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Abstract—Multi-agent path finding (MAPF) is an essential
component of many large-scale, real-world robot deployments,
from aerial swarms to warehouse automation. However, despite
the community’s continued efforts, most state-of-the-art MAPF
planners still rely on centralized planning and scale poorly past a
few hundred agents. Such planning approaches are maladapted
to real-world deployments, where noise and uncertainty often
require paths be recomputed online, which is impossible when
planning times are in seconds to minutes. We present PRIMAL, a
novel framework for MAPF that combines reinforcement and im-
itation learning to teach fully-decentralized policies, where agents
reactively plan paths online in a partially-observable world while
exhibiting implicit coordination. This framework extends our
previous work on distributed learning of collaborative policies by
introducing demonstrations of an expert MAPF planner during
training, as well as careful reward shaping and environment
sampling. Once learned, the resulting policy can be copied onto
any number of agents and naturally scales to different team sizes
and world dimensions. We present results on randomized worlds
with up to 1024 agents and compare success rates against state-
of-the-art MAPF planners. Finally, we experimentally validate
the learned policies in a hybrid simulation of a factory mockup,
involving both real-world and simulated robots.

Index Terms—Path Planning for Multiple Mobile Robots or
Agents, Deep Learning in Robotics and Automation, Distributed
Robot Systems, AI-Based Methods, Factory Automation

I. INTRODUCTION

IVEN the rapid development of affordable robots with
Gembedded sensing and computation capabilities, man-
ufacturing applications will soon regularly involve the de-
ployment of thousands of robots [1], [2]. To support these
applications, significant research effort has been devoted to
multi-agent path finding (MAPF) [3], [4], [5], [6] for de-
ployment in distribution centers and potential use for airplane
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Figure 1. Example problem where 100 simulated robots (white dots) must
compute individual collision-free paths in a large, factory-like environment.

taxiing [7], [8]. However, as the number of agents in the
system grows, so does the complexity of coordinating them.
Current state-of-the-art optimal planners can plan for several
hundreds of agents, and the community is now settling for
bounded suboptimal planners as a potential solution for even
larger multi-agent systems [3], [9]. Another common approach
is to rely on reactive planners, which do not plan joint paths for
all agents before execution, but rather correct individual paths
online to avoid collisions [5], [10]. However, such planners
often prove inefficient in cluttered factory environments (such
as Fig. 1), where they can result in dead- and livelocks [5].

Extending our previous work on distributed reinforcement
learning (RL) for multiple agents in shared environments [11],
[12], the main contribution of this paper introduces PRIMAL,
a novel hybrid framework for decentralized MAPF that com-
bines RL [13] and imitation learning (IL) from an expert
centralized MAPF planner. In this framework, agents learn to
take into account the consequences of their position on other
agents, in order to favor movements that will benefit the whole
team and not only themselves. That is, by simultaneously
learning to plan efficient single-agent paths (mostly via RL),
and to imitate a centralized expert (IL), agents ultimately
learn a decentralized policy where they still exhibit implicit
coordination during online path planning without the need for
explicit communication among agents. Since multiple agents
learn a common, single-agent policy, the final learned policy
can be copied onto any number of agents. Additionally, we
consider the case where agents evolve in a partially-observable
world, where they can only observe the world in a limited field
of view (FOV) around themselves. We present the results of an
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extensive set of simulation experiments and show that the final,
trained policies naturally scale to various team and world sizes.
We further highlight cases where PRIMAL outperforms other
state-of-the-art MAPF planners and cases where it struggles.
We also present experimental results of the trained policy in
a hybrid simulation of a factory mockup.

The paper is structured as follows: In Section II, we sum-
marize the state-of-the-art in MAPF and multi-agent RL. We
detail how MAPF is cast in the RL framework in Section III,
and how learning is carried out in Section IV. Section V
presents our results, and Section VI concluding remarks.

II. PRIOR WORK
A. Multi-Agent Path Finding (MAPF)

MAPF is an NP-hard problem even when approximat-
ing optimal solutions [14], [15]. MAPF planners can be
broadly classified into three categories: coupled, decoupled,
and dynamically-coupled approaches. Coupled approaches
(e.g., standard A*), which treat the multi-agent system as a
single, very high dimensional agent, greatly suffer from an
exponential growth in planning complexity. Hence we focus on
decoupled and dynamically-coupled, state-of-the-art planners
for large MAPF problems.

Decoupled approaches compute individual paths for each
agent, and then adjust these paths to avoid collisions. Since
individual paths can be planned, as well as adjusted for colli-
sions, in low-dimensional search spaces, decoupled approaches
can rapidly find paths for large multi-agent systems [5], [16].
Velocity planners fix the individual path that will be followed
by each agent, then find a velocity profile along those paths
that avoids collisions [6], [10]. In particular, ORCA [5] adapts
the agents’ velocity magnitudes and directions online to avoid
collisions, on top of individually-planned single-agent paths,
and recent work has focused on such an obstacle avoidance
approach using reinforcement learning (RL) [10]. Priority
planners assign a priority to each agent, and plan individual
paths in decreasing order of priority, each time treating higher
priority agents as moving obstacles [17], [18], [19]. The main
drawback of decoupled approaches is that the low-dimensional
search spaces used only represent a small portion of the joint
configuration space, meaning that these approaches cannot be
complete (i.e., find paths for all solvable problems) [20].

Several recent approaches lie between coupled and decou-
pled approaches: they allow for richer agent-agent behaviors
than can be achieved with decoupled planners, while avoiding
planning in the joint configuration space. A common approach
followed by dynamically coupled approaches is to grow the
search space as necessary during planning [3], [21]. Conflict-
Based Search (CBS) and its variants [4], [21] plans for
individual agents and constructs a set of constraints to find
optimal or near-optimal solutions without exploring higher-
dimensional spaces. Extending standard A* to MAPF, M* and
its variants [3] first plan paths for individual agents and then
project these individual plans forward through time searching
for collisions. The configuration space is only locally expanded
around any collision between single-agent plans, where joint
planning is performed through (usually limited) backtracking

to solve the collision and resume single-agent plans. In particu-
lar, OD-recursive-M™* (ODrM#*) [22] can further reduce the set
of agents for which joint planning is necessary, by breaking it
down into independent collision sets, combined with Operator
Decomposition (OD) [23] to keep the branching factor small
during search.

B. Multi-Agent Reinforcement Learning (MARL)

The first and most important problem encountered when
transitioning from single- to multi-agent learning is the curse
of dimensionality: most joint approaches fail as the state-
action spaces explode combinatorially, requiring impractical
amounts of training data to converge [24]. In this context,
many recent work have focused on decentralized policy learn-
ing [25], [26], [27], [28], [29], where agents each learn their
own policy, which should encompass a measure of agent
cooperation, at least during training. One such approach is to
train agents to predict other agents’ actions [26], [27], which
generally scales poorly as the team size increases. In most
cases, some form of centralized learning is involved, where the
sum of experience of all agents can be used towards training
a common aspect of the problem (e.g., network output or
value/advantage calculation) [25], [27], [28]. When centrally
learning a network output, parameter sharing has been used
to enable faster and more stable training by sharing the
weights of some of the layers of the neural net [25]. In
actor-critic approaches, for example, the critic output of the
network is often trained centrally with parameter sharing, since
it applies to all agents in the system, and has been used
to train cooperation between agents [25], [27]. Centralized
learning can also help when dealing with partially-observable
systems, by aggregating all the agents’ observations into a
single learning process [25], [27], [28].

Second, many existing approaches rely on explicit com-
munication among agents, to share observations or selected
actions during training and sometimes also during policy
execution [26], [27], [28]. In our previous work [11], [12],
we focused on extending the state-of-the-art asynchronous
advantage actor-critic (A3C) algorithm to enable multiple
agents to learn a common, homogeneous policy in shared
environments without the need for any explicit agent com-
munication. That is, the agents had access to the full state
of the system (fully-observable world), and treated each other
as moving obstacles. There, stabilizing learning is key: the
learning gradients obtained by agents experiencing the same
episode in the same environment are often very correlated and
destabilized the learning process. To prevent this, we relied
on experience replay [30] and carefully randomized episode
initialization. However, we did not train agents to exhibit any
form of coordination. That is, in our previous extension of
A3C, agents collaborate (i.e., work towards a common goal)
but do not explicitly cooperate (i.e., take actions to benefit
the whole group and not only themselves).

In our work, we propose to rely on imitation learning
(IL)of an expert centralized planner (ODrM*) to train agents
to exhibit coordination, without the need for explicit commu-
nication, in a partially-observable world. We also propose a
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carefully crafted reward structure and a way to sample the
challenges used to train the agents. The resulting, trained
policy is executed by each agent based on locally gathered
information but still allows agents to exhibit cooperative
behavior, and is also robust against agent failures or additions.

III. POLICY REPRESENTATION

In this section, we present how the MAPF problem is cast
into the RL framework. We detail the observation and action
spaces of each agent, the reward structure and the neural
network that represents the policy to be learned.

A. Observation Space

We consider a partially-observable discrete gridworld,
where agents can only observe the state of the world in a
limited FOV centered around themselves (10 x 10 FOV in
practice). We believe that considering a partially-observable
world is an important step towards real-world robot deploy-
ment. In scenarios where the full map of the environment is
available (e.g., automated warehouses), it is always possible
to train agents with full observability of the system by using
a sufficiently large FOV. Additionally, assuming a fixed FOV
can allow the policy to generalize to arbitrary world sizes and
also helps to reduce the input dimension to the neural network.
However, an agent needs to have access to information about
its goal, which is often outside of its FOV. To this end, it
has access to both a unit vector pointing towards its goal and
Euclidean distance to its goal at all times (see Figure 2).

In the limited FOV, we separate the available information
into different channels to simplify the agents’ learning task.
Specifically, each observation consists of binary matrices
representing the obstacles, the positions of other agents, the
agent’s own goal location (if within the FOV), and the position
of other observable agents’ goals. When agents are close to
the edges of the world, obstacles are added at all positions
outside the world’s boundaries.

B. Action Space

Agents take discrete actions in the gridworld: moving one
cell in one of the four cardinal directions or staying still. At
each timestep, certain actions may be invalid, such as moving
into a wall or another agent. During training, actions are sam-
pled only from valid actions and an additional loss function
aids in learning this information. We experimentally observed
that this approach enables more stable training, compared to
giving negative rewards to agents for selecting invalid moves.
Additionally, to combat convergence to oscillating policies,
agents are prevented during training from returning to the
location they occupied at the last timestep (agents can still stay
still during multiple successive timesteps). This is necessary to
encourage exploration and learn effective policies (even when
also using IL).

If an agent selects an invalid move during testing, it instead
stays still for that timestep. In practice, agents very rarely
select invalid moves once fully trained, showing that they
effectively learn the set of valid actions in each state.

World state . e
.'/’/”/ ‘
///.,
////:" |V|
g Magnitude
) A
T \%

Unit vector

Obstacles Agents' Neighbors' Agent's

positions goals goal
Figure 2. Observation space of each agent (here, for the light blue agent).
Agents are displayed as colored squares, their goals as similarly-colored stars,
and obstacles as grey squares. Each agent only has access to a limited field
of view (FOV) centered around its position, in which information is broken
down into channels: positions of obstacles, position of nearby agents, goal
positions of these nearby agents (projected onto the boundary of the FOV if
outside of the FOV), and position of its goal if within the FOV. Note how the
bottom row of the obstacle channel has been filled with obstacles, since these
positions are outside of the world’s boundaries. Each agent also has access
to a normalized vector pointing to its goal (often outside of its FOV) and its
magnitude (distance to goal), as a natural way to let agents learn to select
their general direction of travel.

C. Reward Structure

Our reward function (Table I) follows the same intuition
that most reward functions for gridworlds use, where agents
are punished for each timestep they are not resting on goal,
leading to the strategy of reaching their goals as quickly as
possible. We penalize agents slightly more for staying still than
for moving, which is necessary to encourage exploration. Even
though imitation assists in exploration, we found that removing
this aspect of the reward function led to poor convergence,
which might be the case due to conflicts between the RL
and IL gradients. Though invalid moves (moving back to the
previous cell, or into an obstacle) are filtered out of the action
space during training as described in Section III-B because
agents act sequentially in a random order, it is still possible for
them to collide, e.g., when multiple agents choose to move to
the same location at the same timestep. Agent collisions result
in a —2 reward. Agents receive a +20 reward for finishing an
episode, i.e., when all agents are on their goals simultaneously.

D. Actor-Critic Network

Our work relies on the asynchronous advantage actor-critic
(A3C) algorithm [31] and extends our previous work on
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Figure 3. The neural network consists of 7 convolutional layers interleaved with maxpooling layers, followed by an LSTM.

Table I
SIMPLE REWARD STRUCTURE.
Action Reward
Move [N/E/S/W] -0.3
Agent Collision -2.0
No Movement (on/off goal) 0.0/-0.5
Finish Episode +20.0

distributed learning for multiple agents in shared environ-
ments [11], [12]. We use a deep neural network to approximate
the agent’s policy, which maps the current observation of its
surroundings to the next action to take. This network has
multiple outputs, one of them being the actual policy and the
others only being used toward training it. We use the 6-layer
convolutional network pictured in Fig. 3, taking inspiration
from VGGnet [32], using several small 3 x 3 kernels between
each max-pooling layer.

Specifically, the two inputs to the neural network — the local
observation and the goal direction/distance — are pre-processed
independently, before being concatenated half-way through
the neural network. The four-channel matrices (10 x 10 x 4
tensor) representing the local observation are passed through
two stages of three convolutions and maxpooling, followed by
a last convolutional layer. In parallel, the goal unit vector and
magnitude are passed through one fully-connected (fc) layer.
The concatenation of both of these pre-processed inputs is
then passed through two fc layers, which is finally fed into a
long-short-term memory (LSTM) cell with output size 512. A
residual shortcut [33] connects the output of the concatenation
layer to the input layer of the LSTM. The output layers consist
of the policy neurons with softmax activation, the value output,
and a feature layer used to train each agent to know whether
it is blocking other agents from reaching their goals (detailed
in Section IV-Al).

During training, the policy, value, and “blocking” outputs
are updated in batch every n = 256 steps or when an episode
finishes. As is common, the value is updated to match the total
discounted return (R; = Z’;:O vir¢44) by minimizing:

T

Ly =Y (V(oi;0) — Ry)*. (1)
t=0

To update the policy, we use an approximation of the
advantage function by bootstrapping using the value function:
Alor, ar;0) = Zi:ol Yirewi +7*V (0415 0) — V (o4; 0) (where
k is bounded by the batch size 7"). We also add an entropy term
H(m(0)) to the policy loss, which has been shown to encour-

age exploration and discourage premature convergence [34]
by penalizing a policy that always chooses the same actions.
The policy loss reads

T
L,=o0p-H(w (o)) — Zlog(P(athr, 0;0)A(0t, at;0)) (2)
t=0

with a small entropy weight oy (o = 0.01 in practice).
We rely on two additional loss functions which help to guide
and stabilize training. First, the blocking prediction output
is updated by minimizing Lpjocking, the log likelihood of
predicting incorrectly. Second, we define the loss function
Lyq1iq to minimize the log likelihood of selecting an invalid
move [11], as mentioned in Section III-B.

IV. LEARNING

In this section, we detail our distributed framework for
learning MAPF with implicit agent coordination. The RL
portion of our framework builds upon our previous work on
distributed RL for multiple agents in shared environments [11],
[12]. In our work, we introduce an IL module that allows
agents to learn from expert demonstrations.

A. Coordination Learning

One of the key challenges in training a decentralized policy
is to encourage agents to act selflessly, even though it may
be detrimental to their immediate maximization of reward. In
particular, agents typically display undesirable selfish behavior
when stopped on their goals while blocking other agents’
access to their own goals. A naive implementation of our
previous work [11], where agents distributedly learn a fully
selfish policy, fails in dense environments with many narrow
environmental features where the probability of blocking other
agents is high. That is, agents simply learn to move as fast as
possible to their goals, and then to never move away from it,
not even to let other agents access their own goals (despite
the fact that this would end the episode earlier, which would
result in higher rewards for all agents).

Many of the current multi-agent training techniques ad-
dressing this selfishness problem are invalidated by the size
of the environments and the limited FOV of agents. Shared
critics [27] have proven effective at multi-agent credit as-
signment. However, these methods are typically used when
agents have almost full information about their environment.
In our highly decentralized scenario, assigning credit to agents
may be confusing when they cannot observe the source of the
penalty, for example, when an agent cannot observe that a



SARTORETTI et al.: PRIMAL: PATHFINDING VIA REINFORCEMENT AND IMITATION MULTI-AGENT LEARNING 5

long hallway is a dead-end, yet the universal critic sharply
decreases the value function. Another popular multi-agent
training technique is to apply joint rewards to agents in an
attempt to help them realize the benefit of taking personal
sacrifices to benefit the team [35], [12]. We briefly tried to
assign joint rewards to agents within the same FOV. However,
this produced no noticeable difference in behavior, so we
abandoned it in favor of the methods described below.

To successfully teach agents collaborative behavior, we
rely on three methods: applying a penalty for encouraging
other agents’ movement (called the “blocking penalty”), using
expert demonstrations during training, and tailoring the ran-
dom environments during training to expose agents to more
difficult cluttered scenarios. We emphasize that, without all
three methods, the learning process is either unstable (no
learning) or converges to a worse policy than with all three,
as is apparent in Fig. 5.

1) Blocking Penalty: First, we augment the reward function
shown in Table I with a sharp penalty (—2 in practice) if an
agent decides to stay on goal while preventing another agent
from reaching its goal. The intuition behind this reward is to
provide an incentive for agents to leave their goals, offsetting
the (selfish) local maximum agents experience while resting on
goal. Our definition of blocking includes cases where an agent
is not just preventing another agent from reaching its goal, but
also cases where an agent delays another agent significantly
(in practice, by 10 or more steps to match the size of the
agents’ FOV). This looser definition of blocking is necessary
because of the agents’ small FOV. Although an alternate route
might exists around the agent in larger worlds, it is illogical
to move around the agent when coordination could lead to
shorter a path, especially if the alternate route lies outside the
agent’s FOV (and therefore is uncertain).

We use standard A* to determine the length of an agent’s
path from its current position to its goal and then that of its
path when each one of the other agents is removed from the
world. If the second path is shorter than the first one by more
than 10 steps, that other agent is considered blocking. The
“blocking” output of the network is trained to predict when
an agent is blocking others, to implicitly provide the agent
with an “explanation” of the extra penalty it will incur in this
case.

2) Combining RL and IL: Second, combining RL and IL
has been shown to lead to faster, more stable training as well as
higher-quality solutions in robot manipulation [36], [37], [38].
These advantages are likely due to the fact that IL can help
to quickly identify high-quality regions of the agents state-
action space, while RL can further improve the policy by freely
exploring these regions. In our work, we randomly select in
the beginning of each episode whether it will involve RL or IL
(thus setting the central switch in the middle of Fig. 4). Such
demonstrations are generated dynamically by relying on the
centralized planner ODrM* [3] (with € = 2). A trajectory of
observations and actions T € (O x A)™ is obtained for each
agent, and we minimize the behavior cloning loss:

T
1
Ly = —f;IOg(P(at‘ﬂ'70t;9))- 3)

ﬁeinforcement Learning

Y Y Y
a | 2. | a. | )
RL/IL L—o
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[
a1 a. dn

W

» Expert (M*)

Imitation Learning

Ol.n

Figure 4. Structure of our hybrid RL/IL approach. In the beginning of each
episode, a random draw determines whether the episode will be RL- or IL-
based, and the “switch” (in the middle) is set accordingly. For the RL-based
learning, at each timestep, each agent (1,..,n) draws its observation o; and
reward r; for its previous action from the world (learning environment) and
uses the observation to select an action a; via its own copy of the neural
network. The actions of different agents are executed sequentially in a random
order. Since agents often push and pull weights from a common, shared neural
network, they ultimately share the same weights in their individual nets. For
the IL-based learning, an expert centralized planner coordinates all agents
during the episode, whose behavior the agents learn to imitate, allowing them
to learn coordinated behaviors.

Our implementation deviates from [36], [39] in that we
combine off-policy behavior cloning with on-policy actor-
critic learning, rather than with off-policy deep deterministic
policy gradient. We explored this approach since we can
cheaply generate expert demonstrations online in the beginning
of a new training episode, as opposed to other work where
learning agents only have access to a finite set of pre-recorded
expert trajectories. The heuristic used in ODrM* inherently
helps generate high-quality paths with respect to our reward
structure (Table I), where agents move to their goals as
quickly as possible (while avoiding collisions) and rest on it.
Therefore, the RL/IL gradients are naturally coherent, thus
avoiding oscillations in the learning process.

Leveraging demonstrations is a necessary component of
our system: without it, learning progresses far slower and
converges to a significantly worse solution. However, we
experimented with various IL proportions (10-50% by in-
crements of 10%) and observed that the RL/IL ratio does
not seem to affect the performance of the trained policy by
much. Finally, although we could use dynamic methods such
as DAgggR [40] or confident inference [41] because of the
availability of a real-time planner, we chose to use behavior
cloning because of its simplicity and ease of implementation.
It is unclear whether using such methods would lead to a
performance increase, and will be the subject of future works.
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3) Environment Sampling: Finally, during training, we ran-
domize both the sizes and obstacle densities of worlds in
the beginning of each episode. We found that uniformly
sampling the size and densities of worlds did not expose the
agents to enough situations in which coordination is necessary
because of the relative sparsity of agent-agent interactions. We
therefore sample both the size and the obstacle density from
a distribution that favors smaller and denser environments,
forcing the agents to learn coordination since they experience
agent-agent interactions more often.

B. Training Details

1) Environment: The size of the square environment is
randomly selected in the beginning of each episode to be
either 10, 40, or 70, with a probability distribution that
makes 10-sized worlds twice as likely. The obstacle density
is randomly selected from a triangular distribution between 0
and 50%, with the peak centered at 33%. The placement of
obstacles, agents, and goals is uniformly at random across the
environment, with the caveat that each agent had to be able to
reach its goal. That is, each agent is initially placed in the same
connected region as its goal. It is possible that agents train in
impossible environments (e.g., two agents might be spawned
in the same narrow connected region, each on the other’s
goal), although highly unlikely. The actions of the agents are
executed sequentially in a random order at each timestep to
ensure that they have equal priority (i.e., race conditions are
resolved randomly).

2) Parameters: We use a discount factor () of 0.95, an
episode length of 256, and a batch size of 128 so that up to
two gradient updates are performed each episode per agent.
The probability of observing a demonstration is 50% per
episode. We use the Nadam optimizer [42] with a learning
rate beginning at 2 - 10~° and decaying proportionally to the
inverse square root of episode count. We train in 3 independent
environments with 8 agents each, synchronizing agents in
the same environment in the beginning of each step and
allowing them to act in parallel. Training was performed at
the Pittsburgh Supercomputing Center (PSC) [43] on 7 cores
of a Intel Xeon E5-2695 and one NVIDIA K80 GPU, and
lasted around 20 days. The full code used to train agents is
available at https://goo.gl/T627XD.

V. RESULTS

In this section, we present the results of an extensive
set of simulations comparing PRIMAL against state-of-the-
art MAPF planners in gridworlds. These tests are performed
in environments with varying obstacle densities, grid sizes,
and team sizes. Finally, we present experimental results for a
scenario featuring both physical and simulated robots planning
paths online in an indoor factory mockup.

A. Comparison with Other MAPF Planners

For our experiments, we selected CBS [21] as our optimal,
centralized planner, ODrM* [3] as suboptimal, centralized
option (with inflation factors ¢ = 1.5 and ¢ = 10), and

Mean episode length during training

=== Full PRIMAL

===No Environment Sampling
No Blocking Penalty

=== No |mitation Learning

Expert (ODrM*)

0 | | |
0 1 2 3.14

Episode 10°
Figure 5. Mean episode length during training, lower is better. The dotted
line shows the baseline, obtained from the expert ODrM* planner. When
we remove either environment sampling, the blocking penalties, or imitation
learning from our approach, the policy converges to a worse solution.

ORCA [5] as fully-decoupled velocity planner. Note that all
other planners have access to the whole state of the system,
whereas PRIMAL assumes that each agent only has partial ob-
servability of the system. World sizes are {10, 20, 40,80, 160},
densities {0,0.1,0.2,0.3}, and team sizes {4,8, ...,1024}. We
placed no more than 32 agents in 10-sized worlds, no more
than 128 agents in 20-sized worlds, and no more than 1024
agents in 40-sized worlds.

In our experiments, we compared the success rates of the
different planners, that is whether they complete a given prob-
lem within a given amount of wall clock time or timesteps. For
CBS and ODrM*, we used a timeout of 300s and 60s, respec-
tively, to match previous results [3]. We divided the timeout
by 5 for ODrM* because we used a C' + + implementation
which was experimentally measured to be about 5 times faster
than the previously used Python implementation. For ORCA,
we use a timeout of 60s but terminate early when all agents
are in a deadlock (defined as all agents being stuck for more
than 120s simulation time, which corresponds to 10s physical
time). Finally, for PRIMAL, we let the agents plan individual
paths for up to 256 timesteps for 10- to 40-sized worlds, 384
timesteps for 80-sized worlds, and 512 timesteps for 160-
sized worlds. Experiments for the conventional planners were
carried out on a single desktop computer, equipped with an
AMD Threadripper 2990WX with 64 logical cores clocked
at 4Ghz and 64Gb of RAM. Experiments for PRIMAL were
partially run on the same computer, which is also equipped
with 3 GPUs (NVIDIA Titan V, GTX 1080Ti and 1070Ti),
as well as on a simple desktop with an Intel i7-7700K, 16Gb
RAM and an NVIDIA GTX 1070.

Based on our results, we first notice that our approach per-
forms extremely well in low obstacle densities, where agents
can easily go around each other, but is easily outperformed
in dense environments, where joint actions seem necessary
for agents to reach their goals (which sometimes requires
drastic path changes). Similarly, but with significantly worse
performance, ORCA cannot protect against deadlocks and
performs very poorly in most scenarios involving more than 16
agents and any obstacles, due to its fully-decoupled, reactive
nature. Second, we notice that, since our training involves
worlds of varying sizes but a constant team size, agents are
inherently exposed to a small variability in agent density
within their FOV. In our results, we observed that agents
perform more poorly as the number of nearby agents increases



SARTORETTI et al.: PRIMAL: PATHFINDING VIA REINFORCEMENT AND IMITATION MULTI-AGENT LEARNING 7

in their FOV (small worlds, large teams), an effect we believe
could be corrected by varying the team sizes during training.
This will be investigated in future works. However, we expect
traditional planners to generally outperform our approach in
small (10-20-sized) worlds, even with larger teams. Third, we
notice that the paths generated by PRIMAL are sometimes
more than twice as long as the paths of the other planners’.
However, other planners allow moves that the agents cannot
take in our definition of the MAPF problem: agents can
follow each other with no empty space between them, can
swap around (similar to a runabout), etc. [3], which leads
to shorter paths. Additionally, visual inspection of the cases
where PRIMAL generates longer paths shows that most agents
move to their goals effectively, except for a few laggards.
Finally, since agents are never exposed to worlds larger than
70 x 70 during training, they seem to perform extremely
poorly in larger worlds during testing (> 80-sized). However,
by capping the goal distance in the agents’ state, PRIMAL’s
success rate in larger worlds can be drastically improved.
In the results presented here for 80- and 160-sized worlds,
the distance to goal is capped at 75 (empirically set) in the
agents’ state. Example videos of near-optimal and severely
sub-optimal plans for PRIMAL in various environments are
available at https://g00.gl/T627XD.

Due to space constraints, we choose to discuss the three
main scenarios shown in Fig. 6: a case where PRIMAL
strongly outperforms all other planners, one where PRIMAL
slightly outperforms them, and one where PRIMAL struggles.
The complete set of results (for all team sizes, obstacles den-
sities, and world sizes) can be found at https://goo.gl/APktNk
and contains the path lengths generated by the different
planners as well as the planning times. First, in a large world
with no obstacles (160 x 160), centralized planners especially
struggle since the joint configuration space quickly grows to
encompass all agents, making planning for more than 100
agents very time-consuming. PRIMAL, on the other hand, can
easily deal with teams up to 1024 agents, with a near-perfect
success rate. Second, in a medium-sized world with low
obstacle density, the centralized planners can easily plan for a
few hundred agents. PRIMAL’s success rate starts decreasing
earlier than that of the other planners, but remains above 60%
for cases with 512 agents, whereas all other planners perform
poorly. Third, in a smaller world that is very densely populated
with obstacles, all planners can only handle up to 64 agents,
but PRIMAL starts to struggle past 8 agents, whereas ODrM*
can handle up to 64 agents. However, even when PRIMAL
cannot finish a full problem, it usually manages to bring
many agents to their goals quickly, with only a few failing
to reach their goals. At this point, a conventional planner
could be used to complete the problem, which has become
simple for a graph-based solver since most agents should
remain motionless at their goals. Future work will investigate
the combination of PRIMAL with a complete planner to
leverage the fast, decentralized planning of PRIMAL while
guaranteeing completeness.

B. Experimental Validation
We also implemented PRIMAL on a small fleet of au-
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Figure 6. Success rates of the different planners in our three scenarios.
PRIMAL outperforms all planners in the top obstacle-free world, slightly
outperforms the others in low-obstacle-density worlds, and is strongly outper-
formed in the high-obstacle-density world.

tonomous ground vehicles (AGVs) evolving in a factory
mockup. In this hybrid system, two physical robots evolve
alongside two (then, half-way through the experiment, three)
simulated ones. The physical robots have access to the po-
sition of simulated robots, and vice-versa, as they all plan
their next actions online using our decentralized approach.
PRIMAL shows clear online capabilities, as the planning time
per step and per agent is well below 0.1s on a standard
GPU (and well below 0.2s on a CPU). Fig. 7 shows our
factory mockup and simulation environment. The full video
is available at https://goo.gl/T627XD.

VI. CONCLUSION

In this paper, we presented PRIMAL, a new approach to
multi-agent path finding, which relies on combining distributed
reinforcement learning and imitation learning from a central-
ized expert planner. Through an extensive set of experiments,
we showed how PRIMAL scales to various team sizes, world
sizes and obstacle densities, despite only giving agents access
to local information about the world. In low obstacle-density
environments, we further showed how PRIMAL exhibits on-
par performance, and even outperforms state-of-the-art MAPF
planners in some cases, even though these have access to the
whole state of the system. Finally, we presented an example
where we deployed PRIMAL on physical and simulated robots
in a factory mockup, showing how robots can benefit from our
online, local-information-based MAPF approach.

Future work will focus on adapting our training procedure
to factory-like environments, with low to medium obstacle
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O30,

factory mockup. Left: overhead (top) and side (bottom) views of the mockup
and robots. Right: visualization showing the obstacles (black solids), the robots
(blue circles), their goals (blue squares), and current moves (green squares).

density but where parts of the environment are very sparse
and other parts highly-structured (such as corridors, aisles,
etc.). We also believe that extending our approach to receding-
horizon planning, where agents plan ahead for several actions,
may help to improve the performance of PRIMAL by teaching
agents to explicitly coordinate their paths.
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