lnN −∑

j,k
N jk lnN jk

]
. (B6)
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TABLE I. Representative values of the plasma parameter nλ 3
De in a number of plasma settings102–104.

Setting Density (cm−3) Te (eV) nλ 3
De

Solar active region 109 100 1.3×107

Magnetotail 0.2 500 1.0×1013

MRX reconnection experiment (0.1 - 1) ×1014 5-15 450-7,000
Solar wind at 1 AU 10 10 4.1×109

Magnetosheath 20 50 3.2×1010

Earth’s ionosphere 106 0.01-0.1 410-13,000
High energy density laser plasma 1020 1000 1,300

Thus, one can simply calculate the continuous Boltzmann en-
tropy using macro-particles in the simulation, and then scale
the result by a to get a value for S. The same result holds for
the forms in terms of the distribution function f [i.e., Eq. (A8)
and (A9)]. In other words, if comparing f or S between a
PIC simulation and observations or experiments and an abso-
lute comparison is desired, one must multiply the raw f and S
from the simulation by a to convert it to a physical result.

2. Binning Macro-Particles in Phase Space

In order to obtain the distribution function, one has to dis-
cretize phase space (with bins from~r j,~vk to~r j +∆~r,~vk +∆~v)
and calculate the contribution of each macro-particle to every
phase space bin. There are numerous approaches to represent-
ing the number density of a macro-particle in a PIC code, re-
ferred to as its shape83. The approach used in P3D, and there-
fore applied here, is a linear shaping function that assumes the
charge density from each macro-particle drops linearly from
its maximum to zero a distance one spatial grid cell away in
each direction. Therefore, in any PIC simulation without a δ -
function shaping function, a macro-particle contributes to the
density in each of the surrounding cells. To calculate kinetic
entropy, we use the same shape function for each particle in
velocity space (i.e., linear). Therefore, the number of macro-
particles in a phase space bin at any given time is typically not
an integer. We suggest that the implementation of the kinetic
entropy calculation should employ the same particle shape as
what is employed in the code in use, but leave further investi-
gation to future work.

Here is the procedure we use for determining the number
of macro-particles in each phase space bin:

• Without using the kinetic entropy diagnostic, optimize
the numerical parameters on a test simulation to en-
sure proper spatial and temporal resolution. Using the
output from this simulation, find the maximum speed
vmax among all macro-particles for all times, which
should be � c in the non-relativistic limit. Then, the
range of velocity space to be discretized is restricted
to [−vmax,vmax]. We use the same velocity range for
each velocity component and for all time. (One could
choose vmax = c without doing a test simulation first, but
for non-relativistic systems one would have many phase
space cells with no particles, which leads to wasted

memory and longer computational times for fixed ve-
locity space bin size.)

• Discretize velocity space by defining a velocity bin size
∆v, which we choose to be the same in each direction
in velocity space. The velocity space bin size should
be small enough to resolve typical velocity distribution
functions, but large enough to preserve reasonably good
statistics without many bins lacking particles, which
leads to longer computational times. If the velocity dis-
tributions in a system have known theoretical kinetic
entropy values, a good way to determine ∆v is to com-
pare the results using different ∆v with the predicted
values, as we discuss further in Sec. IV F. We find that
using a velocity space bin size comparable to the ther-
mal speed is a good choice for the parameters of our
simulation.
Since ∆v determines the constant terms in Eqs. (A7),
(A17) and (A20), an absolute comparison of kinetic en-
tropies of species with different ∆v would not be mean-
ingful. Instead, only relative changes to kinetic entropy
should be used in such a case. Therefore, for this initial
study, we choose parameters so that the ion and electron
thermal speeds are comparable, so we can use the same
∆v for both electrons and ions and be able to make di-
rect comparisons. For systems for which vth,e and vth,i
are different, one should use different bin sizes for each
species. It is important to note that once the velocity
space bin size for each species is set, it should be held
fixed for the duration of the simulation and should be
the same size for all grid cells. These constraints are
necessary to be able to compare kinetic entropies at dif-
ferent times and at different locations.

• Choose a spatial bin size ∆x. In principle, this need not
be the same as the grid scale ∆x, but this is the most
logical choice and what we employ here.

• Cycle over every macro-particle and find the number
density contribution to each spatial bin using the parti-
cle shape in the code, and increment its contribution to
the number of macro-particles in the appropriate phase
space bin based on the three components of the macro-
particle’s velocity. The end result after counting all
macro-particle contributions to every phase space bin
is the total number of macro-particles in every bin N jk.
Recall, this typically is not an integer.
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• If one wants to calculate the combinatorial Boltzmann
entropy S, then multiply N jk in each bin by a to get
N jk. As discussed in Appendix B 1, multiplying by a
at calculation time is not necessary for the continuous
Boltzmann entropy S, but it would lead to an incorrect
value of the combinatorial Boltzmann entropy S.

Spatial cells at the boundary of a computational domain need
to get information from other processors for macro-particles
in nearby cells that contribute to N jk. This leads to an increase
in run time; for the present study, the “base” simulation takes
13% more time than the same simulation without calculating
the kinetic entropy. We believe this performance could be im-
proved, but leave that for future work.

3. Calculating Distribution Functions and Kinetic Entropies

The distribution function f (~r j,~vk) at bin~r j and~vk is imme-
diately approximated from N jk using Eq. (A6). Once f is ob-
tained for all velocity space bins in all spatial cells, the forms
of continuous Boltzmann entropy are readily calculated, such
as Eq. (A7) for S, the discretized version of Eq. (A9) for
s(~r j) = −kB ∑k(∆

3v) f (~r j,~vk) ln[ f (~r j,~vk)], and Eq. (A17) for
svelocity. Note Sposition in Eq. (A15) does not require the distri-
bution function.

To find the combinatorial Boltzmann entropy S, use
Eq. (A4). Since the N jk are not integers, the factorial in
Eq. (A4) needs to be reinterpreted using the Γ function for
which Γ(N +1) = N! for integer N105 as

S = kB

[
ln[Γ(N +1)]−∑

j,k
ln[Γ(N jk +1)]

]
. (B7)

Note that N jk need not be large in every cell, so the non-integer
part should not be ignored. Fortuitously, many programming
languages contain an intrinsic function for ln[Γ(x)], so the cal-
culation is efficient and there are no issues with performing
this calculation for large argument [while calculating Γ(N+1)
separately would lead to numerical problems for large argu-
ments]. A similar calculation can be used to get the combina-
torial Boltzmann entropy for position and velocity space from
Eqs. (A12) and (A13), respectively.

4. Merits of Combinatorial vs. Continuous Boltzmann
Entropy

We close this section with a discussion of the relative merits
between the combinatorial S and continuous S Boltzmann ki-
netic entropies. Three advantages of the combinatorial Boltz-
mann entropy are that it is the most accurate form of kinetic
entropy (it does not rely on assuming N jk � 1), it is auto-
matically in appropriate units, and the intrinsic LNGAMMA
function in many coding languages makes the calculations ef-
ficient and more importantly can be calculated for large ar-
gument, whereas a direct calculation taking the factorial of a
large number is not possible. A drawback of the combinatorial

Boltzmann entropy is that the value of a, describing the num-
ber of actual particles per macro-particle, must be included
from the beginning in the calculation. Thus, if one wants
to see how the combinatorial Boltzmann entropy changes be-
tween two different values of a, one must redo the calculation
of kinetic entropy with a different a value.

The continuous Boltzmann entropy S has the advantage that
one does not need to specify a at run-time. Therefore, finding
the kinetic entropy for the same simulation but with a differ-
ent a is trivial and does not require redoing the calculation.
A disadvantage of the continuous Boltzmann entropy is that
one has to make sure that a is large enough that the errors in
Stirling’s approximation are small, which is discussed further
in Sec. IV D. Another disadvantage is that the results are not
in appropriate units because the argument of the natural loga-
rithm in S = −kB

∫
d3rd3v f ln f from Eq. (A8) is not dimen-

sionless. This comes about because a term is dropped from
Eq. (A7), and the dropped term contains information about
the units inside the natural log. So, to convert the simulated
continuous Boltzmann entropy to real units for comparison
to observations or experiments, one must either (a) include
the dropped term or (b) choose a reference value of continu-
ous Boltzmann entropy at a particular location and time and
present all values as a change in kinetic entropy relative to that
reference. This enforces that the quantities have the appropri-
ate units.
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