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Optimal Covariance Control for Stochastic
Systems Under Chance Constraints

Kazuhide Okamoto, Maxim Goldshtein, and Panagiotis Tsiotras

Abstract—This letter addresses the optimal covariance
control problem for stochastic discrete-time linear sys-
tems subject to chance constraints. To the best of our
knowledge, covariance steering problems with probabilis-
tic chance constraints have not been discussed previously
in the literature, although their treatment seems to be a
natural extension. In this letter, we first show that, unlike
the case with no chance constraints, the covariance steer-
ing problem with chance constraints cannot be decoupled
to mean and covariance steering sub-problems. We then
propose an approach to solve the covariance steering prob-
lem with chance constraints by converting it to a convex
programming problem. The proposed algorithm is verified
using a numerical example.

Index Terms—Stochastic systems, stochastic optimal
control, uncertain systems.

[. INTRODUCTION

N THIS letter we address the problem of finite-horizon

stochastic optimal control for a discrete-time linear time-
varying stochastic system with a fully-observable state, a given
Gaussian distribution of the initial state, and a state and
input-independent white-noise Gaussian diffusion with given
statistics. The control task is to steer the system state to the
target Gaussian distribution, while minimizing a state and con-
trol expectation-dependent cost. In addition to the boundary
condition, in the aim of adding robustness to the controller
under stochastic uncertainty, we consider chance constraints,
restricting the probability of violating the state constraints to
be less than a pre-specified threshold.

Since the Gaussian distribution can be fully defined by
its first two moments, this problem can be described as a
finite-time optimal mean and covariance steering problem of a
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stochastic time-varying discrete linear system, with a bound-
ary conditions in the form of given initial and final mean and
covariance, and with constraints on the trajectory in the form
of a probability function.

The chance-constrained optimal covariance control problem
is relevant to a wide range of control and planning tasks,
such as decentralized control of swarm robots [1], closed-loop
cooling [2], and others, in which the state is more naturally
described by its distribution, rather than a fixed set of values.
In addition, this approach is readily-applicable to a stochastic
MPC framework [3].

The problem of controlling the state covariance of a lin-
ear system goes back to the late 80s. The so-called covariance
steering (or “Covariance Assignment”) problem was first intro-
duced by Hotz and Skelton [4], where they computed the
state feedback gains of a linear time-invariant system, such
that the state covariance converges to a pre-specified value.
Since then, many works have been devoted to this problem
of infinite-horizon covariance assignment, both for continuous
and discrete time systems [5]-[9]. Recently, the finite-horizon
covariance control problem has been investigated by a num-
ber of researchers [10]-[13], relating to the problems of
Shrodinger bridges [14] and Optimal Mass Transfer [15].
Others, including our previous work [16], showed that the
finite covariance control problem solution can be seen as a
LQG with a particular terminal weights [16], [17], which can
be also formulated (and solved) as an LMI problem [18]-[20].

The chance-constrained optimization has been extensively
studied since 50’s, with the purpose of system design with
guaranteed performance under uncertainty [21]. A stochastic
model-predictive control design with a chance-constraints has
been solved using various techniques (see [22] for an extensive
review).

This letter contributes to this line of work by adding chance
state constraints to the underlying stochastic optimal covari-
ance steering problem. The covariance control problem is
reformulated as a convex optimization problem, with a deci-
sion variable that is quadratic in the cost function. To the best
of the authors’ knowledge, this letter is the first that solves
the covariance-steering problem with chance constraints.

Il. PROBLEM STATEMENT
A. Problem Formulation

We consider the following discrete-time stochastic linear
system (possibly time-varying) with additive uncertainty,

X1 = Agxg + Biuyg + Dypwy, (D

2475-1456 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



OKAMOTO et al.: OPTIMAL COVARIANCE CONTROL FOR STOCHASTIC SYSTEMS UNDER CHANCE CONSTRAINTS 267

where k = 0,1,...,N — 1 is the time step, x € R™ is the
state, u € R is the control input, and w € R is a zero-mean
white Gaussian noise with unit covariance, that is, E[w;] =0
and E[wy, w,—;] = 1,0k, k,- We assume that E[xklwlj;] =0 for
0 < ki < kp < N. The initial state x¢ is a random vector
drawn from the normal distribution

xo ~ N (ro, o), ()

where g € R™ is the initial state mean and Xg € R™*™

is the initial state covariance. We assume that Yo > 0. Our
objective is to steer the trajectories of the system (1) from this
initial distribution to the terminal Gaussian distribution

xy ~ N(un, Zy), 3)

where uy € R™ and Xy € R™ ™ with Xy > 0, at a given
time N, while minimizing the cost function

‘](xo’ AR 7‘xN717 uo’ AR uN*l)
N—1
= E[Zx,?gkxk + u,}”Rkuk}, )
k=0

where Oy > 0 and Ry > O for all k=0,1,...,N — 1.

The objective is to compute the optimal control input, which
ensures that the probability of the state violation at any given
time is below a pre-specified threshold, say,

Pr(x; ¢ x) < Ptail, k=1,...,N, &)

where Pr() denotes the probability of an event, y C R"™ is the
state constraint set, and Pg,;; € [0, 1] is the threshold for the
probability of failure. Optimization problems with these types
of constraints are known as chance-constrained optimization
problems [23]. In this letter, we assume for simplicity that x
is convex, but chance-constraints with non-convex constraints
are also possible (see [24]).

It is assumed that the system (1) is controllable, that is,
given any xy € R™ and xp € R, and provided that wy = 0
for k =0,...N — 1, there exists a sequence of control inputs
{uk}ivgol that steers xg to xy.

B. Preliminaries

We provide an alternative description of the system dynam-
ics in (1) that will be instrumental for solving the covariance
sterring problem. The notation below is borrowed from [16].
Let Ak, kg» Bk, ko> and Dy, r,, Where k1 > ko, denote the transi-
tion matrices of the state, input, and the noise term from step kg
to step ki, respectively, as follows Ag, x, = Ak Ak —1 - Aky»
By, kg = Aky ko+1Bkgs Diy kg = Aky kg+1Dk,- We define the
augmented vectors Uy € R&TDm and W, e RU&FDmw g
U, = luo, ug, ..., uk]T and W = [wo,wy,..., Wk]T. Then
X can be, equivalently, computed from

Xk = Agxo + Br Uy + Dy W, (6)

where Ay = Ar_1,0, Bx = [Bk-1,0,Bk-1,1,--.,Bik—1], D =
[Dk-1,0, Dk—1.1, - . ., Dx—1]. Furthermore, we introduce the
augmented state vector X € R&+tDn a5 follows X =
[X0, X1, - .., xx] . It follows that the system dynamics (1) take
the equivalent form

X = Axg + BU + DW, @)

where X = Xy € RV D Uy = Uy_; € RMu and
W = Wy_; € RV and the matrices A4 € R®FDuexn
B € RNVFDnxNm - and D e RW+DnxNmy are defined in [16].

Note that E[xoxj] = 2o + worg. ElxoW'] = 0, and
EWWT] = Iny,,. Using the previous expressions for X and
U, we may rewrite the objective function in (4) as follows

JX,U) = ]E[XTQX + UTRU], (8)

blkdiag(Qo, O1,...,0On-1,0) and R =
.»Ry—1). Note that, since Oy > 0 and
1, it follows that Q > O

where Q0 =
blkdiag(Ry, Ry, . .
Ry = Oforall k =0,1,...,N —
and R > 0.

The boundary conditions (2) and (3) take the form

wo = EoE[X], (%a)
%o = E()(IE[XXT] - E[X]]E[X]T)EOT , (9b)
and
un = ENE[X], (10a)
Sy = Ex (E[XXT] — E[X]E[X]T)E;, (10b)
where Ey £ [I,,0,...,0] € Rw*WV+Dm and Ey 2
[0,...,0,1,] € R=*WN+Dn regpectively. Finally, the chance
constraints (5) can be rewritten as
Pr(X ¢ X) < P, (11)

where X ¢ RVFDnx is a convex set.

The objective of this letter is to solve the following problem.

Problem 1: Given the system (7), find the control sequence
U* that minimizes the cost function Eq. (8) subject to the
initial state constraints (9), the terminal state constraints (10),
and the chance constraint (11).

In Section IV we show how to solve Problem 1 by convert-
ing it to a convex programming problem. Before doing that,
we first investigate the case without chance constraints.

IIl. NO CHANCE CONSTRAINT CASE

Before discussing the general case with chance con-
straints, in this section we briefly revisit the case without
chance constraints and show that, similarly to the work by
Goldshtein and Tsiotras [16], where the authors considered
the case with minimal control effort (Q = 0, R=1),itis pos-
sible to separately solve the mean and the covariance steering
optimization problems, even with the more general £;-norm
objective function of equation (4).

A. Separation of Mean and Covariance Problems

It follows immediately from Eq. (6) that

pk = Elxi] = Ao + B Uy, (12)
where Uy = E[Uy]. Furthermore, by defining Uy £ Uy —
U, 5 2 x — Wk, and using (6), we have that

% = AxXo + Br Uy + Dy W. (13)

Furthermore,
i 2 El%%, 1 = AdR[RoXg 14 + AE[% U, 1B]
+ BELU, 1A] + BE[U U] 1B}
+ DKE[WiW[ 1D} + Dy E[Wi— U] 18]
+ BELOW, 1D/, (14)
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Note that the evolution of the mean uy from (12) depends
only~ on Uy, whereas the evolution of X; and ¥; depend solely
on Uy and Wj. It follows from Eqs. (7) and (12) that

X £ E[X] = Auo + BU, (15)
and from (13) that
X 2 X — E[X] = AXy + BU + DW. (16)

The objective function (8) can also be rewritten as J(X, U) =

E[X'0X+U'RU] = w(QE[XX )+ XTOX +tr(RE[UU]) +

U'RU,=J,(X, U) +Js (X, U), where
JuX,U0)=X"0X+ U"RU, (17)
T X, 0 = tr(QE[i(f(T]) + tr(RJE[f]UT]), (18)

and where tr() denotes the trace of a matrix. It follows that the
original optimization problem in terms of (X, U) is equivalent
to two separate optimization problems in terms of (X, U) and
(X, U) with optimization costs (17) and (18), respectively.

We have therefore shown the following result.

Proposition 1: Let the system (7), the initial and terminal
state constraints (2) and (3), and the objective function (4). The
control sequence U* that solves this optimization problem is
given by U* = U* + U*, where U* solves the mean steering
optimization problem

MS mm(X U)J (X U)=XT Q)_(—i— UTRU .
subject to X = Aug 4+ BU, EoX = o, EnX = uy,

19)
and U* solves the covariance steering optimization problem

ming 5, JsX, U) = tr(QEIXX]) + t(RE[TT]),
CS{ subject to X £ X — E[X] = A% + BU + DW
E()XXTE(—)F = X, EnXXTE) = =y.
(20)

The rest of this section introduces the methods to solve these
two subproblems.

B. Optimal Mean Steering

The solution to the optimal mean steering subproblem is
summarized in the following proposition. Note that we assume
a general (nonzero) mean.

Proposition 2: The optimal control sequence that solves the
optimization problem (19) is given by

=R (BTQAMO +BY(ByR By
(ix = Avio = BYR™'BT0A)),  (21)

where R = (BTOB +R).

Proof- Since the terminal constraint is uy = EnxX =
ANuo + ByU we can write the Lagranglan as E(U A) =
XTOX + UTRU + A" (uy — Avpo — ByU) = (Apo +
BU)TO(Aug + BU) + UTRU + 1" (uy — Aypo — ByD),
where A € R™. The first-order optimality condition yields
VoL =2BT0B+RU +2BT QAo — ByA = 0. Thus,

U =R B QAo + 1Bin), (22)

where R = (BT QB + R) is invertible because of the second-
order optimality condition V7L = BTOB+R > 0. In order
to find the optimal value of A we substitute equation (22) into
the terminal constraint to obtain

IBNR IBT)» = UN — AN/,L() — BNR_IBTQAMO. (23)
Note that rank(ByR~'B}) = rank(R~1/2B}). Also, since the
system is controllable, it follows that rank(By) is full row rank,
that is, rank(By) = n, [16]. In addition, since R is invertible,
rank(R~/%) = Nn,. It follows from [25, Corollary 2.5.10]
that rank(R~!/?) + rank(B}) — Nn, < rank(R™Y2B)) <
min{rank(R~1/2), rank(B;Vr)} and n, < rank(BNR_IBN) <
min{Nn,, ny} = n,. Thus, the matrix (BNR_lB;,) is full rank
and invertible. Therefore,

A=2ByR'B{)™! (MN — Anpo — BNRABTQAMO)‘

By substituting in (22) the expression for the optimal mean
steering controller, the expression (21) follows. |
By comparing (21) with the corresponding controller in [16]
we have the following immediate result.
Corollary 1: The minimum-effort mean-steering optimal
controller introduced in [16] is a special case of the optimal
controller (21) with Q =0, R =1 in (21).

C. Optimal Covariance Steering

While many previous works have attempted to solve the
optimal covariance-steering problem, the majority of them
solve this problem subject to a minimum effort cost func-
tion. Bakolas [19] addressed the case with the more general
£-norm cost function Eq. (4) (and zero mean). He also intro-
duced a convex relaxation to change the terminal constraint to
an inequality as follows

EN(E[XXT] _ ]E[X]E[X]T)E; < Tn. (24)

By making the problem convex, it can be efficiently solved
using standard convex programming solvers. At the same time,
but independently, Halder and Wendel [17] solved a problem
with a similar terminal covariance constraint using a soft con-
straint on the terminal state covariance under continuous-time
dynamics.

IV. CHANCE CONSTRAINED CASE

This section introduces the proposed approach to solve the
covariance steering problem with chance constraints as stated
in Problem 1.

A. Proposed Approach

First, we assume that, at each time step, the control input is
represented as follows u; = Zk[lT x(—)r, x?, ... ,x/;'—]T, where
Tp, =I[1,...,1]1T € R™ and ¢ € Rruxne(k42), Thus, we may

write the relationship between X and U as follows

U=ILX, 25)

where X = [lIx,XT]—r e RN+ is the augmented state
sequence until step N and L € RNwXN+2ne js the control
gain matrix. In order to ensure that the control input at time
step k depends only on x; for i = 0,1,...,k (so that the
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control input U is causally related to the state history, that is,
it is non-anticipative) the matrix L has to be of the form

L=[L,, Lx], (26)

where L; € RVwXx and Ly € RNuxN+Dne is 3 Jower block
triangular matrix. Using L in (26) we convert the problem
from finding the optimal control input sequence U* to one of
finding the optimal control gain matrix L*. It follows from (7)

that
I, 0||1n, 0 0
x=[% 4[]+ (] [o]w

and hence

27

X = (I — BL)"'(AX, + DW), (28)
where Xo = [1,], xJ 1T, A = blkdiag(l,,,, A), B=[0, B']",

ny’

D =1[0, DT]". Note that (I — BL) is invertible because

0 0 0
BL = |:Bi| L1, Lx] = |:BL1 BinI'

Since BLy is strictly lower-block triangular, BL is also strictly
lower-block triangular.! Using X from (28), the objective
function (8) can be written as

(L) = ]E[(AXO +DW) U —BL) TQU - BL)™!

(29)

(AX, + DW) + XTLTRLX],

where Q = blkdiag(0, Q). Note that Q > 0. Similarly to [19],
we introduce the new decision variable K such that

K2L1—-BL)™". (30)

It follows that 7 + BK = (I — BL)~!. Then, X and U can be
rewritten as

X = (I + BK)(AX( + DW), (31)
U = K(AXo + DW). (32)

Before continuing, we show that K defined in (30) is
lower block triangular. This ensures that the resulting U is
non-anticipative.

Lemma 1: Let L be defined as in Eq. (26), let B be a strictly
lower block triangular matrix, and let / be an identity matrix
with proper dimensions. Then, K defined as in Eq. (30) can
be represented as K = [K1 Kx], where K; € RNVmuXnx and
Ky € RNmux(N+Dny s Jower block triangular.

Proof: The proof is straightforward and thus it is
omitted. |

We may now prove the following result.

Proposition 3: Let X and U as in (31), the objective
function (8) and the boundary conditions

1, 0, 0,
=t me=|m -0
Ko I:Moi| 0 |:Onv( 20i| =

Then, the objective function (8) takes the form

(33)

J(K) = u( (4 +BK)TQU + BK) + K"RK)
(.A(,IL()IL()T + %) AT + DDT)). (34)
which is a quadratic expression in K.

Ia strictly lower-block triangular matrix is a lower-block triangular matrix
with zero matrices on the diagonal elements.

Proof: The proof follows easily by using (31) in the objec-
tive function (8), expanding and performing the necessary
algebraic manipulations. |

B. Conversion of Chance Constraints to Deterministic
Inequality Constraints

We assume that the feasible region X is defined as an
intersection of M linear inequality constraints as follows

M
XE(X:o/X <8,
j=1

where o; € R¥*2% and B; € R with j = 1,2,..., M. Thus,
the chance constraint (11) is converted to

(35)

Pr(e; X>B) <p;. j=1....M, (36a)
M
ij < Phail. (36b)
j=1
Using the Boole-Bonferroni inequality [26],

Blackmore and Ono [27] showed that a feasible solu-
tion to the problem (35)-(36) is a feasible solution to
the original chance-constrained problem. Note that the
constraint (36a) can also be written as

Pr(e; X < ) = 1 —pj. (37)

As a result, ajTX is a univariate Gaussian random variable
such that o/ X ~ N (oij)_(, o Txa)). where X = E[X] = (I +
BK)Apg, and £x = (I +BK)(AZ)AT + DD ") (I +BK)'.
It follows from inequality (37) that

,Bj — OleX

T .
\ /ozj Xxo;

where @ is the cumulative distribution function of the stan-
dard normal distribution, which is a monotonically increasing
function. Thus,

_oTX
!

T .
VY X9

where ®~! is the inverse of ®. Therefore,

Tx / -1
o X — B+ aJTZonj P (1 —pj) <0.

Previous works [27]-[29] assumed some prior knowledge
about the covariance Xx, enabling Eq. (40) to be a linear
inequality constraint. However, as we are interested in the
covariance steering problem, we cannot assume any prior
knowledge of Xx.

Theorem 1: Let X and Xx as before, and let u, and X
as in (33). With the assumption, ¥ > 0, the inequality con-
straint (40) is converted to the inequality constraint ajT +
BK)Apg — Bill(AZ0 AT + DD )21+ BK) Tey| @71 (1 -
pj) <0.

Proof: Since X > 0, it follows that Xy > 0 and AEOAT+
DDT > 0. Therefore, the expression for Xx yields ¥x = (I+
BK)(AZ) A" + DD")2(AZ) AT + DD 2(1 + BK) T,
and (40) can be rewritten as oijX— ﬂj—l—ajT (I+BK)(AZo AT+

(39)

(40)
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DD 2(AT)AT +DD )21 +BK) Tap)2 &1 (1—p)) <
0. Note that since (AXoA" +DD")/2(I + BK) o is a
vector, one obtains that o] X—gj+[|(AZo AT +DD ") /2(1+
BK)Tclel o1 —pj) <0, where || - || denotes the 2-norm of
a vector. The result then follows easily. |

The inequality constraint in Theorem 1 is a bilinear con-
straint, which makes it difficult to efficiently solve this
problem. Thus, we convert the chance constraints (36) as
follows

Pr("‘jTX > ) = pj tail, ji=1,...M, (41a)
M
ij,fajl < Pgal. (41b)

j=1

Note that, unlike p;, the pj faj1 is not a decision variable but a
pre-specified value satisfying inequality (41b). This alternative
formulation implies the specification of the maximum collision
probability with each obstacle at each time step a priori.

In summary, the chance constraints are formulated as
follows.

o (I + BK)Apg + |(AZgAT + DDT)!/?

(I +BK) o @7 (1 — pjait) — Bj < 0. (42)

Unlike the case described in Section III, where no chance
constraints exist, we cannot decouple the mean and covariance
steering problems owing to (42).

C. Terminal Gaussian Distribution Constraint

As discussed in Section III-C, the terminal covariance con-
straint (10b) is not convex. We therefore relax this constraint
to the inequality constraint [19]

Eliyiy] < . (43)

This condition implies that the covariance of the terminal
state is smaller than a pre-specified Xy, which is a reason-
able assumption in practice. This change of terminal constraint
relaxes the chance-constraint requirement for Xy as well.
Namely, if upy is inside the feasible region, X can have any
value as long as it is positive definite. We are now ready to
prove the following result.

Proposition 4: The terminal constraints (10a) and (43) can
be formulated as

un = Ex(I + BK)Ap,,
—12

1 - I(AZ0AT + DDNH2(1 + BK)TES =y |l = 0,

where Ey £ [Onx EN].

Proof: Tt follows from the expressions of X and Tx
that E[xy] = Enx(I + BK)Ap,, and E[iyiy] = Ey( +
BK)(AZg A" + DD ")(I + BK)E},. Using inequality (43),
it follows that the previous expression results in the following
inequality constraint, which is convex in K

Ex(I + BK)(AS)AT + DD)(I + BK) E} < Sy.  (44)

Since by assumption Xy > 0, inequality (44) becomes I, —
»y PEn(I+BK)(AS) AT +DDT)(I+BK)TE[=y'* = 0.

Being symmetric, the matrix E];l/ 2EN(I + BK)(AZ AT +

DD+ BK)'E] =y 1/2 is diagonalizable via an orthogo-
nal matrix S € R Thus, S(I,, — diag(Ay, ..., A, ))ST >
0, where Aq,...,A, are the eigenvalues of E;l/ Ev{ +
BK)(AZ0 AT +DD ) (I +BK)TE] =y "/, The last inequal-

2ENT + BK)(AZ AT +
DDHYU + BK)TE;, 21;1/2) > 0. An easy calculation shows
that this inequality is equivalent to

1 - |(AZ0 AT + DD 21+ BK)TE, =y, *)1% = 0,
(45)

ity is implied by 1 — Amax(Zy

thus completing the proof. |

V. NUMERICAL SIMULATIONS

In this section we validate the proposed algorithm using
a simple numerical example. We use CVX [30] with
MOSEK [31] to solve the relevant optimization problems.
Note that the structure of K from Lemma 1 enters as a
constraint in the resulting optimization problem.

We consider the path-planning problem for a vehicle under
the following time invariant system dynamics with x; =
[x, ¥, vy, vy]T e R*, w = [ay, ay]T € R%, wy € R* and

1 0 At 0 AP0
|0 1 0 At _ | 0 aAr
A=lo 0 1 ol B=|a o | ©O
0 0 0 1 0 At

and D = diag(0.01, 0.01, 0.01, 0.01), where At = 0.2 is the
time-step size. Figure 1(a) illustrates the problem setup. The
red circle denotes the 30 error of the initial state distribution
of x and y coordinates. The magenta circle denotes the 3o
error of the terminal state distribution of x and y coordinates.
Specifically, the initial condition is ug = [—10, 1,0, 0] and
Yo = diag(0.1, 0.1, 0.01, 0.01), while the terminal constraint
is uy =1[0,0,0,0] and Zy = 0.5%.

The green dotted lines illustrate the state constraints given
by 02(x — 1) < y < —0.2(x — 1). The vehicle has to
remain in the region between the two lines while moving
from the red to the magenta regions. Such a “cone”-shaped
constraint is seen in many engineering applications, e.g., the
instrument landing for aircraft, spacecraft rendezvous, and
drone-landing on a moving platform. The probabilistic thresh-
old for the violation of the chance constraints was specified
a priori, as pjfi = 0.0005 for j = 1,2,...,2(N + 1)
with horizon N = 20. The objective function weights are
Qi = diag(10, 10,1, 1) and Ry = diag(10%, 10%). This prob-
lem is infeasible if we do not control the state covariance.
See, for example, Figure 1(b), which shows the results using
only the mean steering controller (21). As the covariance
grows, it is impossible to find a feasible solution to this prob-
lem that will guarantee the satisfaction of chance constraints.
The case without chance constraints imposed is illustrated in
Fig. 2(a). By introducing covariance steering, the uncertainty
of the future trajectory is successfully reduced but, nonethe-
less, it violates the constraint. Finally, Fig. 2(b) illustrates the
results of the proposed chance-constrained covariance steering
approach. The error ellipse successfully changed its shape to
avoid collision with the constraints while maintaining the ter-
minal covariance constraints to be less than the pre-specified
state covariance bound.
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Fig. 1. (a) Problem setup; (b) Mean steering.
Trajectory Trajectory
4 4

-2 2
-4 -4
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X X
(@) (®)
Fig. 2. (a) Covariance steering results without chance constraints;

(b) Covariance steering results with chance constraints.

VI. SUMMARY

This letter has addressed the problem of optimal steering
of the covariance for a stochastic linear time-varying system
subject to chance constraints in discrete time. We showed
that if there are no chance constraints, one can indepen-
dently design the mean and covariance steering controllers.
It is shown that the optimal covariance steering problem
with chance constraints can be cast as a convex program-
ming problem. The proposed approach was verified using
numerical examples. Future work will investigate the applica-
tions of the proposed approach to stochastic model predictive
controllers.

REFERENCES

[1] S. Shahrokhi, A. Mahadev, and A. T. Becker, “Algorithms for shaping a
particle swarm with a shared control input using boundary interaction,”
arXiv preprint arXiv:1609.01830, 2016.

[2] A. Vinante et al., “Feedback cooling of the normal modes of a mas-
sive electromechanical system to submillikelvin temperature,” Phys. Rev.
Lett., vol. 101, no. 3, 2008, Art. no. 033601.

[3] M. Farina, L. Giulioni, L. Magni, and R. Scattolini, “A probabilis-
tic approach to model predictive control,” in Proc. IEEE Conf. Decis.
Control, Florence, Italy, Dec. 2013, pp. 7734-7739.

[4] A. F. Hotz and R. E. Skelton, “A covariance control theory,” in
Proc. IEEE Conf. Decis. Control, vol. 24. Fort Lauderdale, FL, USA,
Dec. 1985, pp. 552-557.

[5] T. Iwasaki and R. E. Skelton, “Quadratic optimization for fixed order
linear controllers via covariance control,” in Proc. Amer. Control Conf.,
Chicago, IL, USA, Jun. 1992, pp. 2866-2870.

[6] J.-H. Xu and R. E. Skelton, “An improved covariance assignment the-
ory for discrete systems,” IEEE Trans. Autom. Control, vol. 37, no. 10,
pp. 1588-1591, Oct. 1992.

[71 K. M. Grigoriadis and R. E. Skelton, “Minimum-energy covariance
controllers,” Automatica, vol. 33, no. 4, pp. 569-578, 1997.

[8] A. Hotz and R. E. Skelton, “Covariance control theory,” Int. J. Control,
vol. 46, no. 1, pp. 13-32, 1987.

[9] E. Collins and R. Skelton, “A theory of state covariance assignment
for discrete systems,” IEEE Trans. Autom. Control, vol. AC-32, no. 1,
pp. 3541, Jan. 1987.

[10] Y. Chen, T. T. Georgiou, and M. Pavon, “Optimal steering of a linear
stochastic system to a final probability distribution, part I,” IEEE Trans.
Autom. Control, vol. 61, no. 5, pp. 1158-1169, May 2016.

[11] Y. Chen, T. T. Georgiou, and M. Pavon, “Optimal steering of a linear
stochastic system to a final probability distribution, part II,” IEEE Trans.
Autom. Control, vol. 61, no. 5, pp. 1170-1180, May 2016.

[12] Y. Chen, T. T. Georgiou, and M. Pavon, “Optimal steering of a linear
stochastic system to a final probability distribution, part Il1,” IEEE Trans.
Autom. Control, to be published, doi: 10.1109/TAC.2018.2791362

[13] J. Ridderhof and P. Tsiotras, “Uncertainty quantication and control
during Mars powered descent and landing using covariance steering,”
in Proc. AIAA Guid. Navigat. Control Conf., Kissimmee, FL, USA,
Jan. 2018, p. 0611.

[14] E. Schrodinger, Uber die Umkehrung der Naturgesetze. Verlag
Akademie der Wissenschaften in Kommission bei Walter de Gruyter
u. Company, Berlin, Germany, 1931.

[15] L. V. Kantorovich, “On the transfer of masses,” Dokl. Akad. Nauk. SSSR,
vol. 37, nos. 7-8, pp. 227-229, 1942.

[16] M. Goldshtein and P. Tsiotras, “Finite-horizon covariance control of
linear time-varying systems,” in Proc. IEEE Conf. Decis. Control,
Melbourne, VIC, Australia, Dec. 2017, pp. 3606-3611.

[17] A. Halder and E. D. B. Wendel, “Finite horizon linear quadratic Gaussian
density regulator with Wasserstein terminal cost,” in Proc. Amer. Control
Conf., Boston, MA, USA, Jul. 2016, pp. 7249-7254.

[18] E. Bakolas, “Optimal covariance control for stochastic linear systems
subject to integral quadratic state constraints,” in Proc. Amer. Control
Conf., Boston, MA, USA, Jul. 2016, pp. 7231-7236.

[19] E. Bakolas, “Optimal covariance control for discrete-time stochastic lin-
ear systems subject to constraints,” in Proc. IEEE Conf. Decis. Control,
Las Vegas, NV, USA, Dec. 2016, pp. 1153-1158.

[20] E. Bakolas, “Finite-horizon covariance control for discrete-time stochas-
tic linear systems subject to input constraints,” Automatica, vol. 91,
pp. 61-68, May 2018.

[21] A. Geletu, M. Kloppel, H. Zhang, and P. Li, “Advances and applica-
tions of chance-constrained approaches to systems optimisation under
uncertainty,” Int. J. Syst. Sci., vol. 44, no. 7, pp. 1209-1232, 2013.

[22] M. Farina, L. Giulioni, and R. Scattolini, “Stochastic linear model pre-
dictive control with chance constraints—A review,” J. Process Control,
vol. 44, pp. 53-67, Aug. 2016.

[23] A. Mesbah, “Stochastic model predictive control: An overview and
perspectives for future research,” IEEE Control Syst., vol. 36, no. 6,
pp. 30—44, Dec. 2016.

[24] M. Ono, L. Blackmore, and B. C. Williams, “Chance constrained finite
horizon optimal control with nonconvex constraints,” in Proc. Amer:
Control Conf., Baltimore, MD, USA, Jun./Jul. 2010, pp. 1145-1152.

[25] D. S. Bernstein, Matrix Mathematics: Theory, Facts, and Formulas,
vol. 41, 2nd ed. Princeton, NJ, USA: Princeton Univ. Press, 2009.

[26] A. Prékopa, “Boole-Bonferroni inequalities and linear programming,”
Oper. Res., vol. 36, no. 1, pp. 145-162, 1988.

[27] L. Blackmore and M. Ono, “Convex chance constrained predictive con-
trol without sampling,” in Proc. AIAA Guid. Navigat. Control Conf.,
Chicago, IL, USA, Aug. 2009, p. 5876.

[28] L. Blackmore, M. Ono, and B. C. Williams, “Chance-constrained opti-
mal path planning with obstacles,” IEEE Trans. Robot., vol. 27, no. 6,
pp. 1080-1094, Dec. 2011.

[29] A. Carvalho, Y. Gao, S. Lefevre, and F. Borrelli, “Stochastic predictive
control of autonomous vehicles in uncertain environments,” in Proc. Int.
Symp. Adv. Veh. Control, Tokyo, Japan, 2014, Sep. 22-26.

[30] M. Grant and S. Boyd. CVX: MATLAB Software for Disciplined Convex
Programming, Version 2.1. Accessed: Mar. 2014. [Online]. Available:
http://cvxr.com/cvx

[31] MOSEK ApS. (2017). The MOSEK Optimization Toolbox for MATLAB
Manual, Version 8.1. [Online]. Available: http://docs.mosek.com



