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Minimum-fuel Powered Descent in the Presence of
Random Disturbances

Jack Ridderhof* and Panagiotis Tsiotras'
Georgia Institute of Technology, Atlanta, GA, 30332, USA

It has recently been shown that minimum-fuel powered descent guidance can be solved
onboard the spacecraft as a convex optimization problem. It therefore presents itself as a
promising technology to enable future planetary exploration missions. However, since this
approach is formulated as a deterministic optimal control problem, the resulting guidance
law is only designed for a single pair of initial and target states without external distur-
bances. This paper is an attempt to extend this approach to the more general case of
steering the initial position and velocity distributions to some target position and velocity
distributions, while considering Brownian motion process noise acting on the system. It is
shown that when using a stochastic model for powered descent, the design of the reference
trajectory is coupled with the closed-loop control law through probabilistic constraints on
the control.

I. Introduction

Entry, Descent, and Landing (EDL) is the process of a spacecraft entering a planet’s atmosphere, decel-
erating from orbit, and descending to a safe landing site on the planet’s surface. Atmospheric disturbances,
localization error, and other factors contribute to substantial deviations from the nominal descent trajectory,
which must be accounted for when selecting a landing target. This work focuses on the Powered Descent
(PD) phase, during which the spacecraft uses chemical rocket engines to simultaneously steer and decelerate
to a target touchdown point.

In recent works,!? Powered Descent Guidance (PDG) has been posed as a convex optimization problem,
a formulation that has several major benefits.> By selecting total fuel consumption as the cost function,
powered descent trajectories ensure fuel-optimality, in contrast to the polynomial method used on Mars
Science Laboratory (MSL).# Both control and path constraints can also be explicitly considered in a convex
formulation, whereas in previous missions, constraints were satisfied by restricting admissible maneuvers to
well-behaved and simple scenarios.® Since a convex optimization program can be guaranteed to converge
to the unique solution within a given accuracy in a finite number of iterations, it is suitable for onboard
implementation. For these reasons, NASA has cited convex optimization as a potential next-generation
solution for powered descent guidance for Mars missions.®

The convex programming approach, however, is based on a deterministic model of the dynamics of the
powered descent phase of the mission, and therefore it is only designed to steer a single initial state to the
target. In practice, the initial state is not a single point, but rather it is a random variable described by a
distribution. Furthermore, if an unmodeled external force disturbs the spacecraft from its nominal trajectory,
the deterministic guidance law includes no notion of how this disturbance will impact the final state. One
solution to this problem is to continuously recompute, on-the-fly, a new optimal trajectory to be followed
by the guidance subsystem. This method of closing the loop, while successful, is not explicitly included
in the mathematical model of the guidance system. As a consequence, results from the analysis using the
deterministic model, such as satisfaction of constraints, may not perform satisfactorily when applied to the
real system.

With these limitations in mind, we propose in this paper a stochastic extension to the convex programming
approach for PDG. The spacecraft’s position and velocity is modeled as a normally distributed random
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variable with Brownian motion process noise acting as an external disturbance force. The initial and target
points from the deterministic case are generalized to initial and target normal distributions. We use recent
results from stochastic optimal control theory, referred to as Covariance Steering (CS),” ! to compute the
required feedback of deviations from a reference trajectory to control the position and velocity covariances.

Two important physical constraints during powered descent are the minimum and maximum engine
throttle limits. In a deterministic setting, it can be shown from the Minimum Principle that the fuel-optimal
throttle setting is necessarily on either the minimum or maximum limit. If the state is, instead, a random
variable, the closed-loop control becomes a random variable as well. The situation then becomes more
complicated, since the statistics of the control variable depend on the reference (mean) control, the state
covariance, and the feedback gain. This issue is addressed in this paper by setting reference control throttle
bounds as a function of the closed-loop control covariance.

The organization of this paper is as follows. In Section II, we introduce a stochastic model for powered
descent and show that, under certain assumptions, the dynamics can be separated into a deterministic
mean component and a stochastic deviation from the mean. In Section III, we formulate the stochastic
PDG problem, and then in Section IV, the probabilistic throttle constraint is analyzed and a conservative
relaxation is proposed. We then review the problems of mean and covariance steering in Sections V.A and
V.B. In Section V.C we extend the linear covariance steering theory to handle uncertain mass that enables a
simple Covariance Steering Powered Descent Guidance (CS-PDG) algorithm suitable for onboard use, which
is presented in Section V.D. Finally, this approach is demonstrated in a numerical simulation in Section VI.

A. Notation

Let ||-|| be the Euclidean norm on R™, and let E[f(x)] be the expectation of a function of a random variable
x, and denote the mean of a random vector x by E[x] = Z and the difference from the mean as & = ©—z. We
write the covariance of a normally distributed random vector x as P, = E[ZZ"], and we write x ~ N (Z, P;)
to denote that x is normally distributed with mean Z and covariance P,. For a square matrix A, we write
A >0 (>0)if A is positive (semi-)definite, i.e., xT Az > 0 (> 0) for all nonzero real vectors z.

II. System Model

Consider a spacecraft during powered descent modeled as a point-mass with position vector r € R? in a
surface-fixed inertial frame. The spacecraft motion is modeled by the stochastic differential equation

dr = (u/m + g)dt + (v/m)dw, (1)
= —a|ul, (2)

where m > 0 is the spacecraft mass, u € R? is the control thrust, g € R? is the gravitational acceleration,
and w is a three-dimensional standard Brownian motion scaled by v > 0. Let = = (r,7), and assume that the
initial state zg ~ N (Zo, Py,) is a six-dimensional normally distributed random vector with known mean
and known covariance P,,. Assume that the initial mass mo > 0 is fixed and known. Furthermore, assume a
given control structure so that at each time the control command is a function of a deterministic feedforward
term and a feedback term that depends linearly on the deviation of z from the mean. By Jensen’s inequality
(Ref. 12, Thm. 7.44), we know that E(||u||) > ||[E(w)|| = ||@||. Assuming that the mean control is much larger
than the deviation we can approximate

E(llull) = E(lu + all) ~ [la]| . (3)
It then follows from Eq. (2) that the mass change is entirely due to the mean control, that is,
= —aflul. (4)

Since the initial mass is fixed, we conclude that the mass varies deterministically. The mean acceleration
then satisfies the ordinary differential equation

r=1i/m+g, (5)
while the deviation from the mean is given by the stochastic differential equation

dir = (a/m)dt + (y/m)dw. (6)
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Assume, for the purposes of analyzing the perturbed system, that the mass is a fixed function of time.
Let K = K(t) be a real-valued 3 x 6 time-varying gain matrix such that &« = K& = K(xz —Z). The perturbed
system (6) can then be written as a linear time-varying stochastic differential equation (dropping explicit
dependence on time for notational simplicity) as follows

di = (A + B, K)zdt + B, dw, (7)
where B,,(t) = B/m(t) and
A= |01 9. 8)
0 0 I

Since Z( is normally distributed with zero mean, and w is a standard Brownian motion, it follows from Eq.
(7) that # is a zero-mean random process normally distributed with covariance matrix P, = E[ZZ"], which
satisfies the matrix differential equation

Py = (A4 BuK)Py + Po(A+ BnK)' +9°BpB),,  P:(0) = E[£(0)E"(0)] = Py (9)
It also follows from (7) that the feedback control & = KZ is a zero-mean random process with covariance

P, = E[ii'"] = KP,K". (10)

ITI. Problem Formulation

Our objective is to design a control pair (@, K) that brings the spacecraft to a soft landing at the origin
at a final time ¢y > 0, which needs to be determined. Thus, we enforce the endpoint constraints on the mean
and the covariance

T(ty) =0,  Pulty) = Py, (11)

where P, is a fixed symmetric positive-definite matrix.
The mass is constrained from below by the dry mass mg > 0 at all times. The glide slope 645, which is
the angle that the position vector makes with the vertical, is given as a function of the position as follows®

V)
f4s(r) = arctan <T2+7“3>’ (12)
1

where r = (11,72, 73) with r; is along the vertical upward direction, as shown in Figure 1. We constrain the
mean glide slope 0y5(7) < 05, < m/2 by enforcing

| Sgsz|| + cgsfc <0, te]0,ty], (13)
where

T
y Cgs = |:— tan 9950 0O 0 0 0 of . (14)

01 0 0 0 O
Spe =
001000

The angle the mean control vector @ makes with the vertical is constrained by a maximum pointing cone
angle 6., via
|la|| cos Ope, —equ <0, te0,ty], (15)

where e; = (1,0,0)". Let now ps > p; > 0 be fixed bounds on the control magnitude, and let the set
Q={z¢ R3:p; < Iz]] < p=2}. (16)

We wish to enforce the probability that the random vector u is not in Q (i.e., the control u violates the
magnitude constraints) be less than 5 > 0, that is,

Pr(u € Q) = / FoP)dz > 1— 8 forall t € [0,t], (17)
Q

where f is the 3-dimensional Gaussian probability density function given by

1
(27)3/2(det P,)

F(2,10, Py) = e | - %(z —ay Pz — ). (18)
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Figure 1: Powered descent with covariance control.

Subject to the above constraints, we wish to minimize the fuel cost of the mean control

J(@) = / " ag) dt, (19)

by varying the mean (feedforward) control, the time-varying feedback gain matrix, and the final time.
Formally stated, we want to solve the following problem, which we refer to as the Stochastic Powered
Descent Guidance Problem:

ty
min [ (200)
st. r=u/m+g (20Db)
= —alluf (20¢)

i = (A + By K)#dt + yBmdw (20d)

z(0) = Zg, m(0) =mg, Pp(0)= Py, (20e)

Fi) =0, Pult)= Py, (20f)
u=u+ Kz (20g)

m(t) > mg for all ¢t € [0,tf] (20h)
[SgsZ(t)[| — cgs@(t) <0 for all t € [0, ] (201)

la(t)|| cos Ope, — equ(t) <0 for all ¢t € [0, ] (207)
Priu(t)e)>1-p for all t € [0,¢y] (20k)

Observe that we are only minimizing a deterministic objective function rather than minimizing a linear
combination of the fuel cost and a penalty on the control covariance. We do this because the probabilistic
constraint on the control (20k) introduces a natural coupling between the deterministic and stochastic
problems. As it will be shown in Section A, in the absence of disturbances, the fuel optimal solution has
the property that u € 99 for all time (i.e., the minimum-fuel optimal control problem is bang-bang), and
therefore we adopt the heuristic that a good controller will allow the mean control to get as close to 0f) as
possible, subject to the probabilistic constraint (20k). This notion is made more precise in Corollary V.2
below.
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IV. Probabilistic Bound on Thrust

In the deterministic case, we constrain u to the set Q by enforcing the 2-norm constraint

p1 < |lull < p2, (21)

which permits us to use existing methods! to convexify and solve the powered descent problem numerically.
Next, consider the stochastic case with a probabilistic constraint on the control. For a fixed covariance P,,
Eq. (17) is equivalent to constraining the mean control to a subset Qg" C Q, given by

O ={ueq: /Qf(z,ﬂ, P,)dz>1- 6} (22)

Define
0% = o (P); (23)
where 02, (P,) denotes the maximum singular value of P,. For simplicity, let Q7 denote Q%ZZ , and let the

pair (p7, p3) be defined by
of —minlal :a€ 93}, p§ — max{lal :a € Q). (24)

The relationship between €2, Qg“, and Q3 is illustrated in Figure 2.

1 i 1
Admissible A Mean COHSQI‘V&t.IVQ A Exact mean
control region control (symumefric) constrained
0 € Control mean constrained region P
ontro .
region o u
\ - distribution & 2 B ng

N

Yeo
Yeo

Admissible
Mean constrained \ control region
region _Qg N

Figure 2: Left, two-dimensional view of admissible thrust region Q@ and the derived mean constrained region Qg Right,

comparison of exact mean constrained region QIBD“ and conservative mean constrained region Qg
For P, = 021, the Gaussian probability density function f(z,u,c?I) satisfies

/ Fevun, 02T dz = / f(zrun 0?1 dz, for Jlua = Jluall- (25)
Q Q

Let the polar coordinate system (s, 8, ¢) defined in Figure 3 and let the integration variable z = z(s, 0, ¢),
where s = ||z||. It follows from Eq. (25) that, for the covariance matrix 021, the Gaussian probability density
function can be equivalently stated in polar coordinates as

—(s% —2spcos B + p?)
202 ’

F(o(6.0.00,0.0%) = iz | (26)
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where p is the radial distance of the mean from the origin along the z axis. Integrated over §2, this function
admits the solution in terms of the error function

/ fs(z,p,UQ)dz =
Q

= = [‘@20"’)} ~ exp {‘(PQU‘P)} ~ exp [W] +exp [‘“’“’)} (27)

ot (- (3] e i e [ e [257])]

Using Eq. (27) we can easily compute p] and pg since, from Eq. (25),

{llull : w e QF} = {p € [p1, p2] : /Qfs(z,p, 0%)dz > 1~ f}. (28)

Figure 3: Polar coordinate system description.

Note that for o2 large enough, Q% may be empty and therefore (p], pg) may not be defined. However, we
have made the assumption that the uncertainty in the control will be relatively small compared to the mean
control, so we will also assume that the new thrust bounds are always defined. Finally, the probabilistic
constraint (17) is conservatively restated in the desired form as

p1(t) < la(®)]] < p5(t) for all t € [0, 7], (29)

where p{ and pg as in (24).

V. Mean and Covariance Steering

A. Mean Steering

For the purposes of mean steering, assume that P, and ( are fixed, and hence p7, pg are also fixed. The
mean steering component of the PDG problem (20) thus reduces to the deterministic PDG problem by
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substituting Eq. (30i) in lieu of the probabilistic constraint (20k):

tf

Tiros =i it = [ ) a (300)
st. r=u/m+g (30b)

m = —alluf (30¢c)

7(0) = 7o, 7(0) = 79, m(0) = mg (30d)

F(ty) =0, 7(ty) =0 (30e)

m(t) > my for all t € [0, /] (30f)

[SgsZ(t)|| = cgsT(t) <0 for all ¢ € [0,¢/] (30g)

la(t)| cos Ope, — eju(t) <0 for all ¢t € [0,ty] (30h)

#5(0) < el < 30 for all t € [0, ] (30i

This problem has been extensively studied in the literature,>? '3 where it has been shown that the

solution has a max-min-max control structure without singular arcs. While this problem has been studied
with the assumption of constant thrust bounds, it turns out that this property also holds for time-varying
bounds. This result is formally stated in the following theorem.

Theorem V.1. The optimal thrust profile u* solving the PDG problem (30) has a maz-min-maz structure
with no singular arcs. That is,

pg(t), 0<t<t,
[l = 4 p7 (1), t1 <t <ty (31)
p3(), ta<t<ip,

for all t € [O,t}}, where t} is the optimal final time.

We refer the reader to Ref. 1 for a proof of the special case of constant throttle bounds. However, the
argument is based on the pointwise Minimum Principle and therefore works for time-varying bounds. We use
“cost with the bounds (p1, p2)” to refer to the minimum cost of problem (30) when computed with (p1, p2)
substituted into Eq. (30i). The following corollary is a direct consequence of the Minimum Principle.

Corollary V.2. Let the functions pl, pi, p3, and p3 be piecewise continuous, positive functions defined over
the interval [0,00), where

pi(t) < pi(t) < p3(t) < p3(t)  for all t € [0,00). (32)
Then - -
Tovos < Tt (33)

Proof. Assume, to the contrary, that J* , > J% , and let (@*2,t%?) = argmin J 2 ,2(;ts). Since pi(t) <
p1:p3 3.0} f P1:P3 N
p3(t) and p3(t) < pi(t) for all time, the control @*? is within the bounds (p},p3). This implies that oo

— 12

cannot be greater than J;z 20 since the throttle constraint defined by pi and p} is a relaxation from p?
1272

and p3. Tt follows that @** is an optimal control for the problem with bounds (p1,p3). However, pi(t) <

|*2(t)|| < pi(t) at every instant of time, contradicting Theorem V.1. Therefore J* , # J% ,, and we

_ _ P1:P2 P1:P3
conclude that J* , < J* .. O
P15P2 P15P2

Corollary V.2 makes explicit the trade-off between robustness and fuel-optimality. If there is any interval
of time during which the control magnitude bound is relaxed, there will necessarily be a corresponding
decrease in fuel required for an optimal trajectory. On the other hand, there will be external disturbances,
variations in system performance, and other forms of uncertainty that may cause the spacecraft to deviate
from the reference trajectory, which must be corrected though feedback. We are therefore motivated to study
how uncertainty affects the feedback control, and how to design minimum-fuel trajectories, while respecting
the expectation that the feedback control will be used to correct for uncertainty and external disturbances.
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B. Covariance Steering

As shown in the previous section, the fuel cost of the deterministic PDG problem decreases as the thrust
bounds are relaxed. Together with the observation that the thrust bounds p{ and pg approach their limits
p1 and po as the control covariance decreases, this fact motivates us to design a feedback controller so that
the control covariance is minimized.

1.  Motivating Fxample

In order to demonstrate the relationship of the closed-loop state covariance on the control covariance, we
consider the one-dimensional closed-loop stochastic system

dy = (a — bk)y dt + cdv, (34)

where a,b, ¢ are fixed scalars, y is the state, k is a feedback gain, and v is a one-dimensional standard
Brownian motion. Let p be the variance of y, that is, p = E(y?), then

p = 2(a — bk)p + c*. (35)

Suppose that we are interested in finding a gain that maintains a fixed state variance (a problem referred
to as covariance assignment). Solving for k£ when p = 0, we obtain the gain ks as a function of the constant

state variance pg
1 c?
ks = 7 P
b (a + 2ps> (36)

and the corresponding control variance is k2p,. Intuitively, the state variance decreases to zero as the gain
increases to infinity, however, this is not the case for the control variance. Taking the derivative of the control
variance with respect to the state variance we find that

d(kZps) _ a® —c'/4p3

ol Lol (37)

and therefore the control variance is minimized at ps min = 2 /2a|. The values of ks and kfps for a,b,c =1

are given in Figure 4, which compares the state variance and the control variance as the gain is increased.
In the previous sections, we have shown that as the control covariance decreases, the mean control can be
set closer to the fuel-optimal value while still satisfying probabilistic constraints. And in this example we
see that, at least in the single dimensional case, there is a minimum control variance.

Returning to the powered descent problem, we are interested in enforcing endpoint constraints on the
state covariance rather than steady-state requirements, as was done in the previous example. Similarly,
since the powered descent problem has finite time horizon, the integral of the control covariance will be
minimized rather than the steady-state control control variance. The minimum control covariance will, in
turn, maximize the mean control constraint set {23, which, by Corollary V.2, will minimize the fuel required
to solve the deterministic PDG problem (30).

2. Finite Horizon Covariance Steering

Consider the stochastic system (7) with initial covariance P, at time t = 0. Let t; > 0 be fixed. We want
to find a gain matrix K (t) for ¢ € [0,%;] such that the state covariance in Eq. (9) is equal to P,, at time
t = t; while minimizing the functional

tr

T =€ [T @ 0u0in) + 7 0@ ) dt = [ (r QP+ QuOPB) dr (38)

where @, (t) is a positive definite control effort weighting matrix and Q,(t) is a non-negative definite state
error weight matrix for all ¢ € [0,ty]. This problem, which is referred to as the Covariance Steering (CS)
problem, can be formally stated as follows

ty
H}}Il / trQuK P, K" +trQ,P,dt (39a)
0
st. Pp=(A+ B,K)P, + P,(A+ B, K)" +~+*B,,B], (39h)
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Figure 4: Steady state variances for a,b,c = 1.

This problem has been studied in Refs. 8-10, where it was shown that if the pair (A, B,;,) is controllable,
then there exists a feedback gain K'(¢) that takes any initial covariance P, to a final covariance P, in finite
time. Furthermore, a closed-form solution to the above problem was given in Ref. 10, which for completeness
we present below.

Theorem V.3. [10] The covariance steering problem in continuous time (89) has the solution
K(t) = -Q, () B, 1I(t), (40)

where II(t) is a symmetric matriz that satisfies the matriz Riccati equation

—I1 = AT+ TTA + Q. (t) — 1B, Q,, ' (1) BJ,II, (41)
with the initial condition
2P—1 4I 1/2
() = 2 21’0 — B Py — Pg;01/2<74 + P;C{Q@;QlPxf@;QTPa}f) P2 (42)
where
Q11 Pra| _ D11(tr,0) Pia(ty,0) (43)
Dy Do Doy (ty,0) Doo(ty,0)|
and where

_ @11(2?,5) @12(t,5)
B(t,s) = [‘1321(7575) %2“78)] (44)

is the transition matrixz for the Hamiltonian system where

o0(t,s) _

= H(t)D(t,s), P(s,s) =1, (45)
| A =B.Q'(H)B],

HO=| o0 (46)

C. Covariance Steering with Mass Feedback

In Section V.A, we assumed that the state and control covariances were known before solving the mean
steering problem. However, the covariance steering solution presented in the previous section depends on
the mass, which, in turn, is an output from the solution of the mean steering problem. Therefore, a control
that solves the mean and covariance steering problems cannot be found by simply solving each problem
separately. One solution would be to perform a fixed point iteration until the mean and covariance steering
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solutions are in agreement, as was done in [14], but such an iteration would be time consuming and would
require guarantees on convergence to be suitable for onboard use. In this section, we present an alternate
approach: we modify the covariance steering problem so that it does not depend on the mass.

Since the throttle is bounded by p; and ps, the mass will also be bounded from below by m; and from
above by m,,, where

me(t) = mo — paat, (47)
my(t) = mo — prat. (48)

Let (K*, PY) be the solution of Problem (39) for m = m,. Then P! solves
Pl =(A+m;'BK")P! + P{(A+m, ' BK")" ++*m,?BB", P.(0) = Py, (49)

with P(t 7) = Py;. Our objective is to augment this solution to solve the problem for any mass greater than
my, that is, we want to find K as a function of m, my, and K* so that the state covariance is less than or
equal to PY. Then, even when we only are given bounds on the mass, we can still ensure that

Pw(tf)ng(tf)Zow. (50)
Proposition V.4. Let P,(0) = P5(0) and
m
K(t,m) = K, tel0,ts]. 51
(tom) = KO, <0t 61)

Then Py (t) < PL(t) for all t € [0,t].

In order to prove this result we will need the following result from Ref. 15, which is restated as Lemma
V.5 below and is adapted for our purposes in Corollary V.6.

Lemma V.5. [15] Let K;, i = 1,2, be a solution of
K; = —AJ()K — KAi(t) — Qi(t) + KS;(t) K (52)

on some interval 7 C R. If for some ty € T, Ki(ty) < Kao(ty) or (Ki(ty) < Ka(ty)) and if

Q2 A
Ay =S

(=9 4
A =5

(t) forte T (53)

then K1(t) < Ka(t) or (K1(t) < Ka(t)), respectively, for allt € T N (—o0,ty].
Corollary V.6. Let P;, i = 1,2, be a solution of
By = A{(1) P+ PiAi(1) + Qi(t) (54)

on the interval [0,tf]. If P1(0) = P»(0), and if

(,ilf;y Az el (55)
then Py(t) < Pi(t) for all t € [0,t;].
Proof. Suppose that Eq. (53) holds. It follows from Lemma V.5,

Ki(ty) < Ka(ty) = Ki(t) < Ka(t) forallt € .7 N(—o0,ty]. (56)

This statement is equivalent to the statement

K5(0) < K1(0) = Ky(t) < Ki(t) forallte T NJ0,00). (57)
The result follows by changing the sign of coefficients from Lemma V.5 accordingly. O
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Proof. (of Proposition V.4) Rewrite the equation for P! as
P! = (A+m;'BK*)P! + P{(A+m; ' BKY)" +~*m;?BB" (58)

=m; > {(m%A —myBK*)P! + PY(m?A — myBK*)" + WQBBT] . (59)

Substituting K = mK*/m, into the equation for P, yields

P, = (A4+m 'BK)P, + P.,(A+m 'BK)" +~+*m 2BB" (60)
2

= m;? [(m%A — myBK")P, + P,(m2A — myBK*)" + VQ%BBT] . (61)

Define )
Ai = Ay =mlA— BK', Q,=+*BB", Q,=+""LBB", (62)

m
so that

P! =m;2(A P! + PLAT + Q)), (63)

By Corollary V.6 with P, = P! and P, = P,, if

Q1—9Q2 0
0 0

] (t) >0, tel0,ty], (65)
then P,(t) < PL(t) for all t € [0,¢4]. Since m > my and BB™ > 0,
2 T m%
Q1 —-Q=7"BB 1‘@ 20, (66)

which implies that Eq. (65) holds, thus completing the proof. O

A feedback gain determined using this procedure will depend on the mass, and therefore the control
covariance will depend on the mass as well. To guarantee that the results of Section IV hold for any
me < m < my,, we must find an upper bound on P,. To this end, let (K¢ P’) be the solution of the
covariance steering problem for m(t) = my(t). Then
M,

2
P, =KP,K" = K'P,K" <™
my my

K'P'K" = Py o, (67)

where the resulting upper bound P, max is only a function of time. Interestingly, if the mass is known
precisely when solving the covariance steering problem, then m,, = m = my, and it follows that P, = P, max.
More generally, the difference between P, and P, max decreases monotonically as the gap between the lower
and upper bounds on mass decreases.

D. CS-PDG Algorithm

The results of this paper are summarized in the following algorithm for powered descent guidance.

Fized Final Time CS-PSG Algorithm

1) Input tg,mo, 8,7 > 0, Py, Pr; > 0, Zo, and my(t), m,(t) for t € [0,ty].

)
2) Solve the CS problem (39) with mass m, to obtain P.(t) and K*(t) for t € [0,y].
3) Set K(t,m) =mK"(t)/m(t).

)

4) Use P, max(t) from (67) to solve (24) for p7(t) and p3(t), t € [0,¢y].

11 of 17

American Institute of Aeronautics and Astronautics



Downloaded by GEORGIA INST OF TECHNOLOGY on July 31, 2019 | http://arc.aiaa.org | DOI: 10.2514/6.2019-0646

5) Solve the deterministic PDG problem (30) for fixed ¢; to obtain @(t) and Z(t), t € [0,t¢].
6) Return control law w(t, z,m) = a(t) + K(t,m)(z — z(t)).

The fuel cost is a unimodal function of final time,? and therefore the free final time problem can be

solved by performing a line search over t¢. Also, since the deterministic PDG problem returns an estimate
for m(t), we can iteratively tighten the mass bounds my(t), m,(t). However, we found that this does not
significantly improve performance, and problems arise from the discontinuous nature of the mean control
that affects convergence. Furthermore, the feedback control will cause the actual mass to deviate slightly
from the mass profile returned by the deterministic PDG solver, and by using hard lower and upper mass
limits my(t), m.,(t) the final covariance is guaranteed to be less than or equal to the target covariance by
Theorem V 4.

VI. Numerical Simulation

In this section we present a numerical example of a powered divert maneuver for MSL. Suppose that the
1,905 kg MSL descent stage is is at an altitude of 1,500 m with a velocity of 125 m/s and flight path angle
of —36.9° when the target landing point is updated to a position 2,000 m behind the current position, in the
plane of the velocity vector. Assume an initial state covariance of

P,, = diag(200, 200, 200, 10, 10, 10), (68)

and target final covariance
P,, = diag(10,10,10,1,1,1), (69)

where velocity and distance are in units of m/s and m. We enforce that the probability of an out of bounds
throttle command is 0.1% (8 = 0.001). Properties of the MSL descent stage and a summary of simulation
settings are given in Table 1.

The optimal maneuver time was 88 sec, and select trials from a 2,000 trial Monte Carlo run are shown
in Figures 5 and 6. In Figure 7 the control components from the Monte Carlo trials are shown relative to
the maximum and minimum throttle constraints with 99.9% of trials contained within the blue tube. In this
figure, we see that the tube representing a fixed probability of controls is along the constraint boundary.
This is analogous to the deterministic case, where, instead, the known control would be on the constraint
boundary.

The thrust magnitude profile is shown in Figure 8 next to a plot of the probability that w is in € as a
function of the throttle percentage. The control covariance was higher at time ¢ = 1 than at time ¢ = 50,
and hence the points where the probability curve intersects the line 1 — 8 are closer together at ¢ = 1 than
at t = 50.

In addition to using the proposed method, this scenario was also run with three levels of constant throttle
bounds (i.e., pJ, pg constant) and the same feedback controller: the bounds were set so that the probabilistic
constraint in control is satisfied at every instant of time; the bounds were manually tuned so that the
maneuver appeared to be successful based on the Monte Carlo results; and the bounds were set to exactly
the maximum and minimum limits. Lastly, the proposed method was also run with 5 = 0.05. A comparison
of the proposed method to these four cases is shown in Figure 9, and numerical results are listed in Table 2.

As expected, the final state covariance in the large margin case meets the final covariance target, but
uses more fuel compared to the proposed method. The case without any margin does not meet the final
covariance target, but uses less fuel. Interestingly, when the margin was tuned so that the final covariance
is nearly met, despite significant throttle saturation, there was a lower fuel cost compared to the proposed
method. However, since the control is saturated, the state covariance dynamics in Eq. (9) no longer apply,
and therefore the state statistics guaranteed by the covariance steering controller are no longer exact.

VII. Conclusion

In this paper, we have extended the deterministic theory on minimum-fuel powered descent to the more
general case of steering the initial position and velocity distributions to a target position and velocity dis-
tributions, while considering Brownian motion process noise acting on the system. By assuming that the
reference control is much larger than the deviation to correct for disturbances, we separated the stochastic
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Figure 5: Select trajectories from a Monte Carlo simulation. The reference trajectory is depicted by a solid black line and trials
are in gray. The thrust angle is measured from the vertical, and the minimum and mazimum mass are plotted with dashed
lines.
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Table 1: Simulation settings

Property Value  Unit Property Value Unit
Number engines 6 Wet mass mg 1,905 kg

Engine cant angle 27 deg Propellant mass 400 kg

Thrust per engine 3,100 N « 4.4865e-04 kg/N sec
Specific impulse 210 sec Py, diag(200, 200, 200, 10,10,10) m?/s%, m?
Total thrust 16,573 N P, diag(10,10,10,1,1,1) m?/s2, m?
Minimum throttle 30 % o (1500, 0, 2000) m
Maximum throttle 80 % To (—75,0,100) m/s
Pointing angle 0,, 75 deg

Glide slope angle 0, 86 deg

Table 2: Comparison of simulation results. The state covariance matriz was computed from 2,000 Monte Carlo runs, where
position and velocity are in units of m and m/s, and the error is measured with the Frobenius norm. Note that if /\mm(me -
Py(ty)) <O, then Pp(ty) > Pry.

Propellant Used, kg Final Covariance Error
Reference  Mean ||ow — Pw(tf)H Amin(Pr; — Pe(ty))
No margin 355.56 357.09 31.33 -31.33
Small margin 367.96 367.76 17.82 -17.82
Large margin 400.28 400.14 14.29 -14.29
Proposed (8 = 0.001) 379.17 379.70 2.29 -0.0019
Proposed (8 = 0.05) 366.54 367.18 1.61 -0.6315

1.6 Mean i
Trial
1.4 | — — Glide Slope h

Altitude, km
SO =
o s & 0 o~ i

(=]

Downrange, km

Figure 6: Select trajectories from a Monte Carlo simulation. The reference trajectory is depicted by a solid black line and the
glide slope constraint is shown by a dashed line. The shaded region contains 99.9% of trajectories.
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in green and red. Trials from a Monte Carlo are shown inside a tube containing 1 — B probability.
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Figure 9: Comparison of proposed method to solutions obtained by varying p{ as a constant bound. From top to bottom: bounds
set to the absolute limit (i.e., no margin); constant bounds set, by trial and error, so that most trajectories reach the target
despite control saturation; constant bounds set so that control will not saturate; bounds set by proposed method with 3 = 0.001;
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powered descent dynamics into a deterministic mean and a stochastic perturbation. It was then shown that a
probabilistic constraint on the control magnitude introduced in the trajectory design problem a dependence
on the closed-loop system behavior, and this dependence caused the two problems to be coupled. For this
reason, the covariance steering formulation was extended to the use of mass feedback so that the controller
design is not mass dependent, and therefore the resulting CS-PDG guidance algorithm does not require any
iteration and is suitable for onboard use. The proposed approach was then applied to an MSL powered
divert scenario in a numerical simulation.

An interesting consequence of constraining the control bounds in probability was shown in Section VI. The
baseline case with a small throttle margin resulted in saturated controls that did not satisfy this constraint,
but in spite of this, the final state covariance target was nearly met. Since the control was often saturated
in this case, the fuel cost was lower than the proposed method that constrained the control in probability.
On the other hand, the proposed method fits into the existing theory on the control of state covariances,
which allows us to precisely target final state covariances. In light of this observation, we are interested in
studying the control of state covariances with bounded controls in a future work.
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