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Learning Deep Stochastic Optimal Control Policies
using Forward-Backward SDEs

Marcus A. Pereiral™*

Abstract—In this paper we propose a new methodology for
decision-making under uncertainty using recent advancements
in the areas of nonlinear stochastic optimal control theory,
applied mathematics, and machine learning. Grounded on the
fundamental relation between certain nonlinear partial differential
equations and forward-backward stochastic differential equations,
we develop a control framework that is scalable and applicable
to general classes of stochastic systems and decision-making
problem formulations in robotics and autonomy. The proposed
deep neural network architectures for stochastic control consist
of recurrent and fully connected layers. The performance and
scalability of the aforementioned algorithm are investigated in
three non-linear systems in simulation with and without control
constraints. We conclude with a discussion on future directions
and their implications to robotics.

I. INTRODUCTION

Over the past 15 years there has been significant interest from
the robotics community in developing algorithms for stochastic
control of systems operating in dynamic and uncertain environ-
ments. This interest was initiated by two main developments
related to theory and hardware. From a theoretical standpoint,
there has been a better — and in some sense deeper — under-
standing of connections between different disciplines. As an ex-
ample, the connections between optimality principles in control
theory and information theoretic concepts in statistical physics
are well understood so far [1, 2, 3, 4]. These connections have
resulted in novel algorithms that are scalable, real-time, and
can handle complex nonlinear dynamics [5]. On the hardware
side, there have been significant technological developments
that made possible the use of high performance computing for
real-time Stochastic Optimal Control (SOC) in robotics [6].

Traditionally, SOC problems are solved using Dynamic
Programming (DP). Dynamic Programming requires solving
a nonlinear second order Partial Differential Equation (PDE)
known as the Hamilton-Jacobi-Bellman (HJB) equation [7]. It
is well-known that the HIB equation suffers from the curse of
dimensionality. One way to tackle this problem is through an
exponential transformation to linearize the HIB equation, which
can then be solved with forward sampling using the linear
Feynman-Kac lemma [8] [9]. While the linear Feynman-Kac
lemma provides a probabilistic representation of the solution
to the HJB that is exact, its application relies on certain
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assumptions between control authority and noise. In addition,
the exponential transformation of the value function reduces the
discriminability between good and bad states, which makes the
computation of the optimal control policy difficult.

An alternative approach to solve SOC problems is to trans-
form the HJB into a system of Forward-Backward Stochastic
Differential Equations (FBSDEs) using a nonlinear version of
the Feynman-Kac lemma [10, 11]. This is a more general
approach compared to the standard Path Integral control frame-
work, in that it does not rely on any assumptions between
control authority and noise. In addition, it is valid for general
classes of stochastic processes including jump-diffusions and
infinite dimensional stochastic processes [12, 13]. However, the
main challenge in using the nonlinear Feynman-Kac lemma lies
in the solution of the backward SDE. This process requires the
back-propagation of a conditional expectation, and thus cannot
be solved by simple trajectory integration, as it is done with
forward SDEs. Therefore, numerical approximation techniques
are needed for utilization in an actual algorithm. Exarchos
and Theodorou [14] developed an importance sampling based
iterative scheme by approximating the conditional expectation
at every time step using linear regression (see also [15] and
[16]). However, this method suffers from compounding errors
from Least Squares approximation at every time step.

Recently, the idea of using Deep Neural Networks (DNNs)
and other data-driven techniques for approximating the solu-
tions of non-linear PDEs has been garnering significant atten-
tion. In Raissi et al. [17], DNNs were used for both solving
and data-driven discovery of the coefficients of non-linear
PDEs popular in physics literature such as the Schrodinger,
the Allen-Cahn, the Navier-Stokes, and the Burgers equations.
They have demonstrated that their DNN-based approach can
surpass the performance of other data-driven methods such
as sparse linear regression proposed by Rudy et al. [18]. On
the other hand, using DNNs for end-to-end Model Predictive
Optimal Control (MPOC) has also become a popular research
area. Pereira et al. [19] introduced a DNN architecture for
Imitation Learning (IL), inspired by MPOC, based on the Path
Integral (PI) Control approach alongside Amos et al. [20]
who introduced an end-to-end MPOC architecture that uses
the KKT conditions of the convex approximation. Pan et al.
[21] demonstrated the MPOC capabilities of a DNN control
policy using only camera and wheel speed sensors, through IL.
Morton et al. [22] used a Koopman operator based DNN model
for learning the dynamics of fluids and performing MPOC for
suppressing vortex shedding in the wake of a cylinder.



This tremendous success of DNNs as universal function
approximators [23] inspires an alternative scheme to solve
systems of FBSDEs. Recently, Han et al. [24] introduced a
Deep Learning based algorithm to solve FBSDEs associated
with nonlinear parabolic PDEs. Their framework was applied
to solve the HJB equation for a white-noise driven linear
system to obtain the value function at the initial time step. This
framework, although effective for solving parabolic PDEs, can
not be applied directly to solve the HIB for optimal control of
unstable nonlinear systems since it lacks sufficient exploration
and is limited to only states that can be reached by purely
noise driven dynamics. This problem was addressed in [14]
through application of Girsanov’s theorem, which allows for the
modification of the drift terms in the FBSDE system thereby
facilitating efficient exploration through controlled forward
dynamics.

In this paper, we propose a novel framework for solving
SOC problems of nonlinear systems in robotics. The resulting
algorithms overcome limitations of previous work in [24] by
exploiting Girsanov’s theorem as in [14] to enable efficient
exploration and by utilizing the benefits of recurrent neural
networks in learning temporal dependencies. We begin by
proposing essential modifications to the existing framework of
FBSDEs to utilize the solutions of the HIB equation at every
timestep to compute an optimal feedback control which thereby
drives the exploration to optimal areas of the state space.
Additionally, we propose a novel architecture that utilizes
Long-Short Term Memory (LSTM) networks to capture the
underlying temporal dependency of the problem. In contrast
to the individual Fully Connected (FC) networks in [24], our
proposed architecture uses fewer parameters, is faster to train,
scales to longer time horizons and produces smoother control
trajectories. We also extend our framework to problems with
control-constraints which are very relevant to most applications
in Robotics wherein actuation torques must not violate specified
box constraints. Finally, we compare the performance of both
network architectures on systems with nonlinear dynamics such
as pendulum, cartpole and quadcopter in simulation.

The rest of this paper is organized as follows: in Section
I we reformulate the stochastic optimal control problem in
the context of FBSDE. In Section III we use the same FBSDE
framework to the control constrained case. Then we provide the
Deep FBSDE Control algorithm in Section IV. The simulation
results are included in Section V. Finally we conclude the paper
and discuss future research directions.

II. STOCHASTIC OPTIMAL CONTROL THROUGH FBSDE

A. Problem Formulation

Let (Q, F,{F:}+>0,Q) be a complete, filtered probability
space on which a v-dimensional standard Brownian motion
w(t) is defined, such that {F;};>0 is the normal filtration
of w(t). Consider a general stochastic nonlinear system with
control affine dynamics,

da(t) = f(z(t), t)dt+G(z(t), u(z(t), t)dt+ S (z(t), )dw(t)
(1)

where, 0 <t < T < oo, T is the time horizon, x € R™ is the
state vector, u € R™ is the control vector, f : R™ x [0,T] —
R™ represents the drift, G : R™ x [0,T] — R™*™ represents
the actuator dynamics, ¥ : R™ x [0,7] — R™*" represents
the diffusion. The Stochastic Optimal Control problem can be
formulated as minimization of an expected cost functional given
by

J(z(t),t) = Eq [g(w(T))—&-/t ((](l’(’]’))-‘r%UTRU)dT , ()

where g : R® — RT is the terminal state cost, g : R® — RT
is the running state cost and R is a m X m positive definite
matrix. The expectation is taken with respect to the probability
measure Q over the space of trajectories induced by controlled
stochastic dynamics. With the set of all admissible controls U,
we can define the value function as,

{V(w(t), t) = infu(.)eu[O,T] J(.%‘(t), t)
V(@).T) = g(a(T)).

Using stochastic Bellman’s principle, as shown in [10], if the
value function is in C1-2, then its solution can be found with
Ito’s differentiation rule to satisfy the Hamilton-Jacobi-Bellman
equation,

3)

Vi +1infy()eup,1) {% tr(Vee ZET) + VI (f + Gu) + ¢
Jr%uTRu} =0
V(x(T),T) = g(x(T)),

“)
where V,, V., denote the gradient and Hessian of V respec-
tively. The explicit dependence on independent variables in the
PDE above and all PDEs henceforth is omitted for the sake
of conciseness, but will be maintained for their corresponding
SDEs for clarity. For the chosen form of the cost functional
integrand, the infimum operation can be carried out by taking
the gradient of the terms inside, known as the Hamiltonian,
with respect to w and setting it to zero,

GT(x(t),t)Vy(z(t),t) + Ru(z(t),t) = 0. (5)
Therefore, the optimal control is obtained as
w (x(t), t) = —R™'GT(x(t), t) Vo ((t), 1). (6)

Plugging the optimal control back into the original HIB equa-
tion, the following form of the equation is obtained,

Vit s tr(VeeXET) + VI f+ ¢ — LVIGRIGTV, =0
V(z(T),T) = g(=(T)).
@)
B. Non-linear Feynman-Kac lemma

Here we restate the non-linear Feynman-Kac lemma from
[14]. Consider the Cauchy problem,

{Vt-i-étl“ (VMZZT)—&—V;Fb—i—h:O )

v((T),T) = g(=(T)), = € R",



wherein the functions X(x(t),t), b(x(¢),t), h(z,v,z,t) and
g(z(T)) satisfy mild regularity conditions [14]. Then, (8)
admits a unique (viscosity) solution v : R™ x [0,7] — R,
which has the following probabilistic representation,

v(x(t), t) = y(t) ©)
Y. (2(t),t) = 2(t) (10)
wherein (z(-),y(-), 2(-)) is the unique solution of an FBSDE
system. The forward component of that system is given by
= b(x(t),t)dt + X(x(t), t)dw(t)

{dx(t)
z(0) =¢

where, without loss of generality, w is chosen as a n-
dimensional Brownian motion. The process x(t), satisfying
the above forward SDE, is also called the state process. The
associated backward SDE is

{dy(t) = —h(z(t),y(t), 2(t), t)dt + 2(¢)Tdw(t)

(1)

WT) = gla(D)) .
The function h(-) is called the generator or driver.

We assume that there exists a matrix-valued function I' :
R™ x [0,T] — R™ "™ such that the controls matrix G(z(t),t)
in (1) can be decomposed as G(z(t),t) = X(x(t), t)T'(z(t),1)
for all (z,t) € R™ x [0, T, satisfying the same mild regularity
conditions. This decomposition can be justified as the case of
stochastic actuators, where noise enters the system through
the control channels. Under this assumption, we can apply
the nonlinear Feynman-Kac lemma to the HIB PDE (7) and
establish equivalence to (8) with coefficients of (8) given by

b(a(t), t) = f(x(t),1)

M), 9(0).2(0).0) = a(e(®) — 22" TRTTe

C. Importance Sampling for Efficient Exploration

There are several cases of systems in which the goal state
practically cannot be reached by the uncontrolled stochastic
system dynamics. This issue can be eliminated if one is given
the ability to modify the drift term of the forward SDE.
Specifically, by changing the drift, we can direct the exploration
of the state space towards the given goal state, or any other state
of interest, reachable by control. Through Girsanov’s theorem
[25] on change of measure, the drift term in the forward SDE
(11) can be changed if the backward SDE (12) is compensated
accordingly. This is known as the importance sampling for
FBSDESs. This results in a new system of FBSDEs in certain
sense equivalent to the original ones,

{di;(t) = [b(E(t), 1) + D(F(t), ) K (D)]dt + 2(F(2), £)da ()
z(0) =¢,

(14)
along with the compensated BSDE,
dg(t) = (=h(@(t), §(t), 2(t),t) + Z(t) T K (t))dt
+2(t)Tdw(t) 15)

y(T) = g(x(T)),

for any measurable, bounded and adapted process K : [0,7] —
R™. We refer the readers to proof of Theorem 1 in [14] for the
full derivation of change of measure for FBSDEs. The PDE
associated with this new system is given by

Vit str (Ve 28T) + VI (b+3K) +h—2TK =0
V(@,T) = g(#(T)),
(16)
which is identical to the original problem (8) as we have merely
added and subtracted the term 3T K. Recalling the decompo-
sition of control matrix in the case of stochastic actuators, the
modified drift term can be applied with any nominal control %
to achieve the controlled dynamics,

di(t) = [f(&(t),t) + S(2(t), 6)L(2(t), t)u(t)]de
+ X (z(t), t)dw(t)
with K (t) = I'(Z(¢),t) @. The nominal control @ can be any

open or closed-loop control, a random control, or a control
calculated from a previous run of the algorithm.

a7

D. FBSDE Reformulation

Solutions to BSDEs need to satisfy a terminal condition, and
thus, integration needs to be performed backwards in time, yet
the filtration still evolves forward in time. It turns out that a
terminal value problem involving BSDEs admits an adapted
solution if one back-propagates the conditional expectation of
the process. This was the basis of the approximation scheme
and corresponding algorithm introduced in [14]. However, this
scheme is prone to approximation errors introduced by least
squares estimates which compound over time steps. On the
other hand, the Deep Learning (DL)-based approach in [24]
uses the terminal condition of the BSDE as a prediction target
for a self-supervised learning problem with the goal of using
back-propagation to estimate the value function at the initial
timestep. This was achieved by treating the value at the initial
timestep, V(Z(0),0), as one of the trainable parameters of a
DL model. There is a two-fold advantage of this approach: (i)
starting with a random guess of V(Z(0),0; ¢), the backward
SDE can be forward propagated instead. This eliminates the
need to back-propagate a least-squares estimate of the con-
ditional expectation to solve the BSDE and instead treat the
BSDE similar to the FSDE, and (ii) the approximation errors
at every time step are compensated by the backpropagation
training process of DL. This is because the individual networks,
at every timestep, contribute to a common goal of predicting
the target terminal condition and are jointly trained.

In this work, we combine the importance sampling concepts
for FBSDEs with the Deep Learning techniques that allows for
the forward sampling of the BSDE and propose a new algorithm
for Stochastic Optimal Control problems. The novelty of our
approach is to incorporate importance sampling for efficient
exploration in the DL model. Instead of the original HJB
equation (7), we focus on obtaining solutions for the modified
HJB PDE in (16) by using the modified FBSDE system (14),
(15). Additionally, we explicitly compute the control at every
time step using the analytical expression for optimal control (6)
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Fig. 1: FC neural network architecture (boldfaced connections indicate importance sampling).
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Fig. 2: LSTM neural network architecture (boldfaced connections indicate importance sampling). Note that the F'C; networks
in (Fig. 1) above are different for each time step, whereas here the same weights are shared for every time step.

in the computational graph. Similar to [24], the FBSDE system
is solved by integration of both the SDEs forward in time as
follows,

di(t) = f(2(t),t)dt + S(2(t), t) [a(E(t), t)dt + dd(t)]

w(z(t),t) = Tu*(2(t),t;0,) = ~TR™ITT2(t;6,)
#0)=¢
(13)
and
dg(t) = (= h(@(t),§(t), 2(t; 0r), 1)
+2(t;0,) T T(&(t), ) u)dt + Z(t; 0;) "du(t) (19)

§(0) = V(2(0),0; ¢).
III. STOCHASTIC CONTROL PROBLEMS WITH CONTROL
CONSTRAINTS

The framework we have considered so far can be suitably
modified to accommodate a certain type of control constraints,
namely upper and lower bounds (—u™* u™%). Specifically,
each control dimension component satisfies |u;(Z(t),t)| <
u* for all j = {1,---,m}. Such control constraints are
common in mechanical systems, where control forces and/or
torques are bounded, and may be readily introduced in our
framework via the addition of a “soft” constraint, integrated
within the cost functional. In recent work, Exarchos et al.
[26] showed how box-type control constraints for L!-optimal
control problems (also called minimum fuel problems), can be
incorporated into an FBSDE scheme. These are in contrast
to the more frequently used quadratic control cost (L? or

minimum energy) SOC problems. Indeed, one can replace the
cost functional given by (2) with .

1(at0).0) = Bo sl (r) + [ ' (at@ton + fjsxuj))dt],

=1
(20)
where
UJ o _V_
Si(uj) = cj/ sig™! ( max)dv7 j=A1,...,m},
0 U,
(21

c; are constant weights, sig(-) denotes the sigmoid (tanh-like)
function that saturates at infinity, i.e., sig(+o00) = £1, while v
is a dummy variable of integration. A suitable example along
with its inverse is

2
sig(v) = e~ 1, veR (22)
L 14
sig ™! (1) = log (ﬁ>7 pe (=1,1). (23)

Following the same procedure as in Section II, we set the
derivative of the Hamiltonian equal to zero and obtain

c1 Sigil(%)
- : — GT(&(t), t)vz(2(t), ) = 0.

Cm Sig_l(ﬁ)

(24)

By introducing the notation

G((t), 1) = [g(2(t), 1)  g2(Z(t),1) gm (Z(t),1)]



where g; (not to be confused with the terminal cost ¢g) denotes
the i-th column of GG, we may write the optimal control in
component-wise notation as

W (F(0),1) = u m“‘mg(—lg}( <t>,t>vi<5c<t>,t>),
j — {17 - ,m}

The optimal control can be written equivalently in vector
form. Indeed, if [u®*, ... umaX]T is the vector of bounds,
R™Y=11/ci,...,1/cp] is a diagonal matrix of the reciprocals
of the weights and Upaz = diag([ua, ... umax]T) s a
diagonal matrix of the bounds, one readily obtains

(25)

(@ (0,0) = U sie (= 716 60).0V3(200).0) )
(26)
Substituting the equation of the constrained controls into eqn.
16 results in

{m + 30 (Ve E5T) + VI (b+ SK) +h— 2TK =0
V(&(T),T) = g(2(T))

(27
where h is specified by the expression that follows:
h=q(@(t)) + VI G(a(t), u (@(1), 1) + Y Sj(uf)  (28)
j=1

IV. DEEP FBSDE CONTROLLER

In this section we present the algorithm for the Deep FB-
SDE stochastic controller and discuss the underlying network
architectures.

Algorithm: The task horizon 0 < ¢t < T' in continuous-time
can be discretized as t = {0,1,--- , N}, where T' = N At. Here
we abuse the notation ¢ as both the continuous time variable
and discrete time index. With this we can also discretize
all the variables as step functions such that Zy,y:, Z;,u; =
Z(t),g(t), Z(t),u*(t) if the discrete time index t is between
the time interval [tAt, (¢t + 1)At).

The Deep FBSDE algorithm, as shown in Alg. 1, solves
the finite time horizon control problem by approximating the
gradient of the value function Z{ at every time step with a DNN
parameterized by 6,. Note that the superscript i is the batch
index, and the batch-wise calculation can be implemented in
parallel. The initial value ¢} and its gradient Z are parame-
terized by trainable variables ¢ and are randomly initialized.
The optimal control action is calculated using the discretized
version of (6) (or (26) for the control constrained case). The
dynamics = and value function g are propagated using the Euler
integration scheme, as shown in the algorithm. The function A is
calculated using (13) (or (28) for the control constrained case).
The predicted final value 3% is compared against the true final
value y3* to calculate the loss. The networks can be trained
with any one of the variants of Stochastic Gradient Descent
(SGD) such as the Adam optimizer [27] until convergence with
custom learning rate scheduling. The trained networks can then

Algorithm 1: Finite Horizon Deep FBSDE Controller

Given:
To=¢&, f, G, X, I': Initial state and system dynamics;
g, q, R: Cost function parameters;
N: Task horizon, K: Number of iterations, M : Batch
size; bool: Boolean for constrained control case;
U nae: maximum controls per input channel,
At: Time discretization; A: weight-decay parameter;
Parameters:
Jo = V(Zo, 0; ¢): Value function at ¢t = 0;
%0 = 2T V;V: Gradient of value function at ¢ = 0;
0: Weights and biases of all fully-connected and/or
LSTM layers;
Initialize neural network parameters;
Initialize states:
{534, Iy =¢
{g()}z 1 Yo = V(xo, 0; ¢)
{2}y, 2 =2"V; V(mO,O )
for k=1 to K do
for i =1 to M do
fort=1to N —1do
Compute gamma matrix: I'} = I'(Z%, ¢);
if bool == True then

ui* = mamsig( — R_lfiTé’Z’);
else
ix _ —1714 T 5.
u* = —-R7T} 2
end if

Sample Brownian noise: Au?i ~N(0,%)
Update value function: g, =

gilt - h(i'%v giv Ztv )At + Z%T FZ
Update system state:

Ti =T+ f(@L )AL+ S(Diui* At + Aw))
Predict gradient of value function:

AL+ 2T AW

Zf+1 fFC (It-i,-la 0 ) or fLSTM (ji.:,_l; Gk)
end for
Compute target terminal value: y3° = g(Z%)
end for

Compute mini-batch loss:

E—MZIIy

OF+L Adam step(L, 0F); ¢**1 < Adam.step(L, ¢¥)
end for
return 0% K

—gn 13 + A6

be used to predict the optimal control at every time step starting
from the given initial condition &.

Network Architectures: The network architectures illus-
trated in figures 1 and 2, are extensions of the network
introduced in [24] (refer to fig. 4 in the paper). The neu-
ral network architectures in figures 1 and 2 have additional
connections (highlighted by boldfaced arrows) that use the
predicted gradient of the value function at every time step to
compute and apply an optimal feedback control. An architecture
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proposed FC (Fig. 1) and LSTM (Fig. 2) network architectures.

similar to fig. 1 was introduced in [28] to solve model-based
Reinforcement Learning (RL) problems posed as finite time
horizon SOC problems. This consisted of a FC network at
every timestep to predict an action as a function of the current
state. The networks were stacked together to form one large
deep network which was trained in an end-to-end fashion with
the goal of minimizing the accumulated cost (or maximizing
accumulated reward). In contrast, the network architecture in
fig. 1 uses the explicit form of the optimal feedback control
(eq. (6) or eq. (26)) at every timestep calculated using the value
function gradient predicted by the network. In addition, we use
the prediction to propagate the value function according to the
BSDE (19) and minimize the difference between the propagated
value function and the true value function at the final state.
This, however, creates a new path for gradient backpropaga-
tion through time [29] which introduces both advantages and
challenges for training the networks. The advantage being a
direct influence of the weights on the state cost ¢(Z;) leading
to accelerated convergence. Nonetheless, this passage also leads
to the vanishing gradient problem, which has been known to
plague training of Recurrent Neural Networks (RNNs) for long
sequences (or time horizons).

To tackle this problem, we propose a new LSTM-based
network architecture, as shown in fig. 2, which can effectively
deal with the vanishing gradient problem [30] as it allows
for the gradient to flow unchanged. Additionally, since the
weights are shared across all time steps, the total number of
parameters to train is far less than the FC structure. These
features allows the algorithm to scale to optimal problems of
long time horizons. Intuitively, one can also think of the use of
LSTM as modeling the time evolution of V, in contrast to the
FC structure, which acts independently at every time step.

V. SIMULATION RESULTS

We applied the Deep FBSDE controller to systems of pendu-
lum, cartpole and quadcopter for the task of reaching a target
final state. The trained networks are evaluated over 128 trials
and the results are compared between the different network
architectures for both the unconstrained and control constrained

case. We use FC and LSTM to denote experiments with the
network architectures in fig. 1 and 2 respectively. We use 2
layer FC and LSTM networks and tanh activation for all ex-
periments, with At = 0.02 s. All experiments were conducted
in TensorFlow [31] on an Intel i7-4820k CPU Processor. A
comparison of training time and trainable parameter number is
shown in fig. 3, where it is clear that the LSTM network saves
at least 20% of training time and has much fewer parameters
than the FC network.

In all trajectory plots, the solid line represents the mean tra-
jectory, and shaded region shows the 95% confidence region. To
differentiate between the 4 cases, we use blue for unconstrained
FC, green for unconstrained LSTM, cyan for constrained FC
and magenta for constrained LSTM.

A. Pendulum

The algorithm was applied to the pendulum system for the
swing-up task with a time horizon of 1.5 seconds. The equation
of motion for the pendulum is given by

mi%0 + mglsin 6 + b0 = w. (29)

The initial pendulum angle is 0 radian, and the target pendu-
lum angle and rate are 7 radians and 0 rad/s respectively. A
maximum torque constraint of u"** = 10 Nm is used for the
control constrained cases.

Fig. 4 shows the state trajectories across the 4 case. It can
be observed that the swing-up task is completed in all casess
with low variance. However, the pole rate does not return to
0 for unconstrained FC, as compared to unconstrained LSTM.
When the control is constrained, the pendulum angular rate
becomes serrated for FC while remaining smooth for LSTM.
This also more noticeable in the control torques (fig. 5).
The control torques becomes very spiky for FC due to the
independent networks at each time step. On the other hand, the
hidden temporal connection within LSTM allows for smooth
and optimally behaved control policy.

B. Cart Pole

The algorithm was applied to the cart-pole system for the
swing-up task with a time horizon of 1.5 seconds. The equations
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of motion for the cart-pole are given by
2% 4+ 0 cosh — 02 sinh = u
Fcosh+0+sinf = 0.

(30)
€Y

The initial pole angle is O radian, and the target pole angle is
7 radians with target pole and cart velocities of 0 rad/s and
0 m/s respectively. Note that despite the target of 0 m for cart
position, we do not penalize non-zero cart position in training.
A maximum force constraint of 10 N is used for the control
constrained case.

The cart-pole states are shown in fig. 6. Similar to the
pendulum experiment, the swing-up task is completed with
low variance acrossed all cases. Interestingly, when control
is constrained, both FC and LSTM swing the pole in the
direction opposite to target at first and utilize momentum to
complete the task. Another interesting observation is that in the
unconstrained case, the LSTM-policy is able to exploit long-
term temporal connections to initially apply large controls to
swing-up the pole and then focus on decelerating the pole for
the rest of the time horizon, whereas the FC-policy appears to
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Fig. 6: Cart Pole states. Top Left: Pole Angle; Top Right: Pole
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Fig. 7: Cart Pole controls.

be more myopic resulting in a delayed swing-up action. Similar
to the pendulum experiment, under control constraint the FC-
policy results in sawtooth-like controls while the LSTM-policy
outputs smooth control trajectories.

C. Quadcopter

The algorithm was applied to the quadcopter system for
the task of flying from its initial position to a target final
position with a time horizon of 2 seconds. The quadcopter
dynamics used is described in detail by Habib et al. [32]. The
initial condition is 0 across all states, and the target is 1 m
upward, forward and to the right from the initial location with
zero velocities and attitude. The controls are motor torques. A
maximum torque constraint of 3 Nm is imposed for the control
constrained case.

This task required N = 100 individual FC networks. After
extensive experimentation, we conclude that tuning the FC-
based policy becomes significantly difficult and cumbersome as
the time horizon of the task increases. On the other hand, tuning
our proposed LSTM-based policy was equivalent to that for
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the cart-pole and pendulum experiments. Moreover, the shared
weights across all time steps results in faster build-times and
run-times of the TensorFlow computational graph. As seen in
the figures (8-10) from our experiments, the performance of the
LSTM-based policies surpassed that of the FC-based policies
(especially for the attitude states) due to exploiting long term
temporal dependence and ease of tuning.

VI. CONCLUSIONS

In this paper, we proposed the Deep FBSDE Control algo-
rithm that utilizes fully connected and recurrent layers based on
the LSTM network architecture. The proposed algorithm solves
finite time horizon Stochastic Optimal Control problems for
nonlinear systems with control-affine dynamics and constraints
in the controls.

The architectures presented in this paper can be extended in
many different ways, some of which include:

« Risk-Sensitive and Min-Max Stochastic Optimal Con-
trol: This type of Stochastic Optimal Control problems re-
sult in the so-called Hamilton-Jacobi-Bellman-Isaacs PDE.
The min-max formulations are typically used to model
stochastic disturbances with unknown mean. Solving these
SOC problems will result in robust policies in robotics.

« Stochastic Optimal Control of systems with generalized
stochasticities: For systems with Lévy and jump-diffusion
noise, the resulting HJB equation is a partial-integro-
differential equation. Stochastic models that include jump-
diffusions could be used to model wind-gust or ground
forces in terrestrial vehicles.
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Fig. 9: Quadcopter states. Top Left: Roll Angle; Top Right:
Roll Velocity; Middle Left: Pitch Angle; Middle Right: Pitch
Velocity; Bottom Left: Yaw Angle; Bottom Right: Yaw Velocity.
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Fig. 10: Quadcopter controls.

o Non-affine control dynamics: Very often in robotics
dynamics are represented by function approximators such
as DNNs or Gaussian Processes (GPs). This choice results
in dynamics that are non-affine in controls. A potential
new direction is to generalize the Deep FBSDE Control
algorithm for such representations.
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