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Abstract

Linear mixed models (LMMs) are used exten-
sively to model observations that are not in-
dependent. Parameter estimation for LMMs
can be computationally prohibitive on big data.
State-of-the-art learning algorithms require
computational complexity which depends at
least linearly on the dimension p of the co-
variates, and often use heuristics that do not
offer theoretical guarantees. We present scal-
able algorithms for learning high-dimensional
LMMs with sublinear computational complex-
ity dependence on p. Key to our approach are
novel dual estimators which use only kernel
functions of the data, and fast computational
techniques based on the subsampled random-
ized Hadamard transform. We provide theo-
retical guarantees for our learning algorithms,
demonstrating the robustness of parameter es-
timation. Finally, we complement the theory
with experiments on large synthetic and real
data.

1 INTRODUCTION

Linear mixed models (LMMs) are widely used in many
real world applications ranging from longitudinal data
analysis (Laird and Ware, 1982; Demidenko, 2013) and
genome wide association studies (Kang et al., 2008; Lip-
pert et al., 2011; Zhou, 2017) to recommender systems
(Zhang et al., 2016). LMMs provide a flexible frame-
work for modeling a wide range of data types, including
clustered, longitudinal, and spatial data. Parameter esti-
mation for LMMs is computationally prohibitive for big
data, both for large sample size n (Zhou and Stephens,
2014; Darnell et al., 2017; Perry, 2017) and for high-
dimensional covariates p (Schelldorfer et al., 2011). The
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main computational bottlenecks for parameter estimation
arise from the non-convexity of the optimization prob-
lem (Kang et al., 2008; Perry, 2017) as well as the com-
putational cost of matrix inversions (Zhou, 2017; Laird
et al., 1987; Lindstrom and Bates, 1988; Bates et al.,
2015). State-of-the-art methods for parameter estima-
tion in LMMs require computational complexity that de-
pends at least linearly on p: (i) O (nkp) for the setting
n > p with a rank k covariance matrix (Zhou, 2017;
Darnell et al., 2017); and (i) O (n?p) per iteration for
p > n (Schelldorfer et al., 2011, 2014; Jakubik, 2015).
In this paper, we present scalable algorithms with sub-
linear computational complexity in p, making the pro-
posed approach useful for high-dimensional LMMs. In
addition, we provide a theoretical analysis for our ap-
proach that states provable error guarantees between the
estimated and ground-truth parameters.

Two sets of parameters are estimated in LMMs, the
fixed-effects coefficients and the variances for the unob-
servable random effects and noise. The random-effects
variance is generally assumed to have a certain structure,
such as a block-diagonal matrix (Laird and Ware, 1982;
Demidenko, 2013). To estimate both sets of parameters,
an expectation maximization (EM) algorithm is typically
used (Laird et al., 1987; Bates et al., 2015) to handle the
latent random-effect variable. The M-step in the EM al-
gorithm incurs high computational costs due to matrix
inversions. Newton-Raphson has been used to reduce the
number of iterations required for parameter estimates to
converge (Lindstrom and Bates, 1988); however, each it-
eration is still costly due to matrix inversions. A recent
research focus is to avoid matrix inversions at each iter-
ation. For instance, when n > p a spectral algorithm is
available (Kang et al., 2008; Lippert et al., 2011; Patter-
son and Thompson, 1971). The state-of-the-art algorithm
(Darnell et al., 2017) further improved the computational
complexity of the spectral algorithm using randomized
singular value decomposition (Darnell et al., 2017).

While approximate learning algorithms (Zhou, 2017;



Darnell et al., 2017) are efficient, few provide prov-
able guarantees in terms of estimation accuracy. Re-
cently, a guaranteed non-iterative algorithm was pro-

posed in (Perry, 2017), which runs in O (n (p+d)*

time for d random effects. Inference with guarantees for
high-dimensional LMMs, i.e., p > n, typically incurs
greater computational complexity due to the regulariza-
tion required to address high-dimensional data (Schell-
dorfer et al., 2011, 2014). In the high-dimensional set-
ting, most algorithms perform block coordinate descent
with an O (nQp) per-iteration cost (Schelldorfer et al.,
2011, 2014). In this paper, we show that efficiency and
provable guarantees can be achieved simultaneously for
learning high-dimensional LMMs.

There are two key ideas we use in our efficient algo-
rithms. The first idea is to propose an approximate esti-
mator that relies on an n xn kernel matrix (§ 3) which can
be computed efficiently using the subsampled random-
ized Hadamard transform (SRHT) (Tropp, 2011). This
reduces the linear complexity dependence on p. Unlike
some other approximation algorithms (Lu et al., 2013),
the proposed estimator also has the advantage of recov-
ering the fixed-effects coefficients for all p dimensions
as opposed to the reduced dimensions. This allows us to
provide effect sizes in terms of the original covariates,
a requirement in many applications. The second idea
is the introduction of approximate variance components
(AVCs) to replace variance components when estimating
the fixed-effects coefficients. These AVCs have a closed-
form expression and are fast to compute.

We apply our novel approach to LMMs with a both gen-
eral covariances as well as a block-diagonal covariances
for the random effects. The former can be viewed as a
special case of the latter with a single block, and has been
adopted in genome-wide association studies (Kang et al.,
2008; Lippert et al., 2011; Zhou, 2017). LMMs with
a block-diagonal covariance structure have been widely
used for modeling repeated measures data (Laird and
Ware, 1982). We propose a non-iterative algorithm for
the general covariance setting and a fast EM variant for
the block-diagonal setting.

Contribution Our main contribution is providing a
class of approximation algorithms for parameter infer-
ence in high-dimensional LMMs with provable guaran-
tees. In Table 1, we state the computational complexity
for several standard and state-of-the-art parameter infer-
ence algorithms. In the table and in this paper, n is the
sample size, p is the number of covariates, k is the rank of
the covariance matrix, s are the number of subsamples,
and e is the approximation error. Our method is the only
one that is sublinear in p, and can be a n/log p magnitude

Table 1: Computational complexity for parameter infer-
ence. 1 denotes that the estimator has provable guaran-
tees.

REML (LIPPERT ET AL., 2011) O (n’p)
MOMENTS (PERRY, 2017) [9) (n (p+q)7)
SUBSAMPLING (ZHOU, 2017) O (ps®)
RSVD (DARNELL ET AL., 2017) O (pnk)
"THIS WORK 0 (M)

faster than the others (discussed in § 4.1). In addition to
theoretical advantages, we demonstrate the empirical ac-
curacy and speed of our method on both synthetic and
real data in § 6.

Notation We denote the maximum and minimum
eigenvalues of a matrix A by Amax (A) and Ay, (4),
respectively. Similarly, we denote the maximum and
minimum singular values respectively by op.x (A) and
omin (A). AT represents the Moore—Penrose pseudoin-
verse of A, and k (A) denotes the condition number of
A. The superscripted notation (%) refers to the copy of
y for group i. We write the spectral norm of a matrix
as ||-||5, the Frobenius norm as ||-|| , and the Ky Fan k-
norm (the sum of the k largest singular values) as |- .

Organization Section 2 provides the background on
standard LMMs. In section 3, we formulate the Lo-
regularized LMMs and present approximate estimators
based on a kernel matrix. Section 4 describes fast com-
putational techniques for the approximate estimators. In
section 5, we provide theoretical guarantees for our esti-
mators. Section 6 reports empirical evidence of the speed
and accuracy of our methods, and section 7 concludes
this paper.

2 LINEAR MIXED MODELS

Consider a regression problem with n observations,
where y € R"™ denotes the response vector and X €
R™*P represents the covariate matrix with p covariates.
The standard LMM is given by

y=XB+Zv+cl+e with

Y A O (1)
MR )]

where 3 € RP is the fixed-effect coefficient vector,
Z € R™*1 is a full-rank random-effects design matrix,
~ € R? is the random-effect coefficient vector, c is the
intercept, and e € R" is the noise vector. The parame-
ters to be estimated are the fixed-effects coefficients 3,
and variance components A and o2,



In general, the variables X, y, v, and e in (1) correspond
to observations from m classes, and are grouped by the
following structure (Laird and Ware, 1982):

X Yy e e
x© Y@ +® e®
xm| ym]  [ym] et

where -(*) denote the variables specific to group i,
whose dimensions are X () e RmixP, 'y(i) € RY, and
y @, e® e R™, 5" n; = n. The LMM assumes that
~(®) corresponding to distinct classes are independent. In
particular, the random-effects design matrix Z and the
random-effects covariance are block-diagonal

Zz) 0 H 0
Z = , A= )
0 Z(m) 0 H

with Z() ¢ R"i*d H ¢ R¥*4 and g = md.

Computational challenges Parameter inference in
LMMs aims to accurately recover P = { B, A, 02} from
{X,y, Z}. This is straightforward if A is given. When
A is unknown, inference can be computationally chal-
lenging even in the standard setting where n > p (Laird
and Ware, 1982; Lippert et al., 2011; Zhou, 2017; Laird
et al., 1987; Lindstrom and Bates, 1988; Patterson and
Thompson, 1971; Zhang et al., 2011).

First, parameter estimation problem is non-convex for
both maximum likelihood and restricted maximum like-
lihood (REML) (Laird et al., 1987; Patterson and
Thompson, 1971; Harville, 1974). For instance, the
methods using REML (Kang et al., 2008; Lippert et al.,
2011) project the data onto two uncorrelated parts, and
then estimate the fixed-effects and variance components
separately on each part. This has the advantage of giving
unbiased estimates of the variance components. How-
ever, the REML likelihood function is a non-convex
function which involves the eigenvalues of the variance
of the projected data (Patterson and Thompson, 1971).

Second, regularization is typically required to support
the high-dimensional setting, which adds further com-
putational overheads (Lippert et al., 2011; Zhou, 2017;
Schelldorfer et al., 2011, 2014; Jakubik, 2015). To ad-
dress these challenges, we develop novel approximate
estimators that are efficient to compute (§ 4), and have
provable accuracy guarantees (§ 5).

3 APPROXIMATE ESTIMATORS FOR
HIGH-DIMENSIONAL LMMS

In this section, we consider an Ls-regularized LMM to
support the high-dimensional setting p > n, and develop
efficient approximate estimators for the parameters.

Standard parameter estimation algorithms for LMMs
such as (Kang et al., 2008; Laird et al., 1987; Bates et al.,
2015) do not support the high-dimensional setting p > n.
We consider introducing the Lo regularization on the
fixed-effects coefficients, which can be viewed as adding
the prior 3 ~ N (0, ®). The Ly-regularized LMM has
the following log-likelihood

logp(y,B| X;V)

x —%ﬁkﬁlﬁ — %logdetV )
~ - XB- )V y - Xp - 1)

with the marginal variance V := ZAZ T + o21I.

Parameter estimation of an LMM is typically iterative
and computationally prohibitive, especially in the high-
dimensional setting (Darnell et al., 2017; Perry, 2017;
Schelldorfer et al., 2011). To improve the computational
efficiency, we propose dual as well as approximate esti-
mators. These estimators are non-iterative and have re-
duced computational complexity, as we will show in § 4.

3.1 FIXED-EFFECT COEFFICIENTS

We first derive the estimators for the fixed-effects coef-
ficients 3 and ¢, which are the maximizers of the log-
likelihood (2). A dual estimator of 3 is then given for use
in the high-dimensional setting. Using the partial deriva-
tives, it is straightforward to show

(XTVixX+e )g=X"Vi(y-c) @)

1TVv-1ly-1TVv-1X3
1TV-11 '

Let L=T—11TV-! (1TV~11) ", we obtain

“4)

/C\:

B=(XTVILX+® ) ' XV 'Ly. (5

The dual estimator using X®X T was proposed in
(Saunders et al., 1998) where the authors used Lagrange
multipliers to obtain the following estimator for ridge re-
gression:

BDual = q)XT (V + X(I)XT)il Y.

Here, ® is set to be diagonal, and the above estimator (6)
can be evaluated in O (n?p) time, a significant improve-
ment when p > n. However, the computational bottle-
neck becomes evaluating the kernel matrix X ®X .



For the zero intercept case ¢ = 0, the dual estimator
(6) is equivalent to (5) from the following variant of the
Woodbury identity (U~ + ATV_lA)_1 ATv-1 =
UAT (AUAT + V)f1 for invertible matrices U and
V. The dual estimator can be generalized to any inter-
cept,

B=3X"V'L(X®X'V'L+I) 'y. (6

Computing the dual estimator (6) takes O (n”p) time as
opposed to O (p?) time required by (5). This complexity
will be further improved in § 4 for the setting p > n.

3.2 APPROXIMATE VARIANCE COMPONENTS

The variance components A and o2 are typically es-
timated using an iterative EM algorithm with a per-
iteration cost O (p3) (Laird et al., 1987; Lindstrom and
Bates, 1988) or an exhaustive grid search for the solution
of a system of eigenvalue equations (Kang et al., 2008;
Lippert et al., 2011). We consider an approximate non-
iterative estimator based on the key observation that the
optimization of the (2) has a simple closed-form solution
if carried out with respectto M = V + X®X ". We
will estimate M and use it as a proxy for estimating A
as well as o2, The variance components inferred using
M are referred to as the approximate variance compo-
nents (AVCs). While AVCs may be used as variance
components estimates under certain circumstances, the
main purpose is to serve as fast replacements in estimat-
ing fixed-effects coefficients.

Proxy component estimation To perform the REML
estimation of the variance components in terms of M,
we first rewrite the log-likelihood (2) as

1
(B, V)= ~3 logdet V

1
—5ly—a) My -2 ©

1 ~ T ~
-5(B-8) @(B-B(V))
where @ = X'V-IX 4+ &' and B(V) =
(XTV1IX+& 1) ' XTV-!(y—cl). Here, the
estimate ,@ depends on V/, and is consistent with the es-
timate given by (5). The ¢ in (7) can be set to the mean

response, or estimated based on a prior distribution as in
(Zhou et al., 2013).

Then, the REML estimator for the variance components
is based on marginalizing the fixed effects 3 (Harville,

1974). It follows that

I, (V) o log / exp (1(8, V) dB

RP
1 1
o —ilogdetV — ilogdetQ

1 T e

—5y—c) M (y-a1).

From Sylvester’s determinant theorem, one observes that
det (M) = det (®) det (V) det (Q). Thus, we arrive at

l,(V) x 1 log det M
2 ®)
(y—c1)' M~ (y—21).

1
2
Now, what we have achieved through (8) is a simple
closed-form REML estimate of V; rather than the non-
convex or iterative updates for A and &2 in state-of-
the-art LMM parameter estimation algorithms. Uncon-
strained maximization of (8) with respect to M results
in the closed-form equality

ZAZT +5 T =(y—7cl)(y—7cl) — X®X",
)

for an optimal M. Note that Z AZT is positive semidef-
inite, whereas the right hand side has at most one positive
eigenvalue. Thus, this optimal M may not be achiev-
able and the unbiased estimate of A may possibly have
negative eigenvalues. The issue of negative variance esti-
mates in linear mixed models is an open problem (Demi-
denko, 2013) and beyond the scope of this paper. One
resolution is to introduce a Gamma prior on A (Chung
et al., 2013). For unbiased estimation, we allow A to
have negative eigenvalues, and intuitively we refer to
the variance estimators obtained this way as approximate
variance components.

Approximate variance estimators Assume that Z has
full column rank and let § = (y—¢l)(y—cl)' —

~

X®X . The approximate variance components A ayc
and G2, can be obtained via

argggr%HZAZT —S—i—aQIHi. (10)
Optimizing with respect to A yields

A =Z"(S-01)Z"", (11)

where Z1 = (Z TZ)_1 ZT. The estimators are com-

puted by substituting A, into (10) and optimizing with
respect to o'2:
tr [S(I—2Z2Z")]

n—q (12)
Ane =282 5% (272) .

~2 o
Oave =




Consider the parameterization A = 6D in (Kang et al.,
2008; Lippert et al., 2011) with a fixed symmetric posi-
tive semi-definite D, the solution to (10) is written as

(G (S—o?I))

AT (e2) R (1)

withG = ZDZT. Substituting into (10), we obtain

% 1 tr (GS
Fhve = —— | (S) - trr((GQ)) a4

«

where a = tr (G)” /tr (G?). Combined with (13), we
arrive at

L (G D)

Asve = r (G2) 15)

While AVCs may be used as variance components es-
timates under certain circumstances, the main purpose
is to speed up estimating the fixed-effect coefficients.
The complexity for computing the AVCs is O (n3), if
S is given. Like the dual fixed-effects estimator (6), the
computational bottleneck of AVCs also lies in evaluating
XeX'.

4 FAST COMPUTATIONAL
ALGORITHMS

In this section, we further improve the computational
complexity O (nzp) of the proposed approximate esti-
mators in the high-dimensional setting p > n, where
the computation bottleneck lies in evaluating the ker-
nel X®X . We adopt the subsampled randomized
Hadamard transform (SRHT) (Tropp, 2011) to compute
the kernel matrix efficiently. In particular, the high-
dimensional data is first projected into lower dimensions
using SRHT, and the parameters of the LMM are then es-
timated using the projected data. However, there are two
main challenges involved: 1) the estimated parameter B
now corresponds to the projected data of reduced dimen-
sions, whereas the coefficients of the full original covari-
ates are desired; and 2) the impact of applying the SRHT
on the accuracy of parameter estimation needs to be jus-
tified. The techniques developed in this section recovers
the coefficients to the full covariates from the SRHT pro-
jected data with high accuracy, as will be shown in § 5.

4.1 NON-ITERATIVE ALGORITHM FOR
GENERAL LMMS

In this subsection, we provide a fast algorithm for pa-
rameter estimation in case of a general covariance ma-
trix. Algorithm 1 takes as input the matrices X and ®

Algorithm 1 Approximate kernel matrix computation.

Require: X, ®, and error tolerance e.

I: Let p’ = 2MM°2271 append p’ — p all zero columns
to X, and p’ — p all zero rows and columns to .
Compute a diagonal matrix D of dimension p’ with
Rademacher random diagonal elements.

2: Denote the fast Walsh-Hadamard transform by

W, = p'/2 pm} ith W; =1.
g {”p’/2 *”p’/2 v '

Let r be the rank of X or » = n for unknown rank,
then define

o[+ VBl logr
_ : .

€

Se

Sample without replacement m rows of Wy, D /,/s,
to obtain the SRHT IT. Compute A = X /®II'.
3: return the approximate kernel AAT, A, and TI.

(which will be typically diagonal) and an approximation
error € described in § 5. Both an approximation to the
kernel matrix X ®X " and the SRHT matrix IT are com-
puted. The computational efficiency of the algorithm is
a result of replacing X with the smaller transform A in
subsequent operations. Additionally, the structure of the
SRHT allows for a divide-and-conquer scheme to com-
pute A = X+/®II' in O (nplogp) time. Note that
the matrix W), is not formed explicitly. The computa-
tion AAT requires O (nzsé) time, which becomes dom-

logn
plogp
stant C. Thus, the overall runtime for the algorithm is

O (1522 ) for dense full-rank X, and will be faster if

X is of low rank. The quality of the approximation de-
pends on €, which will be discussed in § 5.

inant setting ¢ < Cn for some universal con-

Given the approximate kernel, it is straight forward to
compute the AVCs Aayc and o3yc via (12). The coef-
ficients for the fixed-effects can also be computed effi-
ciently using the following estimator

~ —~ —~ —1
B=Ver'ATvV-lL (I n AATV*lL) y.
(16)

Given the approximate kernel matrix and A, com-
N N -1

puting ATV~IL <I+AATV’1L) y takes time

O (max {n?®s.,n®}) and multiplication of this vector

by V®II" is O (plogp) due to the structure of the
SRHT matrix as well as the fact that v/® is diago-
nal. The resulting complexity in computing (16) is
O (max {n?s.,n® plogp}).



Approximating the kernel matrix using the SRHT was
proposed for ridge regression in (Lu et al., 2013), a spe-
cial case of our setting. A method for estimating the full
set of fixed-effects coefficients was not provided in (Lu
etal., 2013). Instead, a reduced set of m fixed-effects co-
efficients corresponding to the transformed covariate ma-
trix XTI was reported. For many applications, a major
point of using an LMM is to estimate the effect-size of
the fixed-effect coefficients, so computing ﬁ is essential
to the problem.

4.2 FAST EM FOR MULTI-GROUP LMMS

For efficient parameter estimation in Lo-regularized
LMMs with repeated measurements, we extend the EM
algorithm for the low-dimensional setting n > p (Laird
et al., 1987) by combing the kernel estimators and Algo-
rithm 1. While this high-dimensional EM variant is iter-
ative, we show that the per-iteration computational cost
is scalable in p.

The log-likelihood of the Ly-regularized LMM (17) can
be rewritten in terms of class-specific variables as

10gp(y7'7 B|X;0% A)

Tag—1
oc—f [ 710 a? ——10 det H
ﬂ B — 5 log 5 log (17
T e'e
f,z,), DRI = o 7(1)727
=1
wheree =y —cl — X3 — Z~.

From the above log-likelihood, the posterior distri-
bution of 3 conditioned on the data and parameter

~

estimates P = {E, o2, H } is multivariate normal

with mean ®X T M1 (y —¢l) and covariance ® —
X M 'X®. Similarly, the posterior distribution
of the vector of latent variables + is multivariate nor-
mal with mean AZ T M ! (y — 1) and covariance A —
AZTM-1ZA. Denote by 4 the mean of the posterior
distribution of -, we also obtain the following posterior
distributions of class-specific latent variable ~(*):

x (70,7 - F207 (3) 208). av
Note that -(*) represents the block matrix corresponding
to group ¢. These posteriors are used in the E-step, dis-
cussed next.

E-step In the E-step, we derive the expectation of the
log-likelihood (17) with respect to the aforementioned
posterior distribution of 3 and ~v(*):

Eg .y logp (y,7.8 | X;0°, H)J.

We only need to consider terms in the expectation that
involve ¢, 02, and H. Denote by X () the variance of

(18), the following holds E5_ ( OTH-140) =
FOTH-150) 4 (E,Y(i)H . Using the previously
derived posterior distributions, we get

E(e|y773>:y—X,§—Z§—€1

cov (e | y,73> =52 — ' M.

: TN _ aTa . ~27 _
Thus, we arrive at E5 5 (e"e) = eTe+ %I

GYM~!, where e == (e | y,P).

M-step We now update the parameter estimates with
the maximizers of the expectation from the E-step. First,
observe that the 3 estimate from the posterior distribu-
tion is the same as the the dual estimator developed in
§ 3. To maximize the expectation with respect to H and
o2, we take the partial derivatives with respect to H ~*
and 02, and set them to zero. This gives the following
M-step updates:

1 m
B L3 (030 5,0)
m :

~ ~ 1174 —_
O'2<—O'2+7[6T6—0' tr(M 1)}
n

19)

The fast version of the above EM variant uses Algo-
rithm | for computing the kernel. Note that the original
X is no longer needed after the SRHT projection. This
provides additional space advantages as data X can be
preprocessed, and the Hadamard transform in Step 1 re-
quires a small constant amount of memory. Overall, the
per-iteration computational complexity of the EM algo-
rithm is O (max {n?s.,n3}).

S THEORETICAL GUARANTEES

In this section, we provide an analysis of the difference in
the parameters estimated via the approximate algorithms
versus minimizing the Lo-regularized LMM. We are not
proving consistency of our estimator—convergence of
the parameter estimates to the population quantity. Con-
sistency results for LMMs and-regularized LMMs were
provided in (Schelldorfer et al., 2011; Cui et al., 2004;
Hall and Yao, 2003). See the supplementary materials
for proofs of the theorems in this section.

Theorem 1 (Fixed-effect norm error). Let, ,@ be the fixed-
effect coefficients estimated by (5) and (3’ be the fixed-

effect coefficients estimated by the approximate proce-



dure in (16). Then, with probability at least 1 — 3/n

: [l < (T)

HB\H —1—c llel" i (XTV-1X)
14++/2/3¢ i

withT == ® 1 + X TV ~1X, or loosely
€ (1 + \/2/36)

<

.

forall0 <e< 1.

# (@) k& (T)

An intuitive interpretation of the theorem is that the
fixed-effects coefficients estimator (16) has better accu-
racy when the predefined ® is better conditioned and has
smaller spectral norm. One can certainly improve the ac-
curacy by setting a smaller €, which in turn uses more
samples in Algorithm 1.

Theorem 2 (AVC approximation errors). Let o5y, and
Aave be computed using (12). Let /2. and Ny be
computed using the same equations but with approximate
kernel from Algorithm 1. Then, the following two state-
ments hold jointly with probability at least 1 — 3/n.:

| xexT],
2L T and

‘ﬁvc—afvc‘ <e- n—gq

. -,
B~ Rine],

€
< o (2)? (HX(I)XTHQ +

min

[ xex],
n—q )

n—q

Note that the fraction of the Ky Fan norm does not
exceed the spectral norm. A looser but more conve-
nient bounds are [o3yc — dic| < €||X®XT|, and

HKAVC _ K;WCH2 < 2eomn (2) | XBX T,

6 EXPERIMENTS

In this section, we conduct a simulation study as well
as numerical experiments on real data. The simula-
tion study demonstrates the accuracy of parameter es-
timation using the proposed Approximate Ridge LMM
(arLMM) methods. We also examined the results on a
real data example from the Wellcome Trust Case Control
Consortium (WTCCC) study (The Wellcome Trust Case
Control Consortium, 2007), which include about 14,000
cases from seven common diseases and a total of about
450,000 SNPs.

The main finding of the experiments is that the pro-
posed approximate inference algorithms enjoy similar

predictive accuracy as state-of-the-art methods at a sig-
nificantly reduced computation cost in practice. In par-
ticular, our Matlab prototype implementation is 6x faster
than the optimized C implementation of the state-of-the-
art BSLMM method for genome-wide association studies.

6.1 SIMULATION STUDIES

To evaluate parameter estimation, we consider two per-
formance metrics. The first one is the correlation be-
tween the estimated and ground-truth fixed-effect coef-
ficients. The second metric is the Negative Log Likeli-
hood (NLL) of the standard LMM, which meaningfully
reflects the quality of variance estimation.

For the simulation, we compare the performance of
our non-iterative algorithm arLMM-AVC based on (16)
and (12), the proposed multi-group variant ar LMM—EM
based on (19), the standard REML (Bates et al., 2015),
Lq-regularized LMM 1lmmlasso (Schelldorfer et al.,
2011), and CovexLasso using both L;- and Lo-
regularization (Jakubik, 2015).

Synthetic data generation The simulation is based on
synthetic training and validation sets sampled from a
fixed LMM distribution. The design matrices as well as
the parameters for the fixed LMM are randomly gener-
ated. Specifically,

X5 A (0,1 z My 0,1)
’Y(k) l'kd' (O,KTK) Ki-l'lrizd' (0,1)
B8 ~ N(0,I) o? ~ U(0,d).

Note that there are d random-effect variables with co-
variance KT K. Thus, the random-effect design ma-
trix Z € R"*4, ¢ = md, will be block-diagonal with
diagonal blocks Z (k). Given the number of observa-
tions n, we randomly sample nj observations for each
group k, where the fractions ny/n are specified by the
Dirichlet distribution with the concentration parameters
(1,1,--9)".

Overdetermined settings Let us first consider the
standard setting n > p, which are supported by many
parameter estimation algorithms of LMMs. We evalu-
ate the performance of ar LMM-AVC and arLMM-EM in
a variety of p, d, and m settings. The parameter es-
timates obtained using the proposed methods are com-
pared with the estimates given by the standard REML
(see e.g., (Kang et al., 2008; Lippert et al., 2011; Laird
et al., 1987; Bates et al., 2015)) which is known to pro-
duce unbiased estimates.
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Figure 1: Comparing the performance of parameter esti-
mation on synthetic data with n = 1,000 observations.
Note that arLMM~-AVC is only applicable to the single
group setting. This figure shows that the arLMM-EM
and ar LMM-AVC achieve comparable estimation perfor-
mance as REML.

Figure 1 shows the error for the fitted parameters using
1,000 observations sampled from the underlying LMM.
The average results are reported over 10 runs on inde-
pendently generated datasets. These generated datasets
have the same number of observations n = 1,000 but
different settings of p, d, and m.

As shown in Figure 1, arLMM-EM and arLMM-AVC
exhibit comparable estimation accuracy as the standard
REML. Note that arLMM-AVC is applicable only when
m = 1 (the first row of Figure 1). Since arLMM-AVC
is based on non-iterative approximation to the variance
components, the error is slighted higher than the others
as expected.

High-dimensional (underdetermined) setting We
also examined the performance of our model in the high-

dimensional setting where we are interested in variable
selection based on the fixed-effects coefficients. In Ta-
ble 2, we specify the three regimes for which we generate
simulated data: an overdetermined LMM, a moderate-
dimensional LMM, and a high-dimensional LMM. Each
regime is characterized by n, p, d, and m, and an extra
parameter s, the number of non-zeros in the ground-truth
Brrue. Since m > 1 we did not apply ar LMM-AVC.

Table 2: Regimes of data.

(77,7]7, d,m,s)
Low (100, 1000, 5, 3, 10)
Mop (200,10%,5, 3,10)
HigH | (10%,10°, 10,100, 100)
Figure 2 reports variable selection results for

arLMM-EM, lmmlasso (Schelldorfer et al., 2011), and
ConvexLasso. All the settings in Table 2 have sparse
ground-truth Brye. Figure 2 shows the fraction of the
signal (non-zeros in (Brye) recovered in the estimate
,@. We varied the regularization parameters to obtain

ﬁ with different sparsity H B Ho' The entries with the

largest magnitude of ﬁ is considered the signal in these
evaluations. As can be seen, arLMM—-EM delivers a
competitive signal recovery ratio for p = 103,10, and
scales to considerably large dimensions n = 10% and
p = 109, which the other two methods cannot handle.

6.2 GENOME WIDE ASSOCIATION STUDIES

LMMs have been used extensively for mapping traits in
statistical genetics. The problem formulation is that of
regressing a quantitative or categorical trait onto a high-
dimensional vector of 450,000 single nucleotide poly-
morphisms (SNPs), or locations of discrete genetic vari-
ation, for each subject included in the study. The random
effects are driven by population structure or the pairwise
similarity or relatedness between individuals.

We compare our approximate estimator to the per-
formance of a state-of-the-art estimator called BSLMM
(Bayesian sparse linear mixed model) (Zhou et al., 2013).
Specifically, we run BSLMM in its ridge-regression with
mixed models setting, the fastest setting of the package
for a fair comparison. In this setting BSLMM is comput-
ing the maximum a posteriori estimate of the regularized
LMM. We compare performance on the Wellcome Trust
Case Control Consortium (WTCCC) dataset of 14,000
cases of 7 diseases - bipolar disorder (BD), coronary
artery disease (CAD), Crohn’s disease (CD), hyperten-
sion (HT), rheumatoid arthritis (RA), type 1 diabetes
(T1D), and type 2 diabetes (T2D) - and 3,000 shared con-
trols. This dataset characterizes over 450,000 single nu-



arLMM-EM —e— ConvexLasso =8~ Immlasso

1 T

T 1

N 0.8

N 0.6

N 0.4

Fraction of signals

N 0.2

D 1

0.6 - N

04} 8

0.2 8

0 - ‘ 0
100 10t 102 103 10° 10"

el

102
12l

100 102 10° 10* 10° 10°
|2l
0

- 0
103 10* 100

Figure 2: Fraction of signals captured by B From left to right, the configurations are respectively Low, MoOD, and
HIGH in Table 2. It shows that ar LMM—EM performs competitively in variable selection.

Table 3: Comparing the prediction performance as well as the runtime of BSLMM and arLMM-AVC on the WTCCC

dataset. Corr (BBSLMM, 3arLMM_AVC) denotes the correlation between the fixed-effect coefficient estimates given by

BSLMM and arLMM-AVC.

TIME (MIN AUC -~ ~
DISEASE —porvim AgzLM)M-AVC BSLMM ARLMM-AvC  CORR (ﬁBSLMM’ﬂARLMM-AVC)

BD 115.8 25.1 0.6520 0.6461 0.9898
CAD 161.0 26.1 0.5899 0.5937 0.9776
CcD 110.3 25.4 0.6260 0.6328 0.9862
HT 120.6 19.4 0.5956 0.6010 0.9766
RA 147.4 19.9 0.6173 0.6206 0.9834
TID 120.0 20.4 0.6846 0.6840 0.9939
T2D 155.3 18.9 0.6003 0.5993 0.9783

cleotide polymorphisms (SNPs), or locations of discrete
genetic variation, for each subject included in the study.
Disease status is indicated as a binary response (1 for
disease case, —1 for control). Each of the datasets had
roughly equal numbers of cases and controls.

For this experiment, we adopted the same random-
effect covariance parameterization used to control for
population structure #X X ' /p as BSLMM, and used
arLMM-AVC with AVCs (15) and (14). arLMM-AVC
and BST.MM were run under identical conditions on each
of the seven approximately 5,000-subject x 450,000-
SNP datasets. This was the same experimental setup
used to validate BSLMM in (Zhou et al., 2013).

Observed runtimes for each of the seven datasets are re-
ported in Table 3. Correlation between the 3 reported
by arLMM-AVC and BSLMM in all cases was very high,
0.977 or greater.

We also compared disease status prediction by splitting
each dataset into a training set comprised of 80% of sub-
jects and a test set of the remaining 20%, selected at ran-
dom. arLMM-AVC and BSLMM each estimated B from
the training set and attempted to predict disease status on
the held-out set. We repeated this 20 times for each of the

seven datasets and evaluated performance of prediction
on the held-out set by area under the ROC curve (AUC).
These results are also given in Table 3. Predictive per-
formance by arLMM-AVC and BSLMM was almost iden-
tical. Predicting disease status from genetic markers is
hard and it is well known that the effect sizes of genetic
variants are individually small and that a great deal of
variance in the response will also be driven by environ-
mental factors.

7 CONCLUSIONS

State-of-the-art parameter inference in LMMs requires
computational complexity which depends at least lin-
early on the number of covariates p and generally relies
on heuristics. In this paper, we presented scalable learn-
ing algorithms which have sublinear computational com-
plexity in p and provide theoretical guarantees for the
accuracy of parameter estimation. Our approach com-
bines novel approximate estimators that use a kernel ma-
trix of the observations and the subsampled randomized
Hadamard transform. Experiments on synthetic and real
data corroborate the theory.



References

D. Bates, M. Méchler, B. Bolker, and S. Walker. Fitting
linear mixed-effects models using lme4. Journal of
Statistical Software, 67(1):1-48, 2015.

Y. Chung, S. Rabe-Hesketh, V. Dorie, A. Gelman, and
J. Liu. A nondegenerate penalized likelihood estima-
tor for variance parameters in multilevel models. Psy-
chometrika, 78(4):685-709, 2013.

H. Cui, K. W. Ng, and L. Zhu. Estimation in mixed ef-
fects model with errors in variables. Journal of Multi-
variate Analysis, 91(1):53-73, 2004.

G. Darnell, S. Georgiev, S. Mukherjee, and B. E. Engel-
hardt. Adaptive randomized dimension reduction on
massive data. JMLR, Apr. 2017.

E. Demidenko. Mixed Models: Theory and applications
with R. Wiley, 2nd edition, 2013.

P. Hall and Q. Yao. Inference in components of variance
models with low replication. Annals of Statistics, 31
(2):414-441, 2003.

D. A. Harville. Bayesian inference for variance com-
ponents using only error contrasts. Biometrika, 61:
383-385, 1974.

J. Jakubik. Convex method for variable selection in high-
dimensional linear mixed models. In Proceedings of

the 10th International Conference on Measurement,
pages 55-58, 2015.

H. M. Kang, N. A. Zaitlen, C. M. Wade, A. Kirby,
D. Heckerman, M. J. Daly, and E. Eskin. Efficient
control of population structure in model organism as-
sociation mapping. Genetics, 178:1709-23, Mar 2008.

N. Laird, N. Lange, and D. Stram. Maximum likelihood
computations with repeated measures: Application of
the EM algorithm. Journal of the American Statistical
Association, 82:97-105, 1987.

N. M. Laird and J. H. Ware. Random-effects models for
longitudinal data. Biometrics, 38(4):963-974, Dec.
1982.

M. J. Lindstrom and D. M. Bates. Newton-Raphson
and EM algorithms for linear mixed-effects models for
repeated-measures data. Journal of the American Sta-
tistical Association, 83:1014-1022, 1988.

C. Lippert, J. Listgarten, Y. Liu, C. Kadie, R. David-
son, and D. Heckerman. Fast linear mixed models for
genome-wide association studies. Nature Methods, 8
(10):833-835, Oct. 2011.

Y. Lu, P. Dhillon, D. P. Foster, and L. Ungar. Faster ridge
regression via the subsampled randomized Hadamard
transform. In NIPS, pages 369-377. 2013.

H. D. Patterson and R. Thompson. Recovery of inter-
block information when block sizes are unequal.
Biometrika, 58:545-554, 1971.

P. O. Perry. Fast moment-based estimation for hierar-
chical models. Journal of the Royal Statistical So-
ciety: Series B (Statistical Methodology), 79(1):267—
291, 2017.

C. Saunders, A. Gammerman, and V. Vovk. Ridge
regression learning algorithm in dual variables. In
ICML, pages 515-521, 1998.

J. Schelldorfer, P. Biihimann, and S. V. De Geer. Estima-
tion for high-dimensional linear mixed-effects models
using ¢ -penalization. Scandinavian Journal of Statis-
tics, 38(2):197-214, 2011.

J. Schelldorfer, L. Meier, and P. Biihlmann. GLMM-
Lasso: An algorithm for high-dimensional generalized
linear mixed models using ¢; -penalization. Journal of
Computational and Graphical Statistics, 23(2):460—
4717, 2014.

The Wellcome Trust Case Control Consortium. Genome-
wide association study of 14,000 cases of seven com-
mon diseases and 3,000 shared controls. Nature, 447
(7145):661-678, June 2007.

J. A. Tropp. Improved analysis of the subsampled ran-
domized Hadamard transform. Advances in Adaptive
Data Analysis, 3(1-2):115-126, 2011.

X. Zhang, Y. Zhou, Y. Ma, B. Chen, L. Zhang, and
D. Agarwal. GLMix: Generalized linear mixed mod-
els For large-scale response prediction. In Interna-
tional Conference on Knowledge Discovery and Data
Mining (KDD), pages 363-372, 2016.

Z.Zhang, G. Dai, and M. I. Jordan. Bayesian generalized
kernel mixed models. JMLR, 12:111-139, Feb. 2011.

X. Zhou. A unified framework for variance component
estimation with summary statistics in genome-wide
association studies. The Annals of Applied Statistics,
11(4):2027-2051, 2017.

X. Zhou and M. Stephens. Efficient multivariate linear
mixed model algorithms for genome-wide association
studies. Nature Methods, 2014.

X. Zhou, P. Carbonetto, and M. Stephens. Polygenic
modeling with Bayesian sparse linear mixed models.
PLOS Genetics, 9(2):1-14, 02 2013.



