
Temporal Gaussian Mixture Layer for Videos

AJ Piergiovanni 1 Michael S. Ryoo 1

Abstract
We introduce a new convolutional layer named
the Temporal Gaussian Mixture (TGM) layer and
present how it can be used to efficiently capture
longer-term temporal information in continuous
activity videos. The TGM layer is a temporal con-
volutional layer governed by a much smaller set of
parameters (e.g., location/variance of Gaussians)
that are fully differentiable. We present our fully
convolutional video models with multiple TGM
layers for activity detection. The extensive exper-
iments on multiple datasets, including Charades
and MultiTHUMOS, confirm the effectiveness
of TGM layers, significantly outperforming the
state-of-the-arts1.

1. Introduction
Activity videos are spatio-temporal data: they are image
frames with a specific width/height (XY) concatenated along
time axis (T). Recognition from such videos requires captur-
ing both spatial and temporal information, desirably using
learned convolutional kernels. Temporal convolution is
particularly beneficial in activity ‘detection’ tasks, which
require making activity decisions at every frame given a
continuous video (Sigurdsson et al., 2016b; Yeung et al.,
2015). Previous methods investigated using 3-D XYT con-
volutional filters (Tran et al., 2014; Carreira & Zisserman,
2017) as well as the models with 2-D XY conv. layers fol-
lowed by 1-D temporal conv. (Tran et al., 2018), pooling or
attention layers (Piergiovanni et al., 2017).

Understanding complex multi-activity videos requires cap-
turing information in long-term time intervals. Different
frames contain different information, and the model needs
to learn to take advantage of as many frames as possible,
while abstracting them efficiently. Previous attempts of sim-
ply pooling representations over time or learning temporal

1Department of Computer Science, Indiana University. Corre-
spondence to: AJ Piergiovanni <ajpiergi@indiana.edu>, Michael
Ryoo <mryoo@indiana.edu>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

1Code/models: https://github.com/piergiaj/tgm-icml19

x

Soft-Attention

C

M

M

L

C

L

Gaussians
Temporal Gaussian

Mixture

=

μ1
σ1

μ2
σ2

μ3
σ3

μ4
σ4

ac,m
KC

Figure 1. Example illustrating how our Temporal Gaussian Mix-
ture layer is computed. Multiple (M) temporal Gaussian distri-
butions are learned, and they are combined with the learned soft
attention (mixing) weights to form the C temporal convolution
filters. L is the temporal length of the filter.

conv. filters with a small number of frames (e.g., 16 or 64)
was thus often insufficient to fully consider rich long-term
temporal context. Simultaneously, bruteforcely increasing
the temporal filter length (to look at more frames) results
more learnable parameters, requiring more training data,
which can be expensive when activities are rare.

In this paper, we introduce a new convolutional layer named
the Temporal Gaussian Mixture (TGM) layer, and present
how it can be used to efficiently capture longer-term tempo-
ral information in activity videos. Our temporal Gaussian
mixture layer is a temporal convolutional layer, whose fil-
ters/kernels are controlled by a set of (temporal) Gaussian
distribution parameters. Each of our temporal Gaussian
distributions specify (temporally) ‘where’ the model should
look, and our Gaussian mixture layer combines them as mul-
tiple convolutional filters to be applied on top of temporally-
continuous representations. This layer allows the video
representation at each time step to be constructed while fo-
cusing on different neighboring temporal regions, instead
of only focusing on its local segment. It is a convolutional
layer governed by a much smaller set of parameters (i.e.,
locations/variances of the Gaussians as well as their mix-
ture weights) that are fully differentiable. Importantly, the
number of parameters of the TGM layer is independent of
the length of the filter, allowing the model to capture longer-
term temporal information without additional parameters.

The motivation behind our temporal Gaussian mixture layer
is to learn the temporal structure of an activity as a composi-
tion of temporal Gaussian regions/attentions. Such structure
allows the model to obtain a compact spatio-temporal repre-
sentation abstracting each (long-term) time interval, using
multiple temporal conv. layers with far fewer parameters.
It is also related to the previous temporal attention works

https://github.com/piergiaj/tgm-icml19

Temporal Gaussian Mixture Layer for Videos

(Piergiovanni et al., 2017), but our model is designed to be
fully convolutional to handle continuous data and it learns
more compositional structures with multiple layers.

We present video-CNN models using our TGM layers for
activity detection in continuous videos. Our model stacks
TGM layers on top of several state-of-the-art CNNs such as
I3D (Carreira & Zisserman, 2017). This enables our model
to capture longer-term temporal information than provided
by the base CNNs, compositionally modeling the temporal
structure with multiple TGM layers. Our model was evalu-
ated on multiple public datasets including MultiTHUMOS
and Charades, and was able to outperform the best previous
activity detection CNNs by a meaningful margin.

2. Related Works
Learning video representations for human activity recogni-
tion has been successful. CNN methods allow end-to-end
learning of video features and representations optimized for
the training data, performing superior to traditional works
(Aggarwal & Ryoo, 2011) for video understanding.

Two-stream CNN models take a single RGB frame and a
small number of optical flow frames as inputs to capture both
motion and appearance information in videos (Simonyan
& Zisserman, 2014; Feichtenhofer et al., 2016). Models
learning 3-D spatio-temporal (XYT) convolutional filters
were designed and applied to many activity recognition
tasks as well (Tran et al., 2014; Carreira & Zisserman, 2017;
Tran et al., 2017; Hara et al., 2017). Large scale datasets for
activity detection, such as THUMOS (Jiang et al., 2014), Ac-
tivityNet (Heilbron et al., 2015), Kinetics (Kay et al., 2017),
and Charades (Sigurdsson et al., 2016b) provided these ap-
proach the necessary training data to learn the models. Such
3-D XYT CNNs were also used to capture spatio-temporal
information for activity detection (Xu et al., 2017; Shou
et al., 2016; 2017; Zhao et al., 2017). However, all these
CNNs were limited to the consideration of a fixed local
video segment (e.g., 16 frames in (Tran et al., 2014) and 64-
99 frames in (Carreira & Zisserman, 2017)) when making
activity decisions.

Some works studied combining representations over longer-
term temporal intervals (Karpathy et al., 2014; Ng et al.,
2015; Varol et al., 2017), but it was generally done with a
temporal pooling of local representations or spatio-temporal
convolutions with slightly larger fixed intervals. Recurrent
neural networks (RNNs) have also been used to model ac-
tivity transitions between frames (Yeung et al., 2015; 2016;
Escorcia et al., 2016), but they were strictly sequential and
had limitations in maintaining temporal information over
a longer temporal duration, particularly for videos with
multiple complex activities. Recently, CNN models using
temporal attention for activity videos (Piergiovanni et al.,
2017; Piergiovanni & Ryoo, 2018b) were studied as well.

However, a fully convolutional model to analyze continuous
videos while efficiently representing information in long
term intervals has been lacking.

Several works have explored using parameterized convolu-
tional kernels for point clouds (Xu et al., 2018) or images
(Cohen et al., 2018), but were quite different from our design
to handle long-term temporal information.

Our layer is different from the previous standard spatio-
temporal convolutional layers in that it relies on significantly
fewer parameters by forcing filter shapes to be Gaussian
compositions. Our temporal layer is also different from
previous Gaussian Mixture Model layers (Variani et al.,
2015) in that our layer is convolutional while they are not.

3. Approach
In this section, we introduce a new convolutional layer
named the Temporal Gaussian Mixture (TGM) layer, and
present how it can be used for activity recognition. Our Tem-
poral Gaussian Mixture layer is a temporal convolutional
layer to be applied on top of a sequence of representations
(usually from frame-level or segment-level CNNs), whose
filters/kernels are controlled by a set of (temporal) Gaus-
sian distribution parameters. The motivation is to make
each temporal Gaussian distribution specify (temporally)
‘where to look’ with respect to the activity center, and rep-
resent the activity as a collection/mixture of such temporal
Gaussians convolved with video features. Our layer is fully
differentiable and trainable using standard backpropagation.

Our TGM layer can be interpreted as a a form of 1-D con-
volution where the filters are determined by a mixture of
Gaussians. However, we design our TGM layer differs from
the standard temporal convolutional layers of learning 1-
D (time) or 2-D (channel-by-time) filters in the following
aspects (illustrated in Fig. 2):

1. Instead of learning temporal convolution filters of any
arbitrary values, our filter is forced to have the form of
a temporal Gaussian mixture shared across all frame-
level channels. This allows the layer to rely on signif-
icantly fewer number of (fully differentiable) param-
eters, while capturing the concept of temporal struc-
ture/attention.

2. Our temporal Gaussian mixture layer handles multiple
3-D tensors internally to preserve channels from the
frame-level CNN by adding a new temporal channel
axis. Its input is 3-D (channel-by-channel-by-time),
where one channel dimension is inherited from the
frame-level CNN and this dimension size remains un-
changed. This is a form of grouped convolution, and
we call this more specifically temporal channel group-
ing (TC-grouping).

Temporal Gaussian Mixture Layer for Videos

D

LT

D * =
T

1

1-D
Kernel

Input Output

* =

...

(a)

D

LT

D * =
T

1

TGMsInput Output

* =

...

(b)

D

LT

D * =
T

1

TGMsInput Output

* =

...

(c)

1
L

T

D * =

T

D

TGMsInput Output

* =

...

(d)

Figure 2. (a-c) Different forms of 1-D temporal convolutions
which take a D × T input and produces a C × T output based on
C number of D × L kernels: (a) the standard 1-D convolution,
(b) using Gaussian mixtures for 1-D convolution while sharing
Gaussian mixtures across input channels, and (c) usingD different
Gaussian mixtures for 1-D convolution. (d) Our TGM layer (with
TC-grouping) in its simplest form (i.e., 1-layer case) applying the
1×L temporal kernel in a 2-D convolutional fashion, maintaining
both time and feature axis.

3.1. Temporal Gaussian Mixture layer

Our temporal Gaussian mixture layer takes a 3-D input with
the dimensionality ofCin×D×T , whereCin is the number
of input channels, D is the dimensionality of the represen-
tations from frame-level (or segment-level) CNNs, and T
is the time. Given such input, the TGM layer convolves
it with Cout number of 1 × L filters/kernels, generating a
Cout×D×T -dim representation as an output. L is the tem-
poral length of the temporal Gaussian mixture filter. D is
usually 1K or 4K and T is the number of time steps (frames)
in each video (i.e., it varies per video). Cout is the number
of different mixtures, corresponding to the number of output
channels in standard convolution. In Fig. 2, we compare
our TGM layer with the different forms of temporal convo-
lutions. We experimentally compare all these versions to
confirm the benefits of our TGM layer.

Our layer is composed of a set of M Gaussians. Each Gaus-
sian has 2 parameters: a center µ̂ and a width σ̂. Each layer
has additional hyper-parameters: L, the temporal duration
and M , the number of Gaussians to learn. We constrain the
learned center to be between 0 and L and σ to be positive:

µ = (L− 1) · tanh (µ̂) + 1

2
, σ2 = exp (σ̂). (1)

We use the above µ and σ to construct the temporal Gaussian
kernels. This acts as a strong sparsity constraint on the
convolutional kernel as well as a drastic reduction of the
number of learnable parameters. We construct a temporal

1
L
K1

T

D

C

...

T

D
*

*

... ...

=

=

... ...

T

Input TGMs Output
KC

T

D

C

Figure 3. Illustration of a TGM layer with grouped convolution.
This layer learns a set of C Gaussian mixtures that are convolved
with the input channels.

Gaussian mixture convolutional kernel as:

K̂m,l =
1

Z
exp− (l − µm)2

2σ2
m

(2)

where Z is a normalization constant such that
∑L

l K̂m,l =

1, resulting in K̂ being an M × L matrix.

Instead of making the model learn a separate set of Gaus-
sian distributions per activity class, we take the approach of
maintaining multiple Gaussian distributions shared across
classes and obtain a Gaussian ‘mixture’ filter by learning
soft-attention weights. We learn a set of soft-attention
weights per output channel i, ω ∈ RCout×M . We create the
soft-attention weights by applying the softmax function over
theM Gaussians, enforcing each input channel weights sum
to 1.

ai,m =
expωi,m∑
j expωi,j

(3)

Based on temporal Gaussian distributions K̂i and attention
weights ai,m, the temporal convolution filters our TGM
layer is computed as:

Ki =
∑
m

ai,mK̂i. (4)

This provides us convolutional filters having the form of
a mixture of temporal Gaussians, controlled based on 2 ·
M +Cin ·Cout ·M parameters (instead of learning D2 ·L
parameters without any constraint, as in standard temporal
convolution where C << D). An overview of this process
is shown in Fig. 1.

3.1.1. SINGLE TGM LAYER - DIRECT PER-CLASS
ACTIVITY MODELING

The representation we obtain by applying our base CNNs to
each frame (or local segment) has the dimensionality of D,
and stacking them along time axis provides us the represen-
tation with 1×D×T -dim. That is, in the case of using only
one TGM layer to capture activity representations, our Cin

is fixed to 1 and Cout is fixed to be the number of activity
classes. This is the simplest case of our model, attaching
one TGM layer on top of the 1×D × T representation.

Our convolutional kernel, K, has a learned Gaussian mix-
ture for each activity class. Let the video features v be a
D × T matrix. Each Ki is a 2-D convolutional filter with

Temporal Gaussian Mixture Layer for Videos

T
D

Cin

Cin

Input TGMs Representation
for each Cin

...

1 1

* =

Cin T

D

Cin

1 1

* =

Cin T

D

T

D

Cout

1x1 Convolution
to combine Cin

Concatenation of Cout
representations

......

1
L
Ki1...

T

D
*

*

... ...

=

=

... ...

T

Kij

T

D

1
L
K11...

T

D
*

*

... ...

=

=

... ...

T

K1j

T

D

Figure 4. Illustration of a TGM layer with channel combination. The kernels are applied to each input channel, Cin, and a 1x1 convolution
is applied to combine the Cin input channels for each output channel, Cout.

a size of 1 × L, and convolving this with v provides us a
representation S with Cout number of D × T responses
since Cin is 1 in this case. This per-class representation can
then be used as input to a fully-connected layer for activity
classification. For i ∈ {1, 2, . . . , Cout}:

si = v ∗Ki, S = [s1, s2, . . . , sCout
] (5)

Fig. 2 visually illustrates how each TGM filter is convolved
with the input (Fig. 2d), compared to the standard 1-D con-
volution (Fig. 2a) or other forms of the temporal layers
(Fig. 2b-c).

3.1.2. MULTIPLE TGM LAYERS - GROUPED
CONVOLUTION

We generalize the above formulation to allow the TGM
layers to be sequentially applied. The idea is to enable
our model to capture more complex, nonlinear temporal
structure by having multiple levels of temporal layers. In
this case, the input for each layer isCin×D×T dimensional
(instead of 1 × D × T), where the input channels are the
number of output channels from the previous layer. Our
kernels at each layer, Ki, are parameterized and learned as
before.

By using grouped convolution with the number of groups set
toCin, we can efficiently separate the input into per-channel
values and convolve each of them with the designated Ki

kernel, as shown in Fig. 3. That is, we learn a filter Ki per
channel by setting Cin = Cout. For i ∈ [1, Cout],

si = fi ∗Ki, S = [s1, s2, . . . sCout
] (6)

Here, f is a Cin × D × T tensor, where D is the dimen-
sionality of the feature and T is the number of frames. The
result of the per-channel convolution, si, is a D × T repre-
sentation. We concatenate these representations along the
channel axis, resulting in S, a Cout×D× T representation.
As this convolution results in the same output shape, we can

stack these layers. Each layer is able to capture increasing
temporal resolution, allowing the model to capture levels of
abstractions.

3.1.3. MULTIPLE TGM LAYERS - CHANNEL
COMBINATION

In the above subsection, we introduced an approach of stack-
ing multiple TGM layers to model a hierarchical composi-
tion of temporal representations. However, in the grouped
convolution case, each output channel of the layer is solely
dependent on its corresponding input channel. That is, each
kernel only considers information from a single output chan-
nel of the previous layer.

Therefore, we further generalize our TGM layer so that
the layer combines representations from multiple input
channels for each output channel while using the learned
temporal kernels. We learn a set of convolutional kernels
K ∈ RCout×Cin×L (i.e., we learn Cout ·Cin Gaussian mix-
tures). Given f which is the Cin×D×T representation, for
each output channel i ∈ [1, Cout] and each input channel
j ∈ [1, Cin] pair, we convolve the associated filters with the
input.

Gi,j = (fj ∗Ki,j) (7)

where each Gi,j is a D × T -dim representation.

We then learn a 1x1 convolution followed by a ReLU activa-
tion function for each i ∈ [1, Cout], which we call wi, that
maps from Cin channels to 1 channel. The 1x1 convolution
learns to combine the channels from the previous layer. By
design, the TGM kernel is positive and sums to 1. Adding
the unconstrained 1x1 convolution adds non-linearity (using
the ReLU activation function) to our layer while only adding
Cout · Cin parameters. The layer is computed as:

si = Gi ∗ wi = (fj ∗Ki,j) ∗ wi, S = [s1, s2 . . . , sCout
]

(8)

We then stack the si representations along the channel axis
to produce S, the Cout ×D × T -dim representation. This

Temporal Gaussian Mixture Layer for Videos

1xDxT

Per-segment
CNN First TGM LayerVideo

frames

C1xDxT

Second TGM Layer

C2xDxT

C1x1x1xL

Per-Fram
e

C
lass C

lassification

C2xC1x1xL

...C1

C2

C1

1-d conv

CfxDx1

CfxT

Figure 5. An overview of an example video CNN model with two TGM layers. Because of its fully convolutional design, it is able to
handle videos with any length.

process is illustrated in Fig. 4. This method generalizes our
approach to allow the layer to take input of Cin ×D × T
and produce output of Cout × D × T . These layers can
easily be stacked to learn a hierarchical representation.

3.2. Video CNN models with TGM layers

Our goal is to do activity detection which we define as
making a per-frame (or per-segment) classification. Given
a video, at each time step t, we want to make the model
decide which activity the frame corresponds to (including
no-activity). As a baseline, we train a fully-connected layer
that classifies each per-frame D-dimensional vector, vt. As
multiple activities can occur at the same time, or no activities
at all, we treat this as a mutli-label classification task. We
minimize binary cross entropy:

L(v) =
∑
t,c

zt,c log(p(c|vt)) + (1− zt,c) log(1− p(c|vt))

(9)
where zt,c is the ground truth label, 1 if activity c is occur-
ring at time t and p(c|vt) is the output of our model for class
c at time t. Fig. 5 shows an example CNN.

4. Experiments
4.1. Implementation and baselines

Implementation We used I3D (Carreira & Zisserman,
2017) and the two-stream version of InceptionV3 (Szegedy
et al., 2016) pretrained on Imagenet and Kinetics as our
base per-frame CNNs. Our default L setting used for the
TGM layers as well as the other baselines was as follows:

when using I3D segment features (3 features per second
from 24fps videos), the 1 layer models used L = 15 and the
3 layer models used L = 5. When using InceptionV3 frame
feature (at 8 fps), the 1 layer models used L = 30 and the 3
layer models used L = 10. These layers were attached on
top of the base CNN, as described in Subsection 3.2. Please
check Appendix for implementation and training details and
results on other datasets.

Baselines In order to confirm the advantages of our TGM
layers, particularly against previous temporal models, we
implemented many baselines. The first is (i) a standard per-
frame classifier in which the prediction at each time-step
only depends on a single feature vector with no contextual
temporal information. We also used (ii) LSTMs on top of
per-frame representations, which were popularly used to
capture temporal information (Donahue et al., 2015). We
train a bi-directional LSTM with 512 hidden units to make
per-frame predictions. We also tried (iii) the fixed pyramid
temporal max-pooling of level 3 (Ryoo et al., 2015).

We also compare our model against (iv) the model with stan-
dard temporal convolutional layers (i.e., 1-D convolution
with a D × L kernel) on top of per-frame representations.
This is similar to the temporal conv. used in (Tran et al.,
2018). Temporal lengths (i.e., L) of the 1-D conv. filters and
the pooling windows were set to be identical to the TGM
filters. That is, they capture the same temporal duration
as TGMs. In all our experiments, we follow the standard
evaluation setting of computing per-frame mean average
precision (mAP) and report those values.

Temporal Gaussian Mixture Layer for Videos

Table 1. Comparison of various architectures on MultiTHUMOS using both I3D per-segment and InceptionV3 per-frame features. We
found that TGM layers with 1x1 convolution channel combination performed the best. Results are in mAP. Note that we use the same
filter length for “Temporal Conv” and “TGM” models, as described in Section 4.1.

I3D InceptionV3
Spatial Temporal Two-Stream Spatial Temporal Two-Stream

Baseline 22.3 25.0 29.7 13.6 14.1 15.2
Temporal Conv 32.5 35.5 38.4 15.2 15.5 15.8

3 Temporal Conv 20.4 23.4 24.4 5.3 6.1 6.5

TGM layers with grouped convolution

1 TGM 35.1 37.8 40.5 16.3 17.5 18.0
3 TGM 36.4 42.3 43.5 17.5 18.3 19.2

TGM layers with channel combination

1 TGM (soft) 35.2 37.9 40.2 17.2 17.6 18.4
1 TGM (1x1) 36.1 38.2 40.8 17.2 17.7 18.4
3 TGM (soft) 36.2 40.1 42.3 17.5 19.1 21.2
3 TGM (1x1) 37.2 42.1 44.3 17.9 19.3 22.2
5 TGM (1x1) 37.4 42.4 44.8 18.2 20.3 23.4

We also compare to many different forms of the TGM layer:
(v) 1-D convolution with a single Gaussian mixture per input
(Fig. 2b); (vi) 1-D convolution with the kernel consisting of
many Gaussian mixtures (Fig. 2c); (vii) our TC-grouping
with unconstrained kernels (see Appendix for figure); (viii)
with a learned mixture of random temporal filters and (ix)
with a learned mixture of fixed Gaussians.

In addition, we also tried the approach of combining our
TGM layers with the super-event representations, which
capture global context (Piergiovanni & Ryoo, 2018b). We
concatenated the learned super-event representation with
our representations from TGM layers.

4.2. THUMOS / MultiTHUMOS

Dataset We conducted our experiments on both THU-
MOS (Jiang et al., 2014) and MultiTHUMOS (Yeung et al.,
2015) datasets, while using the more challenging MultiTHU-
MOS as the main dataset. MultiTHUMOS is an extended
version of the THUMOS dataset that densely annotates
the continuous videos. The dataset consists of 65 differ-
ent classes, compared to 20 in THUMOS, and contains on
average 10.5 activities per video and 1.5 labels per frame
and up to 25 activity instances in each video. This is in
contrast to many other activity detection datasets such as
ActivityNet (Heilbron et al., 2015), which only has on aver-
age ∼1 activity per video. THUMOS and MultiTHUMOS
consists of YouTube videos of various sport activities like
basketball/volleyball games, weight lifting, and track/field.

We followed the standard evaluation setting for each dataset
(e.g., measuring mAP based on per-frame annotations in
MultiTHUMOS). There are 1010 validation videos and
1574 test videos. We used these continuous validation
videos for the training of our models. We did not take ad-

Table 2. Additional number of parameters for models when added
to the base architecture (e.g., I3D or Inception V3).

Model # of parameters

LSTM 10.5M
1 Temporal Conv 10.5M
3 Temporal Conv 31.5M

1 TGM Layer 10K
3 TGM Layers 100K
5 TGM Layers 200K

vantage of the separate training set with segmented videos;
even without them, we outperformed the state-of-the-arts.

Results We compared baselines as well as multiple dif-
ferent versions of our architectures, shown in Table 1. The
model with our TGM layers consistently outperformed base-
line I3D (or InceptionV3) while using the same per-segment
representations. Learning 3 TGM layers further improved
the performance. We also note that the use of a 1x1 con-
voltuion + ReLU non-linearity improves performance more
than soft-attention (weighted averaging), confirming that
this additional non-linearity is beneficial. On the other hand,
we found that stacking multiple standard temporal convo-
lutional layers does not improve performance, often per-
forming worse than the baseline. While a single standard
temporal conv. layer improves over the baseline, stacking
multiple layers significantly increases the number of param-
eters to learn (Table 2) and we suspect this causes overfitting
with the limited amount of samples in the dataset.

In Table 3, we explicitly compare the results of using an
LSTM or temporal conv. with a similar number of parame-
ters to our TGM. This was done by making their temporal
conv. filters to share values across multiple channels. These

Temporal Gaussian Mixture Layer for Videos

Table 3. Comparison of previous methods with comparable number
of parameters and random forms of our TGM layer (using two-
stream I3D on MultiTHUMOS).

Model mAP

LSTM with 100k parameters 6.5
Temporal Conv. with 100k parameters 7.3

TGM with random temporal filters 34.5
TGM with fixed Gaussians 38.5

Full TGM 44.3

Table 4. Comparison of the different forms of temporal convolution
on MultiTHUMOS using RGB I3D features. We set L = 15 and
used 1 layer models for these experiments.

Standard 1-D Convolution (Fig. 2a) 32.5
1-D Conv with shared Gaussian mixture (Fig. 2b) 28.6

1-D Conv with Gaussian mixtures (Fig. 2c) 33.2
TC-grouping with unconstrained kernel 32.8

Our TGM Layer 36.1

models result in nearly random performance, as they were
not designed to cope with a small number of parameters. We
also show results with a mixture of random (fixed) temporal
filters and with a mixture of fixed Gaussians. These results
confirm that (i) modeling the temporal structure as a learned
Gaussian mixture is beneficial and that (ii) further learning
the Gaussian distribution parameters is important.

Also, in Table 4, we compare to the different forms of tem-
poral convolution (as illustrated in Fig. 2). We find that each
filter using one Gaussian mixture across all channels is not
beneficial, while using a Gaussian mixture per-input chan-
nel (i.e., standard 1-D conv. with Gaussian mixture kernels)
outperforms standard 1-D conv. Further, we find that using
TC-grouping outperforms standard 1-D conv even with un-
constrained kernels, although this itself is not as effective as
1-D conv. with Gaussian mixtures. Finally, we find that our
designed TGM layer performs the best, confirming that both
modeling temporal information as Gaussian mixtures and
our designed TC-grouping are useful for activity detection.

Learning multiple TGM layers with channel combination
outperforms the grouped convolution version of TGM and
all the baselines. We also experimented with a version using
soft-attention weights to combine the TGM layer channels,
in addition to our method (Fig. 4) of using 1x1 convolution
followed by a ReLU (to gain non-linearity). We found that
the 1x1 convolution performed better. We tested various
number of Gaussian mixtures (i.e., output channels) and
found that using 80 for the first and second layer and using
65 (i.e., number of classes) for the final layer performs best.

Tables 5 and 6 compare our model using TGM layers with
multiple previous state-of-the-art approaches and baselines.
Our approach meaningfully outperforms all previous ap-

Guard

Shot

Block

Dribble

Dunk

Ground Truth Baseline Super-Events Temporal Conv TMG TMG + Super

Figure 6. Illustration of the temporal regions classified as various
basketball activities from a basketball game video in MultiTHU-
MOS. The TGM layers greatly improve performance.

Table 5. Performances of the state-of-the-art methods and our ap-
proach on MultiTHUMOS. Our approach meaningfully outper-
forms all previous results.

mAP

Two-stream (Yeung et al., 2015) 27.6
Two-stream + LSTM (Yeung et al., 2015) 28.1

Multi-LSTM (Yeung et al., 2015) 29.6
Predictive-corrective (Dave et al., 2017) 29.7

SSN (Zhao et al., 2017) 30.3
I3D baseline 29.7
I3D + LSTM 29.9

I3D + temporal pyramid 31.2
I3D + super-events (Piergiovanni & Ryoo, 2018b) 36.4

I3D + our TGMs 44.3
I3D + super-events + our TGMs 46.4

proaches. Importantly, we are comparing our approach with
different methods of capturing temporal information such as
LSTMs and fixed temporal pyramid pooling while making
them use the exactly same per-frame representations. We
found that while all these methods capture some temporal
information, the TGM layers provide the best performance.
Further, combining the super-event representation (Piergio-
vanni & Ryoo, 2018b) with our TGM feature also benefited
detection, confirming that the TGMs and super-events cap-
ture different aspects of the activity videos. In Fig. 6, we
show an example of the various models predictions on a bas-
ketball video. We outperform the previous state-of-the-art
performance (mAP) by 10% (36.4 vs. 46.4).

Table 6. Performances of our approach compared to the state-of-
the-arts on the continuous version of THUMOS-14 dataset.

mAP

R-C3D (Xu et al., 2017) 28.9
SSN (Zhao et al., 2017) 29.1

TAL-Net (Chao et al., 2018) 42.8
I3D Baseline 43.5

I3D + super-events(Piergiovanni & Ryoo, 2018b) 47.8
I3D + 1 TGMs 45.2
I3D + 3 TGMs 53.5

I3D + 3 TGMs + super-events 57.0

Temporal Gaussian Mixture Layer for Videos

Table 7. Per-frame mAP on Charades, evaluated with the ‘Cha-
rades_v1_localize’ setting. I3D models are two-stream, using both
RGB and optical flow inputs.

mAP

Predictive-corrective (Dave et al., 2017) 8.9
Two-stream (Sigurdsson et al., 2016a) 8.94

Two-stream+LSTM (Sigurdsson et al., 2016a) 9.6
R-C3D (Xu et al., 2017) 12.7

Sigurdsson et al. (Sigurdsson et al., 2016a) 12.8
SSN (Zhao et al., 2017) 16.4

I3D baseline 17.2
I3D + 3 temporal conv. layers (L = 5) 17.5

I3D + 3 temporal conv. layers (L = 30) 12.5
I3D + LSTM 18.1

I3D + fixed temporal pyramid 18.2
I3D + super-events (Piergiovanni & Ryoo, 2018b) 19.4

I3D + 3 TGMs (L = 5) 20.6
I3D + 3 TGMs (L = 30) 21.5

I3D + 3 TGMs (L = 5) + super-events 21.8
I3D + 3 TGMs (L = 30) + super-events 22.3

4.3. Charades
Dataset Charades (Sigurdsson et al., 2016b) is a large
scale dataset with 9848 videos across 157 activity classes.
These videos were recorded in home environments of the
participants based on provided scripts. Each video contains
on an average of 6.8 activity instances, and there are often
complex activities co-occurring. The activities were mainly
performed at home. For example, some activity classes are
‘preparing a meal’, ‘eating’, ‘sitting’, ‘cleaning’, etc.

In our experiments, we follow the original Charades detec-
tion setting (i.e., Charades_v1_localize evaluation), which
is the original setting used in many previous approaches
(Sigurdsson et al., 2016a; Piergiovanni & Ryoo, 2018b).

Results We compare our results with the state-of-the-arts
in Table 7. To our knowledge, our method is obtaining the
best known performance in the original localization setting
of the Charades dataset. Notably, it is performing better
than I3D that obtained the best competition performance,
while using the same feature. Our method also outperforms
standard temporal convolution, LSTMs, and fixed pyramid
pooling, as well as the use of latent super-events. When
setting L = 30 and using 3 TGM layers, our model is able
to capture around 800 frames (about ±15 seconds from
each frame) of temporal information, significantly more
than previous works (e.g., I3D only captures ±2 seconds).
This confirms that a key advantage of the TGM layer is that
the number of parameters is independent of the filter length.

In Table 8 (and Table 3 in Appendix), we compare different
values of L. Due to the short duration of activities in Multi-
THUMOS (3.3 seconds), we find that L = 5 with 3 layers

MultiTHUMOS L=15 MultiTHUMOS L=30

Charades L=30Charades L=15

Figure 7. Illustration of several learned TGM kernels. On Multi-
THUMOS, it learns to focus on shorter intervals to capture shorter
events. On Charades, the Gaussians have a larger σ value, resulting
in filters that attend to longer temporal durations.

Table 8. Effect of L on MultiTHUMOS using only RGB I3D fea-
tures. Note that the 3 TGM layer models capture information in
larger temporal intervals than the 1 TGM layer models for the
same values of L. We also compare to using standard one-layer
1-D conv layer with different values of L.

1 TGM 3 TGM 1-D Conv

I3D Baseline 22.3 - -
L = 3 30.2 31.7 26.6
L = 5 32.5 37.2 28.3
L = 10 34.5 35.4 31.7
L = 15 36.1 34.1 32.5
L = 30 32.5 33.9 26.5
L = 50 32.1 33.7 15.4

performs the best. Larger values of L capture too much
unneeded temporal information, but due to the Gaussian
structure, it does not drastically harm performance. Figure 7
shows that even with longer kernels, the Gaussians learn to
focus mostly on the center of the interval and capture short
intervals. Thus, having too long intervals does not drasti-
cally harm performance, which is in contrast to the standard
1-D convolution. Note that for Charades, the temporal ker-
nels learned to capture much longer temporal durations, as
the average activity in charades is 12.8 seconds and larger
values of L are better.

5. Conclusions
We newly introduced the Temporal Gaussian Mixture
(TGM) layer and demonstrated its effectiveness for multi-
activity detection in continuous videos. Our layer is fully
differentiable and trainable using standard backpropaga-
tion, designed to learn temporal structure. We were able to
confirm that our layer performs superior to state-of-the-art
methods on activity detection datasets including MultiTHU-
MOS and Charades, obtaining the best known performance.
We also tested our approach with two more public video
datasets, MLB-YouTube (Piergiovanni & Ryoo, 2018a) and
AVA (Gu et al., 2017), and confirmed its advantage over the
previous works in Appendix.

Temporal Gaussian Mixture Layer for Videos

Acknowledgements
This work was supported in part by the National Sci-
ence Foundation (IIS-1812943 and CNS-1814985), and by
the ICT R&D program of MSIP/IITP, Republic of Korea
(17ZF1200, Development of XDMedia Solution for Invigo-
ration of Realistic Media Industry).

References
Aggarwal, J. K. and Ryoo, M. S. Human activity analysis:

A review. ACM Computing Surveys, 43:16:1–16:43, April
2011.

Carreira, J. and Zisserman, A. Quo vadis, action recogni-
tion? a new model and the kinetics dataset. In Proceed-
ings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2017.

Chao, Y.-W., Vijayanarasimhan, S., Seybold, B., Ross,
D. A., Deng, J., and Sukthankar, R. Rethinking the faster
r-cnn architecture for temporal action localization. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 1130–1139, 2018.

Cohen, T. S., Geiger, M., Köhler, J., and Welling, M. Spher-
ical cnns. arXiv preprint arXiv:1801.10130, 2018.

Dave, A., Russakovsky, O., and Ramanan, D. Predictive-
corrective networks for action detection. arXiv preprint
arXiv:1704.03615, 2017.

Donahue, J., Anne Hendricks, L., Guadarrama, S.,
Rohrbach, M., Venugopalan, S., Saenko, K., and Dar-
rell, T. Long-term recurrent convolutional networks for
visual recognition and description. In Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 2625–2634, 2015.

Escorcia, V., Heilbron, F. C., Niebles, J. C., and Ghanem,
B. Daps: Deep action proposals for action understanding.
In Proceedings of European Conference on Computer
Vision (ECCV), pp. 768–784. Springer, 2016.

Feichtenhofer, C., Pinz, A., and Zisserman, A. Convolu-
tional two-stream network fusion for video action recogni-
tion. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 1933–1941,
2016.

Gu, C., Sun, C., Vijayanarasimhan, S., Pantofaru, C., Ross,
D. A., Toderici, G., Li, Y., Ricco, S., Sukthankar, R.,
Schmid, C., and Malik, J. AVA: A video dataset of spatio-
temporally localized atomic visual actions. arXiv preprint
arXiv:1705.08421, 2017.

Hara, K., Kataoka, H., and Satoh, Y. Learning spatio-
temporal features with 3d residual networks for action

recognition. In Proceedings of the ICCV Workshop on
Action, Gesture, and Emotion Recognition, volume 2, pp.
4, 2017.

Heilbron, F. C., Escorcia, V., Ghanem, B., and Niebles,
J. C. Activitynet: A large-scale video benchmark for hu-
man activity understanding. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 961–970, 2015.

Jiang, Y.-G., Liu, J., Roshan Zamir, A., Toderici, G.,
Laptev, I., Shah, M., and Sukthankar, R. THUMOS chal-
lenge: Action recognition with a large number of classes.
http://crcv.ucf.edu/THUMOS14/, 2014.

Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar,
R., and Fei-Fei, L. Large-scale video classification with
convolutional neural networks. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), pp. 1725–1732, 2014.

Kay, W., Carreira, J., Simonyan, K., Zhang, B., Hillier,
C., Vijayanarasimhan, S., Viola, F., Green, T., Back, T.,
Natsev, P., et al. The kinetics human action video dataset.
arXiv preprint arXiv:1705.06950, 2017.

Kingma, D. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Miech, A., Laptev, I., and Sivic, J. Learnable pooling with
context gating for video classification. arXiv preprint
arXiv:1706.06905, 2017.

Ng, J. Y.-H., Hausknecht, M., Vijayanarasimhan, S.,
Vinyals, O., Monga, R., and Toderici, G. Beyond short
snippets: Deep networks for video classification. In Pro-
ceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 4694–4702. IEEE,
2015.

Piergiovanni, A. and Ryoo, M. S. Fine-grained activity
recognition in baseball videos. In CVPR Workshop on
Computer Vision in Sports, 2018a.

Piergiovanni, A. and Ryoo, M. S. Learning latent super-
events to detect multiple activities in videos. In Proceed-
ings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2018b.

Piergiovanni, A., Fan, C., and Ryoo, M. S. Learning latent
sub-events in activity videos using temporal attention
filters. In Proceedings of the American Association for
Artificial Intelligence (AAAI), 2017.

Ryoo, M. S., Rothrock, B., and Matthies, L. Pooled mo-
tion features for first-person videos. In Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 896–904, 2015.

http://crcv.ucf.edu/THUMOS14/

Temporal Gaussian Mixture Layer for Videos

Shou, Z., Wang, D., and Chang, S.-F. Temporal action
localization in untrimmed videos via multi-stage cnns. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 1049–1058, 2016.

Shou, Z., Chan, J., Zareian, A., Miyazawa, K., and Chang,
S.-F. Cdc: Convolutional-de-convolutional networks for
precise temporal action localization in untrimmed videos.
arXiv preprint arXiv:1703.01515, 2017.

Sigurdsson, G. A., Divvala, S., Farhadi, A., and Gupta,
A. Asynchronous temporal fields for action recognition.
arXiv preprint arXiv:1612.06371, 2016a.

Sigurdsson, G. A., Varol, G., Wang, X., Farhadi, A., Laptev,
I., and Gupta, A. Hollywood in homes: Crowdsourcing
data collection for activity understanding. In Proceedings
of European Conference on Computer Vision (ECCV),
2016b.

Simonyan, K. and Zisserman, A. Two-stream convolutional
networks for action recognition in videos. In Advances
in Neural Information Processing Systems (NIPS), pp.
568–576, 2014.

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wo-
jna, Z. Rethinking the inception architecture for com-
puter vision. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp.
2818–2826, 2016.

Tran, D., Bourdev, L. D., Fergus, R., Torresani, L., and
Paluri, M. C3d: generic features for video analysis. CoRR,
abs/1412.0767, 2(7):8, 2014.

Tran, D., Ray, J., Shou, Z., Chang, S.-F., and Paluri, M.
Convnet architecture search for spatiotemporal feature
learning. arXiv preprint arXiv:1708.05038, 2017.

Tran, D., Wang, H., Torresani, L., Ray, J., LeCun, Y., and
Paluri, M. A closer look at spatiotemporal convolutions
for action recognition. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition
(CVPR), pp. 6450–6459, 2018.

Variani, E., McDermott, E., and Heigold, G. A gaussian
mixture model layer jointly optimized with discriminative
features within a deep neural network architecture. In
Acoustics, Speech and Signal Processing (ICASSP), 2015
IEEE International Conference on, pp. 4270–4274. IEEE,
2015.

Varol, G., Laptev, I., and Schmid, C. Long-term Temporal
Convolutions for Action Recognition. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2017.

Xu, H., Das, A., and Saenko, K. R-c3d: Region convolu-
tional 3d network for temporal activity detection. arXiv
preprint arXiv:1703.07814, 2017.

Xu, Y., Fan, T., Xu, M., Zeng, L., and Qiao, Y. Spidercnn:
Deep learning on point sets with parameterized convolu-
tional filters. In Proceedings of the European Conference
on Computer Vision (ECCV), pp. 87–102, 2018.

Yeung, S., Russakovsky, O., Jin, N., Andriluka, M., Mori,
G., and Fei-Fei, L. Every moment counts: Dense detailed
labeling of actions in complex videos. International Jour-
nal of Computer Vision (IJCV), pp. 1–15, 2015.

Yeung, S., Russakovsky, O., Mori, G., and Fei-Fei, L. End-
to-end learning of action detection from frame glimpses
in videos. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp.
2678–2687, 2016.

Zach, C., Pock, T., and Bischof, H. A duality based ap-
proach for realtime tv-l 1 optical flow. In Joint Pattern
Recognition Symposium, pp. 214–223. Springer, 2007.

Zhao, Y., Xiong, Y., Wang, L., Wu, Z., Tang, X., and Lin,
D. Temporal action detection with structured segment
networks. arXiv preprint arXiv:1704.06228, 2017.

Temporal Gaussian Mixture Layer for Videos

A. Implementation Details
As our base per-segment CNN, we use the I3D (Carreira
& Zisserman, 2017) network pretrained on the ImageNet
and Kinetics (Kay et al., 2017) datasets. I3D obtained state-
of-the-art results on segmented video tasks, and this allows
us to obtain reliable vt. We also use two-stream version of
InceptionV3 (Szegedy et al., 2016) pretrained on Imagenet
and Kinetics as our base per-frame CNN, and compared
them. We chose InceptionV3 as it is deeper than previous
two-stream CNNs such as (Simonyan & Zisserman, 2014;
Feichtenhofer et al., 2016). We extracted frames from the
videos at 25 fps, computed TVL1 (Zach et al., 2007) optical
flow, clipped to [−20, 20]. For InceptionV3, we computed
features for every 3 frames (8 fps). For I3D, every frame was
used as the input. I3D has a temporal stride of 8, resulting in
3 features per second (3 fps). By design, I3D has a temporal
resolution of 99 frames, so each feature is able to capture
up to 99 frames of temporal information.

We implemented our TGM layers as well as other baseline
layers in PyTorch. Our default setting was as follows: for
3-layer models, we set L = 10 for frame-based features
(i.e., InceptionV3) and L = 5 for segment-based features
(i.e., I3D), as each segment already contains some temporal
information. For 1-layer models, we set L = 30 for frame-
based features and L = 15 for segment-based features. We
set M = 16 and Cout = 80 and Cout = 65 for the last
TGM layer. We found these values to work well on a held
out portion of the training set of MultiTHUMOS. In all
models, we used one fully-connected layer at the end to
make the per-frame or per-segment classification.

We trained our models using the Adam (Kingma & Ba,
2014) optimizer with the learning rate set to 0.01. We de-
cayed the learning rate by a factor of 10 after every 10
training epochs. We trained our models for 50 epochs. We
plan to make all our source code and trained models publicly
available once the paper is published.

B. Hyperparameter Experiments
We conducted a set of experiments to compare the effects of
the temporal duration, L, number of Gaussians, M , and the
number of output channels, Cout. For these experiments, we
only used the one-stream version of I3D with RGB inputs.

Effect of L: In Table 11, we compare different values of
L. For these experiments, we use M = 16 and Cout = 16.
We find that the 3-layer model with L = 5 performs the
best. With I3D features, this allows the model to capture
up to 8 seconds of information. The average activity in
MultiTHUMOS is 3.3 seconds long and the maximum is
14.7 seconds long, and with this setting, the model is able
to capture enough temporal context to perform well. Larger
values of L capture too much temporal information, but

Table 9. Comparison of various values of M on MultiTHUMOS
and Charades using RGB I3D features. For these experiments, 1
layer was used with L = 15 and Cout = 16.

MultiTHUMOS Charades

M = 2 27.8 15.5
M = 4 33.1 16.2
M = 8 34.8 17.5
M = 16 36.1 17.5
M = 32 35.7 17.1
M = 64 35.8 17.3

Table 10. Comparison of values of Cout on MultiTHUMOS and
Charades using RGB I3D features. For these experiments, 1 layer
was used with L = 15 and M = 16.

MultiTHUMOS Charades

Cout = 1 33.5 16.2
Cout = 4 34.2 17.4
Cout = 8 35.5 17.5
Cout = 16 36.1 17.5
Cout = 32 36.0 17.2
Cout = 64 36.1 17.4
Cout = 80 36.1 17.5

due to the Gaussian structure, it does not drastically harm
performance. Figure 10 shows that even with longer kernels,
the Gaussians learn to focus mostly on the center of the in-
terval and capture the rough duration of the activities. Thus,
having too long intervals does not drastically harm perfor-
mance, which is in contrast to the standard 1-D convolution.
Note that for Charades, the temporal kernels are learned
to capture much longer temporal duration, as the average
activity in charades is 12.8 seconds and larger values of L
perform better.

Figure 10 illustrates examples of the learned TGM kernels
of various lengths. The figure shows that the kernels focus
on short temporal intervals on MultiTHUMOS even if we
make the filters longer, as the activities are an average of
3.3 seconds long. On Charades, the TGM kernels learn
to capture much longer intervals, as the activities are an
average of 12.8 seconds long. We believe that this sug-
gests TGMs are learning to capture information from the
important necessary intervals.

In Table 11, we also report the results of using a standard
1-D conv. layer with different L values. The number of
parameters in our TGM layer is independent of L, however,
with the standard 1-D conv. layer, the number of parameters
increases as L increases. We find that increasing L with
1-D convolution helps for small values of L, but for L > 15,
the performance drastically drops, while TGM layers only
show a small decrease.

Temporal Gaussian Mixture Layer for Videos

Table 11. Effect of L on MultiTHUMOS and Charades using only RGB I3D features. Note that the 3 TGM layer models have larger
temporal resolution than the 1 TGM layer models for the same values of L. We also compare to using standard one-layer 1-D conv layer
with different values of L.

MultiTHUMOS Charades
1 Layer 3 Layers 1-D Conv 1 Layer 3 Layers 1-D Conv

I3D Baseline 22.3 - - 15.3 - -
L = 3 30.2 31.7 26.6 15.5 16.1 15.5
L = 5 32.5 37.2 28.3 15.7 17.8 16.3
L = 10 34.5 35.4 31.7 16.1 18.2 16.6
L = 15 36.1 34.1 32.5 17.5 18.6 16.8
L = 30 32.5 33.9 26.5 18.1 18.9 12.1
L = 50 32.1 33.7 15.4 18.3 18.8 6.7

Table 12. Comparison of the different forms of temporal convolu-
tion on MultiTHUMOS using RGB I3D features. We set L = 15
and used 1 layer models for these experiments.

Standard 1-D Convolution (Fig. 8a) 32.5
1-D Conv with 1 Gaussian (Fig. 8b) 28.6

1-D Conv with many Gaussians (Fig. 8c) 33.2
TC-Conv with unconstrained kernel (Fig. 9) 32.8

Our TGM Layer 36.1

Effect of M : In Table 9, we compare different values of
M . For these experiments, we set L = 15 and Cout = 16.
We find that M = 16 performs best, suggesting that smaller
values of M restrict the possible temporal kernels too much.
We also observe that larger values of M performs slightly
worse than M = 16 (but not much), likely because they
introduce more parameters than needed. When M and L
have similar values, it allows the model to learn a sufficient
number of Gaussians and create a diverse range of temporal
kernels. When M is larger than L, it results in learning a
kernel similar to standard 1-D convolution.

Effect of Cout: In Table 10, we compare different values
of Cout. For these experiments, L = 15, we used 1-layer
and M = 16. We find that Cout performs best when set
to 16 or larger on these datasets. Larger values of Cout

seem to capture redundant information, as it does not lower
performance.

C. Comparison of Different Layer Forms
To confirm the various aspects of our design, we conducted
experiments comparing different types of temporal convolu-
tion. In Fig. 8a we illustrate the standard 1-D convolution,
taking D × T input and producing a C × T output, where
D is the number of input channels and C is the number
of output channels. In Fig. 8b, we illustrate the method
of applying a Gaussian mixture kernel as 1-D convolution.
Here, the Gaussian mixture kernel is shared by all D input

channels and we learn a C number of such kernels. In Fig.
8c, we illustrate the approach of applying a Gaussian mix-
ture kernel as 1-D convolution while learning D different
Gaussian mixtures. This is very similar to the standard 1-D
convolution, except that the filter values are constrained to
have the shape of Gaussian mixtures.

Fig. 9 illustrates one more baseline. This is similar to our
full TGM layer with the channel-combination (Fig. 4 in
main paper). However, in this baseline, instead of learning
Gaussian mixtures, we learn Cin · Cout number of 1 × L
kernels. The kernel values are left unconstrained. While
the TGM layer has 2 ·M + Cin · Cout ·M + Cin · Cout

parameters, this layer has L · Cin · Cout ·M + Cin · Cout,
which is more than the TGM layer.

In Table 12, we compare the results of the various above-
mentioned layers on MultiTHUMOS using RGB I3D fea-
tures. We find that the Fig. 8b method performs poorly,
while the Fig. 8c method slightly outperforms the standard
1-D convolution. The Fig. 9 method is slightly better than
the standard 1-D convolution, but performs worse than Fig.
8c. However, none of these layers perform as well as our
TGM layer, confirming that both the design of learning
Gaussian mixtures and maintaining temporal channel axis
are important for activity detection.

D. Experiments on Additional Datasets
D.1. MLB-YouTube Dataset

D.1.1. DATASET

The MLB-YouTube dataset (Piergiovanni & Ryoo, 2018a)
consists of 20 baseball games from the 2017 MLB post-
season available on YouTube. This dataset consists of over
42 hours of video. For these experiments, we used the con-
tinuous video setting which have 2,126 1-2 minute long
clips. Each clip is densely annotated with the baseball ac-
tivities that occur. There are 8 activity classes: pitch, strike,
ball, swing, hit, foul, hit by pitch, and bunt. Examples of

Temporal Gaussian Mixture Layer for Videos

D

LT

D * =
T

1

1-D
Kernel

Input Output

* =

...

(a)

D

LT

D * =
T

1

TGMsInput Output

* =

...

(b)

D

LT

D * =
T

1

TGMsInput Output

* =

...

(c)

1
L

T

D * =

T

D

TGMsInput Output

* =

...

(d)

Figure 8. (a-c) Different forms of 1-D temporal convolutions which take a D× T input and produces a C × T output based on C number
of D × L kernels: (a) the standard 1-D convolution, (b) using Gaussian mixtures for 1-D convolution while sharing Gaussian mixtures
across input channels, and (c) using D different Gaussian mixtures for 1-D convolution. (d) Our TGM layer in its simplest form (i.e.,
1-layer case) applying the 1× L temporal kernel in a 2-D convolutional fashion, maintaining both time and feature axis.

T
D

Cin

Cin

Input 1-D Conv
Kernels

Representation
for each Cin

...

1 1

* =

Cin T

D

Cin

1 1

* =

Cin T

D

T

D

Cout

1x1 Convolution
to combine Cin

Concatenation of Cout
representations

......

1
L

...

T

D
*

*

...

=

T T

D

...

=

1
L

...

T

D
*

*

... ...

=

=

... ...

T T

D

Figure 9. A temporal convolutional layer with channel combination similar to Fig. 4 (in main paper). The difference is that this layer does
not learn Gaussian mixtures, but unconstrained 1-D temporal kernels.

some of these classes are shown in Fig. 11. Each continuous
clip contains on average of 7.2 activities, giving a total of
over 15,000 activity instances in the dataset.

What makes this dataset challenging is that the variation
between classes is very small. In ActivityNet (Heilbron
et al., 2015), for example, the difference between swimming
and brushing hair is drastic. The background, motion, and
even size of the person in the video is different. However,
in broadcast baseball videos, the difference between a ball
and a strike, or a swing and a bunt, are small. All actions
are recorded from the same camera angle as we can confirm
from Fig. 11.

D.1.2. RESULTS

In Table 13, we compare various approaches on this dataset.
Our TGM layers improve over the baseline by∼6% (40.1 vs.
34.2). Additionally, we compare to methods using the super-
event representation (Piergiovanni & Ryoo, 2018b), which
previously achieved state-of-the-art performance on several
activity detection datasets. On this dataset, our approach
outperforms the super-event representation, and further the
concatenation of our TGM representation with such super-
event representation performs best by a significant margin
(∼13% compared to the baseline). This suggests that TGMs

and super-event capture different temporal information and
are both useful to the detection task.

We further find that using multiple, standard temporal con-
volution layers leads to worse performance, likely due to
overfitting from the large number of parameters. While us-
ing multiple TGM layers improves performance, confirming
that the Gaussian structure and sparsity constraint benefits
model learning.

D.2. AVA

D.2.1. DATASET

AVA (Gu et al., 2017) is a large-scale video dataset contain-
ing of 80 atomic action classes in 57k video clips. These
clips are drawn from movies. Existing datasets, such as
Charades, have very specific actions that depend on objects,
such as holding a cup vs. holding a picture. In AVA, the ac-
tions are intentionally generic, such as sit, stand, hold, carry,
etc. Further, the AVA dataset is annotated with both spatial
and temporal locations of activities. Since we are interested
in temporal activity detection, we follow the setting of Pier-
giovanni & Ryoo (2018b) and label each frame with the
occurring activities while ignoring the spatial location. We
evaluate performance following the same method as Mul-

Temporal Gaussian Mixture Layer for Videos

MultiTHUMOS L=15 MultiTHUMOS L=30

Charades L=30Charades L=15

Figure 10. Illustration of several learned TGM kernels. On MultiTHUMOS, it learns to focus on shorter intervals to capture shorter events.
On Charades, the Gaussians have a larger σ value, resulting in filters that attend to longer temporal durations.

(a) (b) (c) (d) (e)

Figure 11. Examples of several of the activities in the MLB-YouTube dataset: (a) Pitch, (b) Hit, (c) Bunt, (d) Hit by pitch, (e) No activity.
This shows the difficulty of this dataset, as the difference between hit and bunt, swing and no swing are very small.

Table 13. Result mAP on the MLB-YouTube dataset using InceptionV3 and I3D to obtain features. Our TGM layers significantly
outperform the baseline models.

Model Spatial Temporal Two-stream

Random 13.4 13.4 13.4

InceptionV3 31.2 31.8 31.9
InceptionV3 + LSTM 32.1 33.5 34.1

InceptionV3 + 1 temporal conv 32.8 34.4 35.2
InceptionV3 + 3 temporal conv 28.4 29.8 30.1

InceptionV3 + super-events 31.5 36.2 39.6
InceptionV3 + 1 TGM 32.4 36.3 37.4
InceptionV3 + 3 TGM 33.2 38.2 38.2

InceptionV3 + 3 TGM+super-events 34.6 42.4 42.9

I3D 33.8 35.1 34.2
I3D + LSTM 36.2 37.3 39.4

I3D + 1 temporal conv 37.3 38.6 39.9
I3D + 3 temporal conv 32.4 34.6 35.6

I3D + super-events 38.7 38.6 39.1
I3D + 1 TGM 35.5 37.5 38.5
I3D + 3 TGM 36.5 38.4 40.1

I3D + 3 TGM+super-events 39.4 46.0 47.1

Temporal Gaussian Mixture Layer for Videos

Table 14. Results on AVA dataset with the temporal annotation-
only setting (i.e., frame classification without using bounding box
training labels).

mAP

Random 2.65
I3D baseline 7.5

I3D + 3 temporal conv. layers 7.9
I3D + LSTM 7.8

I3D + super-events(Piergiovanni & Ryoo, 2018b) 9.8
I3D + 1 TGMs 11.2
I3D + 3 TGMs 14.5

I3D + 3 TGMs + super-events 14.9

tiTHUMOS, Charades and MLB-YouTube by measuring
per-frame mAP.

D.2.2. RESULTS

In Table 14, we present the results of our model. We again
find that temporal convolution and LSTMs provide some
benefit over the baseline, but TGM layers further improve
performance. Again, combining the TGM, which captures
local temporal structure, with super-events which capture
global temporal structure, provides the best performance by
∼ 7.4%.

D.3. Context Gaiting

Context gating (Miech et al., 2017) is an layer designed to
capture relationships between network activations. However,
it is designed for segmented video clip classification, as it
originally takes a fixed-size input. Applying it to variable
length continuous videos in a sliding-window fashion is
possible, and we conducted this experiment with a window
size of 30 (same temporal resolution as ours). When context
gating is applied on top of I3D features, it gives 35.8 on
MultiTHUMOS, lower than ours (44.3).

