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It has recently been shown that minimum-fuel powered descent guidance can be solved
onboard the spacecraft as a convex optimization problem. It therefore presents itself as a
promising technology to enable future planetary exploration missions. However, since this
approach is formulated as a deterministic optimal control problem, the resulting guidance
law is only designed for a single pair of initial and target states without external distur-
bances. This paper is an attempt to extend this approach to the more general case of
steering the initial position and velocity distributions to some target position and velocity
distributions, while considering Brownian motion process noise acting on the system. It is
shown that when using a stochastic model for powered descent, the design of the reference
trajectory is coupled with the closed-loop control law through probabilistic constraints on
the control.

I. Introduction

Entry, Descent, and Landing (EDL) is the process of a spacecraft entering a planet’s atmosphere, decel-
erating from orbit, and descending to a safe landing site on the planet’s surface. Atmospheric disturbances,
localization error, and other factors contribute to substantial deviations from the nominal descent trajectory,
which must be accounted for when selecting a landing target. This work focuses on the Powered Descent
(PD) phase, during which the spacecraft uses chemical rocket engines to simultaneously steer and decelerate
to a target touchdown point.

In recent works,1,2 Powered Descent Guidance (PDG) has been posed as a convex optimization problem,
a formulation that has several major benefits.3 By selecting total fuel consumption as the cost function,
powered descent trajectories ensure fuel-optimality, in contrast to the polynomial method used on Mars
Science Laboratory (MSL).4 Both control and path constraints can also be explicitly considered in a convex
formulation, whereas in previous missions, constraints were satisfied by restricting admissible maneuvers to
well-behaved and simple scenarios.5 Since a convex optimization program can be guaranteed to converge
to the unique solution within a given accuracy in a finite number of iterations, it is suitable for onboard
implementation. For these reasons, NASA has cited convex optimization as a potential next-generation
solution for powered descent guidance for Mars missions.6

The convex programming approach, however, is based on a deterministic model of the dynamics of the
powered descent phase of the mission, and therefore it is only designed to steer a single initial state to the
target. In practice, the initial state is not a single point, but rather it is a random variable described by a
distribution. Furthermore, if an unmodeled external force disturbs the spacecraft from its nominal trajectory,
the deterministic guidance law includes no notion of how this disturbance will impact the final state. One
solution to this problem is to continuously recompute, on-the-fly, a new optimal trajectory to be followed
by the guidance subsystem. This method of closing the loop, while successful, is not explicitly included
in the mathematical model of the guidance system. As a consequence, results from the analysis using the
deterministic model, such as satisfaction of constraints, may not perform satisfactorily when applied to the
real system.

With these limitations in mind, we propose in this paper a stochastic extension to the convex programming
approach for PDG. The spacecraft’s position and velocity is modeled as a normally distributed random
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variable with Brownian motion process noise acting as an external disturbance force. The initial and target
points from the deterministic case are generalized to initial and target normal distributions. We use recent
results from stochastic optimal control theory, referred to as Covariance Steering (CS),7–11 to compute the
required feedback of deviations from a reference trajectory to control the position and velocity covariances.

Two important physical constraints during powered descent are the minimum and maximum engine
throttle limits. In a deterministic setting, it can be shown from the Minimum Principle that the fuel-optimal
throttle setting is necessarily on either the minimum or maximum limit. If the state is, instead, a random
variable, the closed-loop control becomes a random variable as well. The situation then becomes more
complicated, since the statistics of the control variable depend on the reference (mean) control, the state
covariance, and the feedback gain. This issue is addressed in this paper by setting reference control throttle
bounds as a function of the closed-loop control covariance.

The organization of this paper is as follows. In Section II, we introduce a stochastic model for powered
descent and show that, under certain assumptions, the dynamics can be separated into a deterministic
mean component and a stochastic deviation from the mean. In Section III, we formulate the stochastic
PDG problem, and then in Section IV, the probabilistic throttle constraint is analyzed and a conservative
relaxation is proposed. We then review the problems of mean and covariance steering in Sections V.A and
V.B. In Section V.C we extend the linear covariance steering theory to handle uncertain mass that enables a
simple Covariance Steering Powered Descent Guidance (CS-PDG) algorithm suitable for onboard use, which
is presented in Section V.D. Finally, this approach is demonstrated in a numerical simulation in Section VI.

A. Notation

Let ‖·‖ be the Euclidean norm on Rn, and let E[f(x)] be the expectation of a function of a random variable
x, and denote the mean of a random vector x by E[x] = x̄ and the difference from the mean as x̃ = x− x̄. We
write the covariance of a normally distributed random vector x as Px = E[x̃x̃T], and we write x ∼ N (x̄, Px)
to denote that x is normally distributed with mean x̄ and covariance Px. For a square matrix A, we write
A > 0 (≥ 0) if A is positive (semi-)definite, i.e., xTAx > 0 (≥ 0) for all nonzero real vectors x.

II. System Model

Consider a spacecraft during powered descent modeled as a point-mass with position vector r ∈ R3 in a
surface-fixed inertial frame. The spacecraft motion is modeled by the stochastic differential equation

dṙ = (u/m+ g)dt+ (γ/m)dw, (1)

ṁ = −α ‖u‖ , (2)

where m > 0 is the spacecraft mass, u ∈ R3 is the control thrust, g ∈ R3 is the gravitational acceleration,
and w is a three-dimensional standard Brownian motion scaled by γ > 0. Let x = (r, ṙ), and assume that the
initial state x0 ∼ N (x̄0, Px0) is a six-dimensional normally distributed random vector with known mean x̄0

and known covariance Px0
. Assume that the initial mass m0 > 0 is fixed and known. Furthermore, assume a

given control structure so that at each time the control command is a function of a deterministic feedforward
term and a feedback term that depends linearly on the deviation of x from the mean. By Jensen’s inequality
(Ref. 12, Thm. 7.44), we know that E(‖u‖) ≥ ‖E(u)‖ = ‖ū‖. Assuming that the mean control is much larger
than the deviation we can approximate

E(‖u‖) = E(‖ū+ ũ‖) ≈ ‖ū‖ . (3)

It then follows from Eq. (2) that the mass change is entirely due to the mean control, that is,

ṁ = −α ‖ū‖ . (4)

Since the initial mass is fixed, we conclude that the mass varies deterministically. The mean acceleration
then satisfies the ordinary differential equation

¨̄r = ū/m+ g, (5)

while the deviation from the mean is given by the stochastic differential equation

d ˙̃r = (ũ/m)dt+ (γ/m)dw. (6)
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Assume, for the purposes of analyzing the perturbed system, that the mass is a fixed function of time.
Let K = K(t) be a real-valued 3×6 time-varying gain matrix such that ũ = Kx̃ = K(x− x̄). The perturbed
system (6) can then be written as a linear time-varying stochastic differential equation (dropping explicit
dependence on time for notational simplicity) as follows

dx̃ = (A+BmK)x̃dt+ γBmdw, (7)

where Bm(t) = B/m(t) and

A =

[
0 I

0 0

]
, B =

[
0

I

]
. (8)

Since x̃0 is normally distributed with zero mean, and w is a standard Brownian motion, it follows from Eq.
(7) that x̃ is a zero-mean random process normally distributed with covariance matrix Px = E[x̃x̃T], which
satisfies the matrix differential equation

Ṗx = (A+BmK)Px + Px(A+BmK)T + γ2BmB
T

m, Px(0) = E[x̃(0)x̃T(0)] = Px0
. (9)

It also follows from (7) that the feedback control ũ = Kx̃ is a zero-mean random process with covariance

Pu = E[ũũT] = KPxK
T. (10)

III. Problem Formulation

Our objective is to design a control pair (ū,K) that brings the spacecraft to a soft landing at the origin
at a final time tf > 0, which needs to be determined. Thus, we enforce the endpoint constraints on the mean
and the covariance

x̄(tf ) = 0, Px(tf ) = Pxf , (11)

where Pxf is a fixed symmetric positive-definite matrix.
The mass is constrained from below by the dry mass md > 0 at all times. The glide slope θgs, which is

the angle that the position vector makes with the vertical, is given as a function of the position as follows1

θgs(r) = arctan

(√
r2
2 + r2

3

r1

)
, (12)

where r = (r1, r2, r3) with r1 is along the vertical upward direction, as shown in Figure 1. We constrain the
mean glide slope θgs(r̄) ≤ θgs0 ≤ π/2 by enforcing

‖Sgsx̄‖+ cTgsx̄ ≤ 0, t ∈ [0, tf ], (13)

where

Sgs =

[
0 1 0 0 0 0

0 0 1 0 0 0

]
, cgs =

[
− tan θgs0 0 0 0 0 0

]T
. (14)

The angle the mean control vector ū makes with the vertical is constrained by a maximum pointing cone
angle θpc0 via

‖ū‖ cos θpc0 − eT1ū ≤ 0, t ∈ [0, tf ], (15)

where e1 = (1, 0, 0)T. Let now ρ2 > ρ1 > 0 be fixed bounds on the control magnitude, and let the set

Ω = {z ∈ R3 : ρ1 ≤ ‖z‖ ≤ ρ2}. (16)

We wish to enforce the probability that the random vector u is not in Ω (i.e., the control u violates the
magnitude constraints) be less than β > 0, that is,

Pr(u ∈ Ω) =

∫
Ω

f(z, ū, Pu)dz ≥ 1− β for all t ∈ [0, tf ], (17)

where f is the 3-dimensional Gaussian probability density function given by

f(z, ū, Pu) =
1

(2π)3/2(detPu)1/2
exp

[
− 1

2
(z − ū)TP−1

u (z − ū)

]
. (18)
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Control 
distribution

Initial state 
distribution

Final state distribution

1

2

3

Admissible 
control region

Mean 
trajectory

Glide slope
angle

Figure 1: Powered descent with covariance control.

Subject to the above constraints, we wish to minimize the fuel cost of the mean control

J(ū) =

∫ tf

0

‖ū(t)‖ dt, (19)

by varying the mean (feedforward) control, the time-varying feedback gain matrix, and the final time.
Formally stated, we want to solve the following problem, which we refer to as the Stochastic Powered
Descent Guidance Problem:

min
ū,K,tf

∫ tf

0

‖ū(t)‖ dt (20a)

s.t. ¨̄r = ū/m+ g (20b)

ṁ = −α ‖ū‖ (20c)

dx̃ = (A+BmK)x̃dt+ γBmdw (20d)

x̄(0) = x̄0, m(0) = m0, Px(0) = Px0
(20e)

x̄(tf ) = 0, Px(tf ) = Pxf (20f)

u = ū+Kx̃ (20g)

m(t) ≥ md for all t ∈ [0, tf ] (20h)

‖Sgsx̄(t)‖ − cTgsx̄(t) ≤ 0 for all t ∈ [0, tf ] (20i)

‖ū(t)‖ cos θpc0 − eT1ū(t) ≤ 0 for all t ∈ [0, tf ] (20j)

Pr(u(t) ∈ Ω) ≥ 1− β for all t ∈ [0, tf ] (20k)

Observe that we are only minimizing a deterministic objective function rather than minimizing a linear
combination of the fuel cost and a penalty on the control covariance. We do this because the probabilistic
constraint on the control (20k) introduces a natural coupling between the deterministic and stochastic
problems. As it will be shown in Section A, in the absence of disturbances, the fuel optimal solution has
the property that u ∈ ∂Ω for all time (i.e., the minimum-fuel optimal control problem is bang-bang), and
therefore we adopt the heuristic that a good controller will allow the mean control to get as close to ∂Ω as
possible, subject to the probabilistic constraint (20k). This notion is made more precise in Corollary V.2
below.
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IV. Probabilistic Bound on Thrust

In the deterministic case, we constrain u to the set Ω by enforcing the 2-norm constraint

ρ1 ≤ ‖u‖ ≤ ρ2, (21)

which permits us to use existing methods1 to convexify and solve the powered descent problem numerically.
Next, consider the stochastic case with a probabilistic constraint on the control. For a fixed covariance Pu,
Eq. (17) is equivalent to constraining the mean control to a subset ΩPu

β ⊆ Ω, given by

ΩPuβ = {ū ∈ Ω :

∫
Ω

f(z, ū, Pu)dz ≥ 1− β}. (22)

Define
σ2 = σ2

max(Pu), (23)

where σ2
max(Pu) denotes the maximum singular value of Pu. For simplicity, let Ωσ

β denote Ωσ
2I
β , and let the

pair (ρσ1 , ρ
σ
2 ) be defined by

ρσ1 = min{‖ū‖ : ū ∈ Ωσβ}, ρσ2 = max{‖ū‖ : ū ∈ Ωσβ}. (24)

The relationship between Ω, ΩPu
β , and Ωσβ is illustrated in Figure 2.

Admissible 
control region

Control 
distribution

Mean 
control

Mean constrained 
region

1

3

2

Ω

Ω

β
σ

Admissible 
control region

Exact mean 
constrained 
region

1

3

2

Conservative 
(symmetric) 
mean constrained 
region Ωβ ΩP

β
uσ

Ω

Figure 2: Left, two-dimensional view of admissible thrust region Ω and the derived mean constrained region Ωσβ . Right,

comparison of exact mean constrained region ΩPuβ and conservative mean constrained region Ωσβ .

For Pu = σ2I, the Gaussian probability density function f(z, ū, σ2I) satisfies∫
Ω

f(z, u1, σ
2I) dz =

∫
Ω

f(z, u2, σ
2I) dz, for ‖u1‖ = ‖u2‖ . (25)

Let the polar coordinate system (s, θ, φ) defined in Figure 3 and let the integration variable z = z(s, θ, φ),
where s = ‖z‖. It follows from Eq. (25) that, for the covariance matrix σ2I, the Gaussian probability density
function can be equivalently stated in polar coordinates as

fs(z(s, θ, φ), ρ, σ2) =
1

(2π)3/2σ3
exp

[
−(s2 − 2sρ cos θ + ρ2)

2σ2

]
, (26)
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where ρ is the radial distance of the mean from the origin along the z axis. Integrated over Ω, this function
admits the solution in terms of the error function∫

Ω

fs(z, ρ, σ
2)dz =

σ√
2πρ

[
exp

[
−(ρ1 − ρ)2

2σ2

]
− exp

[
−(ρ2 − ρ)2

2σ2

]
− exp

[
−(ρ1 + ρ)2

2σ2

]
+ exp

[
−(ρ2 + ρ)2

2σ2

]
(27)

+

√
2πρ

2σ

(
− erf

[
ρ1 − ρ√

2σ

]
+ erf

[
ρ2 − ρ√

2σ

]
− erf

[
ρ1 + ρ√

2σ

]
+ erf

[
ρ2 + ρ√

2σ

])]
.

Using Eq. (27) we can easily compute ρσ1 and ρσ2 since, from Eq. (25),

{‖u‖ : u ∈ Ωσβ} = {ρ ∈ [ρ1, ρ2] :

∫
Ω

fs(z, ρ, σ
2) dz ≥ 1− β}. (28)

x

y

z

ρ

φ

θ

Figure 3: Polar coordinate system description.

Note that for σ2 large enough, Ωσβ may be empty and therefore (ρσ1 , ρ
σ
2 ) may not be defined. However, we

have made the assumption that the uncertainty in the control will be relatively small compared to the mean
control, so we will also assume that the new thrust bounds are always defined. Finally, the probabilistic
constraint (17) is conservatively restated in the desired form as

ρσ1 (t) ≤ ‖ū(t)‖ ≤ ρσ2 (t) for all t ∈ [0, tf ], (29)

where ρσ1 and ρσ2 as in (24).

V. Mean and Covariance Steering

A. Mean Steering

For the purposes of mean steering, assume that Pu and β are fixed, and hence ρσ1 , ρ
σ
2 are also fixed. The

mean steering component of the PDG problem (20) thus reduces to the deterministic PDG problem by
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substituting Eq. (30i) in lieu of the probabilistic constraint (20k):

J̄∗
ρσ1 ,ρ

σ
2

= min
ū,tf

J̄ρσ1 ,ρσ2 (ū; tf ) =

∫ tf

0

‖ū(t)‖ dt (30a)

s.t. ¨̄r = ū/m+ g (30b)

ṁ = −α ‖ū‖ (30c)

r̄(0) = r̄0, ˙̄r(0) = ˙̄r0, m(0) = m0 (30d)

r̄(tf ) = 0, ˙̄r(tf ) = 0 (30e)

m(t) ≥ md for all t ∈ [0, tf ] (30f)

‖Sgsx̄(t)‖ − cTgsx̄(t) ≤ 0 for all t ∈ [0, tf ] (30g)

‖ū(t)‖ cos θpc0 − eT1ū(t) ≤ 0 for all t ∈ [0, tf ] (30h)

ρσ1 (t) ≤ ‖ū(t)‖ ≤ ρσ2 (t) for all t ∈ [0, tf ] (30i)

This problem has been extensively studied in the literature,1,2, 13 where it has been shown that the
solution has a max-min-max control structure without singular arcs. While this problem has been studied
with the assumption of constant thrust bounds, it turns out that this property also holds for time-varying
bounds. This result is formally stated in the following theorem.

Theorem V.1. The optimal thrust profile ū∗ solving the PDG problem (30) has a max-min-max structure
with no singular arcs. That is,

‖ū∗(t)‖ =


ρσ2 (t), 0 ≤ t ≤ t1,
ρσ1 (t), t1 < t ≤ t2,
ρσ2 (t), t2 < t ≤ tf ,

(31)

for all t ∈ [0, t∗f ], where t∗f is the optimal final time.

We refer the reader to Ref. 1 for a proof of the special case of constant throttle bounds. However, the
argument is based on the pointwise Minimum Principle and therefore works for time-varying bounds. We use
“cost with the bounds (ρ1, ρ2)” to refer to the minimum cost of problem (30) when computed with (ρ1, ρ2)
substituted into Eq. (30i). The following corollary is a direct consequence of the Minimum Principle.

Corollary V.2. Let the functions ρ1
1, ρ1

2, ρ2
1, and ρ2

2 be piecewise continuous, positive functions defined over
the interval [0,∞), where

ρ1
1(t) < ρ2

1(t) < ρ2
2(t) < ρ1

2(t) for all t ∈ [0,∞). (32)

Then
J̄∗
ρ11,ρ

1
2
< J̄∗

ρ21,ρ
2
2
. (33)

Proof. Assume, to the contrary, that J̄∗
ρ11,ρ

1
2
≥ J̄∗

ρ21,ρ
2
2
, and let (ū∗2, t∗2

f ) = arg min J̄ρ21,ρ22(ū; tf ). Since ρ1
1(t) <

ρ2
1(t) and ρ2

2(t) < ρ1
2(t) for all time, the control ū∗2 is within the bounds (ρ1

1, ρ
1
2). This implies that J̄∗

ρ11,ρ
1
2

cannot be greater than J̄∗
ρ21,ρ

2
2
, since the throttle constraint defined by ρ1

1 and ρ1
2 is a relaxation from ρ2

1

and ρ2
2. It follows that ū∗2 is an optimal control for the problem with bounds (ρ1

1, ρ
1
2). However, ρ1

1(t) <∥∥ū∗2(t)
∥∥ < ρ1

2(t) at every instant of time, contradicting Theorem V.1. Therefore J̄∗
ρ11,ρ

1
2
6= J̄∗

ρ21,ρ
2
2
, and we

conclude that J̄∗
ρ11,ρ

1
2
< J̄∗

ρ21,ρ
2
2
.

Corollary V.2 makes explicit the trade-off between robustness and fuel-optimality. If there is any interval
of time during which the control magnitude bound is relaxed, there will necessarily be a corresponding
decrease in fuel required for an optimal trajectory. On the other hand, there will be external disturbances,
variations in system performance, and other forms of uncertainty that may cause the spacecraft to deviate
from the reference trajectory, which must be corrected though feedback. We are therefore motivated to study
how uncertainty affects the feedback control, and how to design minimum-fuel trajectories, while respecting
the expectation that the feedback control will be used to correct for uncertainty and external disturbances.
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B. Covariance Steering

As shown in the previous section, the fuel cost of the deterministic PDG problem decreases as the thrust
bounds are relaxed. Together with the observation that the thrust bounds ρσ1 and ρσ2 approach their limits
ρ1 and ρ2 as the control covariance decreases, this fact motivates us to design a feedback controller so that
the control covariance is minimized.

1. Motivating Example

In order to demonstrate the relationship of the closed-loop state covariance on the control covariance, we
consider the one-dimensional closed-loop stochastic system

dy = (a− bk)y dt+ c dv, (34)

where a, b, c are fixed scalars, y is the state, k is a feedback gain, and v is a one-dimensional standard
Brownian motion. Let p be the variance of y, that is, p = E(y2), then

ṗ = 2(a− bk)p+ c2. (35)

Suppose that we are interested in finding a gain that maintains a fixed state variance (a problem referred
to as covariance assignment). Solving for k when ṗ = 0, we obtain the gain ks as a function of the constant
state variance ps

ks =
1

b

(
a+

c2

2ps

)
, (36)

and the corresponding control variance is k2
sps. Intuitively, the state variance decreases to zero as the gain

increases to infinity, however, this is not the case for the control variance. Taking the derivative of the control
variance with respect to the state variance we find that

d(k2
sps)

dps
=
a2 − c4/4p2

s

b2
, (37)

and therefore the control variance is minimized at ps,min = c2/2 |a|. The values of ks and k2
sps for a, b, c = 1

are given in Figure 4, which compares the state variance and the control variance as the gain is increased.
In the previous sections, we have shown that as the control covariance decreases, the mean control can be
set closer to the fuel-optimal value while still satisfying probabilistic constraints. And in this example we
see that, at least in the single dimensional case, there is a minimum control variance.

Returning to the powered descent problem, we are interested in enforcing endpoint constraints on the
state covariance rather than steady-state requirements, as was done in the previous example. Similarly,
since the powered descent problem has finite time horizon, the integral of the control covariance will be
minimized rather than the steady-state control control variance. The minimum control covariance will, in
turn, maximize the mean control constraint set Ωσ

β , which, by Corollary V.2, will minimize the fuel required
to solve the deterministic PDG problem (30).

2. Finite Horizon Covariance Steering

Consider the stochastic system (7) with initial covariance Px0
at time t = 0. Let tf > 0 be fixed. We want

to find a gain matrix K(t) for t ∈ [0, tf ] such that the state covariance in Eq. (9) is equal to Pxf at time
t = tf while minimizing the functional

J̃(ũ) = E

∫ tf

0

(
ũT(t)Qu(t)ũ(t) + x̃T(t)Qx(t)x̃(t)

)
dt =

∫ tf

0

(
trQu(t)Pu(t) + trQx(t)Px(t)

)
dt, (38)

where Qu(t) is a positive definite control effort weighting matrix and Qx(t) is a non-negative definite state
error weight matrix for all t ∈ [0, tf ]. This problem, which is referred to as the Covariance Steering (CS)
problem, can be formally stated as follows

min
K

∫ tf

0

trQuKPxK
T + trQxPx dt (39a)

s.t. Ṗx = (A+BmK)Px + Px(A+BmK)T + γ2BmB
T

m (39b)

Px(0) = Px0 , Px(tf ) = Pxf (39c)
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Figure 4: Steady state variances for a, b, c = 1.

This problem has been studied in Refs. 8–10, where it was shown that if the pair (A,Bm) is controllable,
then there exists a feedback gain K(t) that takes any initial covariance Px0

to a final covariance Pxf in finite
time. Furthermore, a closed-form solution to the above problem was given in Ref. 10, which for completeness
we present below.

Theorem V.3. [10] The covariance steering problem in continuous time (39) has the solution

K(t) = −Q−1
u (t)BT

mΠ(t), (40)

where Π(t) is a symmetric matrix that satisfies the matrix Riccati equation

−Π̇ = ATΠ + ΠA+Qx(t)−ΠBmQ
−1
u (t)BT

mΠ, (41)

with the initial condition

Π(0) =
γ2P−1

x0

2
− Φ−1

12 Φ11 − P−1/2
x0

(
γ4I

4
+ P 1/2

x0
Φ−1

12 PxfΦ−T

12 P
1/2
x0

)1/2

P−1/2
x0

, (42)

where [
Φ11 Φ12

Φ21 Φ22

]
=

[
Φ11(tf , 0) Φ12(tf , 0)

Φ21(tf , 0) Φ22(tf , 0)

]
, (43)

and where

Φ(t, s) =

[
Φ11(t, s) Φ12(t, s)

Φ21(t, s) Φ22(t, s)

]
(44)

is the transition matrix for the Hamiltonian system where

∂Φ(t, s)

∂t
= H(t)Φ(t, s), Φ(s, s) = I, (45)

H(t) =

[
A −BmQ−1

u (t)BT
m

−Qx(t) −AT

]
. (46)

C. Covariance Steering with Mass Feedback

In Section V.A, we assumed that the state and control covariances were known before solving the mean
steering problem. However, the covariance steering solution presented in the previous section depends on
the mass, which, in turn, is an output from the solution of the mean steering problem. Therefore, a control
that solves the mean and covariance steering problems cannot be found by simply solving each problem
separately. One solution would be to perform a fixed point iteration until the mean and covariance steering
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solutions are in agreement, as was done in [14], but such an iteration would be time consuming and would
require guarantees on convergence to be suitable for onboard use. In this section, we present an alternate
approach: we modify the covariance steering problem so that it does not depend on the mass.

Since the throttle is bounded by ρ1 and ρ2, the mass will also be bounded from below by m` and from
above by mu, where

m`(t) = m0 − ρ2αt, (47)

mu(t) = m0 − ρ1αt. (48)

Let (K`, P `x) be the solution of Problem (39) for m = m`. Then P `x solves

Ṗ `x = (A+m−1
` BK`)P `x + P `x(A+m−1

` BK`)T + γ2m−2
` BBT, P `x(0) = Px0

, (49)

with P `x(tf ) = Pxf . Our objective is to augment this solution to solve the problem for any mass greater than

m`, that is, we want to find K as a function of m, m`, and K` so that the state covariance is less than or
equal to P `x. Then, even when we only are given bounds on the mass, we can still ensure that

Px(tf ) ≤ P `x(tf ) = Pxf . (50)

Proposition V.4. Let Px(0) = P `x(0) and

K(t,m) =
m

m`(t)
K`(t), t ∈ [0, tf ]. (51)

Then Px(t) ≤ P `x(t) for all t ∈ [0, tf ].

In order to prove this result we will need the following result from Ref. 15, which is restated as Lemma
V.5 below and is adapted for our purposes in Corollary V.6.

Lemma V.5. [15] Let Ki, i = 1, 2, be a solution of

K̇i = −AT

i (t)K −KAi(t)−Qi(t) +KSi(t)K (52)

on some interval T ⊆ R. If for some tf ∈ T , K1(tf ) ≤ K2(tf ) or (K1(tf ) < K2(tf )) and if[
Q2 AT

2

A2 −S2

]
(t) ≥

[
Q1 AT

1

A1 −S1

]
(t) for t ∈ T (53)

then K1(t) ≤ K2(t) or (K1(t) < K2(t)), respectively, for all t ∈ T ∩ (−∞, tf ].

Corollary V.6. Let Pi, i = 1, 2, be a solution of

Ṗi = AT

i (t)Pi + PiAi(t) +Qi(t) (54)

on the interval [0, tf ]. If P1(0) = P2(0), and if[
Q1 −Q2 A1 −A2

(A1 −A2)T 0

]
(t) ≥ 0, t ∈ [0, tf ], (55)

then P2(t) ≤ P1(t) for all t ∈ [0, tf ].

Proof. Suppose that Eq. (53) holds. It follows from Lemma V.5,

K1(tf ) ≤ K2(tf ) =⇒ K1(t) ≤ K2(t) for all t ∈ T ∩ (−∞, tf ]. (56)

This statement is equivalent to the statement

K2(0) ≤ K1(0) =⇒ K2(t) ≤ K1(t) for all t ∈ T ∩ [0,∞). (57)

The result follows by changing the sign of coefficients from Lemma V.5 accordingly.
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Proof. (of Proposition V.4) Rewrite the equation for Ṗ `x as

Ṗ `x = (A+m−1
` BK`)P `x + P `x(A+m−1

` BK`)T + γ2m−2
` BBT (58)

= m−2
`

[
(m2

`A−m`BK
`)P `x + P `x(m2

`A−m`BK
`)T + γ2BBT

]
. (59)

Substituting K = mK`/m` into the equation for Ṗx yields

Ṗx = (A+m−1BK)Px + Px(A+m−1BK)T + γ2m−2BBT (60)

= m−2
`

[
(m2

`A−m`BK
`)Px + Px(m2

`A−m`BK
`)T + γ2m

2
`

m2
BBT

]
. (61)

Define

A1 = A2 = m2
`A−BK`, Q1 = γ2BBT, Q2 = γ2m

2
`

m2
BBT, (62)

so that

Ṗ `x = m−2
` (A1P

`
x + P `xAT

1 +Q1), (63)

Ṗx = m−2
` (A2Px + PxAT

2 +Q2). (64)

By Corollary V.6 with P1 = P `x and P2 = Px, if[
Q1 −Q2 0

0 0

]
(t) ≥ 0, t ∈ [0, tf ], (65)

then Px(t) ≤ P `x(t) for all t ∈ [0, tf ]. Since m ≥ m` and BBT ≥ 0,

Q1 −Q2 = γ2BBT

(
1− m2

`

m2

)
≥ 0, (66)

which implies that Eq. (65) holds, thus completing the proof.

A feedback gain determined using this procedure will depend on the mass, and therefore the control
covariance will depend on the mass as well. To guarantee that the results of Section IV hold for any
m` ≤ m ≤ mu, we must find an upper bound on Pu. To this end, let (K`, P `x) be the solution of the
covariance steering problem for m(t) = m`(t). Then

Pu = KPxK
T =

m2

m2
`

K`PxK
`T ≤ m2

u

m2
`

K`P `xK
`T = Pu,max, (67)

where the resulting upper bound Pu,max is only a function of time. Interestingly, if the mass is known
precisely when solving the covariance steering problem, then mu = m = m`, and it follows that Pu = Pu,max.
More generally, the difference between Pu and Pu,max decreases monotonically as the gap between the lower
and upper bounds on mass decreases.

D. CS-PDG Algorithm

The results of this paper are summarized in the following algorithm for powered descent guidance.

Fixed Final Time CS-PSG Algorithm

1) Input tf ,m0, β, γ > 0, Px0 , Pxf > 0, x̄0, and m`(t),mu(t) for t ∈ [0, tf ].

2) Solve the CS problem (39) with mass m` to obtain P `x(t) and K`(t) for t ∈ [0, tf ].

3) Set K(t,m) = mK`(t)/m`(t).

4) Use Pu,max(t) from (67) to solve (24) for ρσ1 (t) and ρσ2 (t), t ∈ [0, tf ].
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5) Solve the deterministic PDG problem (30) for fixed tf to obtain ū(t) and x̄(t), t ∈ [0, tf ].

6) Return control law u(t, x,m) = ū(t) +K(t,m)(x− x̄(t)).

The fuel cost is a unimodal function of final time,1,2 and therefore the free final time problem can be
solved by performing a line search over tf . Also, since the deterministic PDG problem returns an estimate
for m(t), we can iteratively tighten the mass bounds m`(t),mu(t). However, we found that this does not
significantly improve performance, and problems arise from the discontinuous nature of the mean control
that affects convergence. Furthermore, the feedback control will cause the actual mass to deviate slightly
from the mass profile returned by the deterministic PDG solver, and by using hard lower and upper mass
limits m`(t),mu(t) the final covariance is guaranteed to be less than or equal to the target covariance by
Theorem V.4.

VI. Numerical Simulation

In this section we present a numerical example of a powered divert maneuver for MSL. Suppose that the
1,905 kg MSL descent stage is is at an altitude of 1,500 m with a velocity of 125 m/s and flight path angle
of −36.9◦ when the target landing point is updated to a position 2,000 m behind the current position, in the
plane of the velocity vector. Assume an initial state covariance of

Px0
= diag(200, 200, 200, 10, 10, 10), (68)

and target final covariance
Pxf = diag(10, 10, 10, 1, 1, 1), (69)

where velocity and distance are in units of m/s and m. We enforce that the probability of an out of bounds
throttle command is 0.1% (β = 0.001). Properties of the MSL descent stage and a summary of simulation
settings are given in Table 1.

The optimal maneuver time was 88 sec, and select trials from a 2,000 trial Monte Carlo run are shown
in Figures 5 and 6. In Figure 7 the control components from the Monte Carlo trials are shown relative to
the maximum and minimum throttle constraints with 99.9% of trials contained within the blue tube. In this
figure, we see that the tube representing a fixed probability of controls is along the constraint boundary.
This is analogous to the deterministic case, where, instead, the known control would be on the constraint
boundary.

The thrust magnitude profile is shown in Figure 8 next to a plot of the probability that u is in Ω as a
function of the throttle percentage. The control covariance was higher at time t = 1 than at time t = 50,
and hence the points where the probability curve intersects the line 1 − β are closer together at t = 1 than
at t = 50.

In addition to using the proposed method, this scenario was also run with three levels of constant throttle
bounds (i.e., ρσ1 , ρ

σ
2 constant) and the same feedback controller: the bounds were set so that the probabilistic

constraint in control is satisfied at every instant of time; the bounds were manually tuned so that the
maneuver appeared to be successful based on the Monte Carlo results; and the bounds were set to exactly
the maximum and minimum limits. Lastly, the proposed method was also run with β = 0.05. A comparison
of the proposed method to these four cases is shown in Figure 9, and numerical results are listed in Table 2.

As expected, the final state covariance in the large margin case meets the final covariance target, but
uses more fuel compared to the proposed method. The case without any margin does not meet the final
covariance target, but uses less fuel. Interestingly, when the margin was tuned so that the final covariance
is nearly met, despite significant throttle saturation, there was a lower fuel cost compared to the proposed
method. However, since the control is saturated, the state covariance dynamics in Eq. (9) no longer apply,
and therefore the state statistics guaranteed by the covariance steering controller are no longer exact.

VII. Conclusion

In this paper, we have extended the deterministic theory on minimum-fuel powered descent to the more
general case of steering the initial position and velocity distributions to a target position and velocity dis-
tributions, while considering Brownian motion process noise acting on the system. By assuming that the
reference control is much larger than the deviation to correct for disturbances, we separated the stochastic
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Figure 5: Select trajectories from a Monte Carlo simulation. The reference trajectory is depicted by a solid black line and trials
are in gray. The thrust angle is measured from the vertical, and the minimum and maximum mass are plotted with dashed
lines.
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Table 1: Simulation settings

Property Value Unit

Number engines 6

Engine cant angle 27 deg

Thrust per engine 3,100 N

Specific impulse 210 sec

Total thrust 16,573 N

Minimum throttle 30 %

Maximum throttle 80 %

Pointing angle θpc0 75 deg

Glide slope angle θgs0 86 deg

Property Value Unit

Wet mass m0 1,905 kg

Propellant mass 400 kg

α 4.4865e-04 kg/N sec

Px0
diag(200, 200, 200, 10, 10, 10) m2/s2, m2

Pxf diag(10, 10, 10, 1, 1, 1) m2/s2, m2

r̄0 (1500, 0, 2000) m

˙̄r0 (−75, 0, 100) m/s

Table 2: Comparison of simulation results. The state covariance matrix was computed from 2,000 Monte Carlo runs, where
position and velocity are in units of m and m/s, and the error is measured with the Frobenius norm. Note that if λmin(Pxf −
Px(tf )) < 0, then Px(tf ) > Pxf .

Propellant Used, kg Final Covariance Error

Reference Mean
∥∥Pxf − Px(tf )

∥∥ λmin(Pxf − Px(tf ))

No margin 355.56 357.09 31.33 -31.33

Small margin 367.96 367.76 17.82 -17.82

Large margin 400.28 400.14 14.29 -14.29

Proposed (β = 0.001) 379.17 379.70 2.29 -0.0019

Proposed (β = 0.05) 366.54 367.18 1.61 -0.6315

Figure 6: Select trajectories from a Monte Carlo simulation. The reference trajectory is depicted by a solid black line and the
glide slope constraint is shown by a dashed line. The shaded region contains 99.9% of trajectories.
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Figure 7: Normalized horizontal and vertical (u3 and u1) components of control, with maximum and minimum limits shown
in green and red. Trials from a Monte Carlo are shown inside a tube containing 1 − β probability.

Figure 8: Left: probability that u is in Ω is plotted against the mean throttle percent at different times in the simulation. The
values of ρσ1 and ρσ2 are determined by the left and right intersections of the probability curve with the dashed line for 1 − β,
where β = 0.001. Right: mean throttle percent and throttle histories from select Monte Carlo trials. The shaded region contains
99.9% of throttle histories.
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Figure 9: Comparison of proposed method to solutions obtained by varying ρσi as a constant bound. From top to bottom: bounds
set to the absolute limit (i.e., no margin); constant bounds set, by trial and error, so that most trajectories reach the target
despite control saturation; constant bounds set so that control will not saturate; bounds set by proposed method with β = 0.001;
and the proposed method with β = 0.5. The shaded region on the trajectory plots contains 99.9% of trajectories, as calculated
from 2,000 trial Monte Carlo trials, and the inset plots have units of meters.
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powered descent dynamics into a deterministic mean and a stochastic perturbation. It was then shown that a
probabilistic constraint on the control magnitude introduced in the trajectory design problem a dependence
on the closed-loop system behavior, and this dependence caused the two problems to be coupled. For this
reason, the covariance steering formulation was extended to the use of mass feedback so that the controller
design is not mass dependent, and therefore the resulting CS-PDG guidance algorithm does not require any
iteration and is suitable for onboard use. The proposed approach was then applied to an MSL powered
divert scenario in a numerical simulation.

An interesting consequence of constraining the control bounds in probability was shown in Section VI. The
baseline case with a small throttle margin resulted in saturated controls that did not satisfy this constraint,
but in spite of this, the final state covariance target was nearly met. Since the control was often saturated
in this case, the fuel cost was lower than the proposed method that constrained the control in probability.
On the other hand, the proposed method fits into the existing theory on the control of state covariances,
which allows us to precisely target final state covariances. In light of this observation, we are interested in
studying the control of state covariances with bounded controls in a future work.
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