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Abstract

Linear mixed models (LMMs) are used exten-

sively to model observations that are not in-

dependent. Parameter estimation for LMMs

can be computationally prohibitive on big data.

State-of-the-art learning algorithms require

computational complexity which depends at

least linearly on the dimension p of the co-

variates, and often use heuristics that do not

offer theoretical guarantees. We present scal-

able algorithms for learning high-dimensional

LMMs with sublinear computational complex-

ity dependence on p. Key to our approach are

novel dual estimators which use only kernel

functions of the data, and fast computational

techniques based on the subsampled random-

ized Hadamard transform. We provide theo-

retical guarantees for our learning algorithms,

demonstrating the robustness of parameter es-

timation. Finally, we complement the theory

with experiments on large synthetic and real

data.

1 INTRODUCTION

Linear mixed models (LMMs) are widely used in many

real world applications ranging from longitudinal data

analysis (Laird and Ware, 1982; Demidenko, 2013) and

genome wide association studies (Kang et al., 2008; Lip-

pert et al., 2011; Zhou, 2017) to recommender systems

(Zhang et al., 2016). LMMs provide a flexible frame-

work for modeling a wide range of data types, including

clustered, longitudinal, and spatial data. Parameter esti-

mation for LMMs is computationally prohibitive for big

data, both for large sample size n (Zhou and Stephens,

2014; Darnell et al., 2017; Perry, 2017) and for high-

dimensional covariates p (Schelldorfer et al., 2011). The

main computational bottlenecks for parameter estimation

arise from the non-convexity of the optimization prob-

lem (Kang et al., 2008; Perry, 2017) as well as the com-

putational cost of matrix inversions (Zhou, 2017; Laird

et al., 1987; Lindstrom and Bates, 1988; Bates et al.,

2015). State-of-the-art methods for parameter estima-

tion in LMMs require computational complexity that de-

pends at least linearly on p: (i) O (nkp) for the setting

n > p with a rank k covariance matrix (Zhou, 2017;

Darnell et al., 2017); and (ii) O
(
n2p
)

per iteration for

p � n (Schelldorfer et al., 2011, 2014; Jakubı́k, 2015).

In this paper, we present scalable algorithms with sub-

linear computational complexity in p, making the pro-

posed approach useful for high-dimensional LMMs. In

addition, we provide a theoretical analysis for our ap-

proach that states provable error guarantees between the

estimated and ground-truth parameters.

Two sets of parameters are estimated in LMMs, the

fixed-effects coefficients and the variances for the unob-

servable random effects and noise. The random-effects

variance is generally assumed to have a certain structure,

such as a block-diagonal matrix (Laird and Ware, 1982;

Demidenko, 2013). To estimate both sets of parameters,

an expectation maximization (EM) algorithm is typically

used (Laird et al., 1987; Bates et al., 2015) to handle the

latent random-effect variable. The M-step in the EM al-

gorithm incurs high computational costs due to matrix

inversions. Newton-Raphson has been used to reduce the

number of iterations required for parameter estimates to

converge (Lindstrom and Bates, 1988); however, each it-

eration is still costly due to matrix inversions. A recent

research focus is to avoid matrix inversions at each iter-

ation. For instance, when n > p a spectral algorithm is

available (Kang et al., 2008; Lippert et al., 2011; Patter-

son and Thompson, 1971). The state-of-the-art algorithm

(Darnell et al., 2017) further improved the computational

complexity of the spectral algorithm using randomized

singular value decomposition (Darnell et al., 2017).

While approximate learning algorithms (Zhou, 2017;



Darnell et al., 2017) are efficient, few provide prov-

able guarantees in terms of estimation accuracy. Re-

cently, a guaranteed non-iterative algorithm was pro-

posed in (Perry, 2017), which runs in O
(
n (p+ d)

4
)

time for d random effects. Inference with guarantees for

high-dimensional LMMs, i.e., p � n, typically incurs

greater computational complexity due to the regulariza-

tion required to address high-dimensional data (Schell-

dorfer et al., 2011, 2014). In the high-dimensional set-

ting, most algorithms perform block coordinate descent

with an O
(
n2p
)

per-iteration cost (Schelldorfer et al.,

2011, 2014). In this paper, we show that efficiency and

provable guarantees can be achieved simultaneously for

learning high-dimensional LMMs.

There are two key ideas we use in our efficient algo-

rithms. The first idea is to propose an approximate esti-

mator that relies on an n×n kernel matrix (§ 3) which can

be computed efficiently using the subsampled random-

ized Hadamard transform (SRHT) (Tropp, 2011). This

reduces the linear complexity dependence on p. Unlike

some other approximation algorithms (Lu et al., 2013),

the proposed estimator also has the advantage of recov-

ering the fixed-effects coefficients for all p dimensions

as opposed to the reduced dimensions. This allows us to

provide effect sizes in terms of the original covariates,

a requirement in many applications. The second idea

is the introduction of approximate variance components

(AVCs) to replace variance components when estimating

the fixed-effects coefficients. These AVCs have a closed-

form expression and are fast to compute.

We apply our novel approach to LMMs with a both gen-

eral covariances as well as a block-diagonal covariances

for the random effects. The former can be viewed as a

special case of the latter with a single block, and has been

adopted in genome-wide association studies (Kang et al.,

2008; Lippert et al., 2011; Zhou, 2017). LMMs with

a block-diagonal covariance structure have been widely

used for modeling repeated measures data (Laird and

Ware, 1982). We propose a non-iterative algorithm for

the general covariance setting and a fast EM variant for

the block-diagonal setting.

Contribution Our main contribution is providing a

class of approximation algorithms for parameter infer-

ence in high-dimensional LMMs with provable guaran-

tees. In Table 1, we state the computational complexity

for several standard and state-of-the-art parameter infer-

ence algorithms. In the table and in this paper, n is the

sample size, p is the number of covariates, k is the rank of

the covariance matrix, s are the number of subsamples,

and ε is the approximation error. Our method is the only

one that is sublinear in p, and can be a n/log p magnitude

Table 1: Computational complexity for parameter infer-

ence. † denotes that the estimator has provable guaran-

tees.

REML (LIPPERT ET AL., 2011) O
(
n2p

)
†MOMENTS (PERRY, 2017) O

(
n (p+ q)4

)

SUBSAMPLING (ZHOU, 2017) O
(
ps2

)

RSVD (DARNELL ET AL., 2017) O (pnk)
†THIS WORK O

(
n2(k+log p) log k

ε2

)

faster than the others (discussed in § 4.1). In addition to

theoretical advantages, we demonstrate the empirical ac-

curacy and speed of our method on both synthetic and

real data in § 6.

Notation We denote the maximum and minimum

eigenvalues of a matrix A by λmax (A) and λmin (A),
respectively. Similarly, we denote the maximum and

minimum singular values respectively by σmax (A) and

σmin (A). A† represents the Moore–Penrose pseudoin-

verse of A, and κ (A) denotes the condition number of

A. The superscripted notation y(i) refers to the copy of

y for group i. We write the spectral norm of a matrix

as ‖·‖2, the Frobenius norm as ‖·‖F , and the Ky Fan k-

norm (the sum of the k largest singular values) as |||·|||k.

Organization Section 2 provides the background on

standard LMMs. In section 3, we formulate the L2-

regularized LMMs and present approximate estimators

based on a kernel matrix. Section 4 describes fast com-

putational techniques for the approximate estimators. In

section 5, we provide theoretical guarantees for our esti-

mators. Section 6 reports empirical evidence of the speed

and accuracy of our methods, and section 7 concludes

this paper.

2 LINEAR MIXED MODELS

Consider a regression problem with n observations,

where y ∈ R
n denotes the response vector and X ∈

R
n×p represents the covariate matrix with p covariates.

The standard LMM is given by

y = Xβ +Zγ + c1+ e with
[
γ

e

]
∼ MVN

(
0,

[
Λ 0

0 σ2I

])
,

(1)

where β ∈ R
p is the fixed-effect coefficient vector,

Z ∈ R
n×q is a full-rank random-effects design matrix,

γ ∈ R
q is the random-effect coefficient vector, c is the

intercept, and e ∈ R
n is the noise vector. The parame-

ters to be estimated are the fixed-effects coefficients β,

and variance components Λ and σ2.



In general, the variables X , y, γ, and e in (1) correspond

to observations from m classes, and are grouped by the

following structure (Laird and Ware, 1982):




X(1)

X(2)

...

X(m)


 ,




y(1)

y(2)

...

y(m)


 ,




γ(1)

γ(2)

...

γ(m)


 ,




e(1)

e(2)

...

e(m)


 ,

where ·(i) denote the variables specific to group i,
whose dimensions are X(i) ∈ R

ni×p, γ(i) ∈ R
d, and

y(i), e(i) ∈ R
ni ,
∑m

i=1 ni = n. The LMM assumes that

γ(i) corresponding to distinct classes are independent. In

particular, the random-effects design matrix Z and the

random-effects covariance are block-diagonal

Z =



Z(1)

0

. . .

0 Z(m)


 , Λ =



H 0

. . .

0 H




with Z(i) ∈ R
ni×d, H ∈ R

d×d, and q = md.

Computational challenges Parameter inference in

LMMs aims to accurately recoverP :=
{
β,Λ, σ2

}
from

{X,y,Z}. This is straightforward if Λ is given. When

Λ is unknown, inference can be computationally chal-

lenging even in the standard setting where n > p (Laird

and Ware, 1982; Lippert et al., 2011; Zhou, 2017; Laird

et al., 1987; Lindstrom and Bates, 1988; Patterson and

Thompson, 1971; Zhang et al., 2011).

First, parameter estimation problem is non-convex for

both maximum likelihood and restricted maximum like-

lihood (REML) (Laird et al., 1987; Patterson and

Thompson, 1971; Harville, 1974). For instance, the

methods using REML (Kang et al., 2008; Lippert et al.,

2011) project the data onto two uncorrelated parts, and

then estimate the fixed-effects and variance components

separately on each part. This has the advantage of giving

unbiased estimates of the variance components. How-

ever, the REML likelihood function is a non-convex

function which involves the eigenvalues of the variance

of the projected data (Patterson and Thompson, 1971).

Second, regularization is typically required to support

the high-dimensional setting, which adds further com-

putational overheads (Lippert et al., 2011; Zhou, 2017;

Schelldorfer et al., 2011, 2014; Jakubı́k, 2015). To ad-

dress these challenges, we develop novel approximate

estimators that are efficient to compute (§ 4), and have

provable accuracy guarantees (§ 5).

3 APPROXIMATE ESTIMATORS FOR

HIGH-DIMENSIONAL LMMS

In this section, we consider an L2-regularized LMM to

support the high-dimensional setting p > n, and develop

efficient approximate estimators for the parameters.

Standard parameter estimation algorithms for LMMs

such as (Kang et al., 2008; Laird et al., 1987; Bates et al.,

2015) do not support the high-dimensional setting p > n.

We consider introducing the L2 regularization on the

fixed-effects coefficients, which can be viewed as adding

the prior β ∼ N (0,Φ). The L2-regularized LMM has

the following log-likelihood

log p (y,β |X;V )

∝ −1

2
β>

Φ
−1β − 1

2
log detV

− 1

2
(y −Xβ − c1)V −1 (y −Xβ − c1)

(2)

with the marginal variance V := ZΛZ> + σ2I .

Parameter estimation of an LMM is typically iterative

and computationally prohibitive, especially in the high-

dimensional setting (Darnell et al., 2017; Perry, 2017;

Schelldorfer et al., 2011). To improve the computational

efficiency, we propose dual as well as approximate esti-

mators. These estimators are non-iterative and have re-

duced computational complexity, as we will show in § 4.

3.1 FIXED-EFFECT COEFFICIENTS

We first derive the estimators for the fixed-effects coef-

ficients β̂ and ĉ, which are the maximizers of the log-

likelihood (2). A dual estimator of β is then given for use

in the high-dimensional setting. Using the partial deriva-

tives, it is straightforward to show
(
X>V −1X +Φ

−1
)
β̂ = X>V −1 (y − ĉ1) (3)

ĉ =
1
>V −1y − 1

>V −1Xβ̂

1>V −11
. (4)

Let L = I − 11
>V −1

(
1
>V −1

1
)−1

, we obtain

β̂ =
(
X>V −1LX +Φ

−1
)−1

X>V −1Ly. (5)

The dual estimator using XΦX> was proposed in

(Saunders et al., 1998) where the authors used Lagrange

multipliers to obtain the following estimator for ridge re-

gression:

β̂Dual = ΦX>
(
V +XΦX>

)−1
y.

Here, Φ is set to be diagonal, and the above estimator (6)

can be evaluated in O
(
n2p
)

time, a significant improve-

ment when p � n. However, the computational bottle-

neck becomes evaluating the kernel matrix XΦX>.



For the zero intercept case ĉ = 0, the dual estimator

(6) is equivalent to (5) from the following variant of the

Woodbury identity
(
U−1 +A>V −1A

)−1
A>V −1 =

UA>
(
AUA> + V

)−1
for invertible matrices U and

V . The dual estimator can be generalized to any inter-

cept,

β̂ = ΦX>V −1L
(
XΦX>V −1L+ I

)−1
y. (6)

Computing the dual estimator (6) takes O
(
n2p
)

time as

opposed to O
(
p3
)

time required by (5). This complexity

will be further improved in § 4 for the setting p� n.

3.2 APPROXIMATE VARIANCE COMPONENTS

The variance components Λ and σ2 are typically es-

timated using an iterative EM algorithm with a per-

iteration cost O
(
p3
)

(Laird et al., 1987; Lindstrom and

Bates, 1988) or an exhaustive grid search for the solution

of a system of eigenvalue equations (Kang et al., 2008;

Lippert et al., 2011). We consider an approximate non-

iterative estimator based on the key observation that the

optimization of the (2) has a simple closed-form solution

if carried out with respect to M = V + XΦX>. We

will estimate M and use it as a proxy for estimating Λ

as well as σ2. The variance components inferred using

M are referred to as the approximate variance compo-

nents (AVCs). While AVCs may be used as variance

components estimates under certain circumstances, the

main purpose is to serve as fast replacements in estimat-

ing fixed-effects coefficients.

Proxy component estimation To perform the REML

estimation of the variance components in terms of M ,

we first rewrite the log-likelihood (2) as

l (β,V ) = −1

2
log detV

− 1

2
(y − ĉ1)

>
M−1 (y − ĉ1)

− 1

2

(
β − β̂ (V )

)>
Q
(
β − β̂ (V )

)
(7)

where Q = X>V −1X + Φ
−1 and β̂ (V ) =(

X>V −1X +Φ
−1
)−1

X>V −1 (y − ĉ1). Here, the

estimate β̂ depends on V , and is consistent with the es-

timate given by (5). The ĉ in (7) can be set to the mean

response, or estimated based on a prior distribution as in

(Zhou et al., 2013).

Then, the REML estimator for the variance components

is based on marginalizing the fixed effects β (Harville,

1974). It follows that

lp (V ) ∝ log

∫

Rp

exp (l (β,V )) dβ

∝ −1

2
log detV − 1

2
log detQ

− 1

2
(y − ĉ1)

>
M−1 (y − ĉ1) .

From Sylvester’s determinant theorem, one observes that

det (M) = det (Φ) det (V ) det (Q). Thus, we arrive at

lp (V ) ∝ −1

2
log detM

− 1

2
(y − ĉ1)

>
M−1 (y − ĉ1) .

(8)

Now, what we have achieved through (8) is a simple

closed-form REML estimate of V , rather than the non-

convex or iterative updates for Λ̂ and σ̂2 in state-of-

the-art LMM parameter estimation algorithms. Uncon-

strained maximization of (8) with respect to M results

in the closed-form equality

ZΛ̂Z> + σ̂2I = (y − ĉ1) (y − ĉ1)
> −XΦX>,

(9)

for an optimal M . Note that ZΛ̂Z> is positive semidef-

inite, whereas the right hand side has at most one positive

eigenvalue. Thus, this optimal M may not be achiev-

able and the unbiased estimate of Λ may possibly have

negative eigenvalues. The issue of negative variance esti-

mates in linear mixed models is an open problem (Demi-

denko, 2013) and beyond the scope of this paper. One

resolution is to introduce a Gamma prior on Λ (Chung

et al., 2013). For unbiased estimation, we allow Λ to

have negative eigenvalues, and intuitively we refer to

the variance estimators obtained this way as approximate

variance components.

Approximate variance estimators Assume that Z has

full column rank and let S = (y − ĉ1) (y − ĉ1)
> −

XΦX>. The approximate variance components Λ̂AVC

and σ̂2
AVC can be obtained via

arg min
Λ,σ2

∥∥ZΛZ> − S + σ2I
∥∥2
F
. (10)

Optimizing with respect to Λ yields

Λ? = Z†
(
S − σ2I

)
Z†>, (11)

where Z† :=
(
Z>Z

)−1
Z>. The estimators are com-

puted by substituting Λ? into (10) and optimizing with

respect to σ2:

σ̂2
AVC =

tr
[
S
(
I −ZZ†

)]

n− q

Λ̂AVC = Z†SZ†> − σ̂2
AVC

(
Z>Z

)−1
.

(12)



Consider the parameterization Λ = θD in (Kang et al.,

2008; Lippert et al., 2011) with a fixed symmetric posi-

tive semi-definite D, the solution to (10) is written as

Λ∗ =
tr
(
G
(
S − σ2I

))

tr (G2)
D (13)

with G = ZDZ>. Substituting into (10), we obtain

σ̂2
AVC =

1

n− α

[
tr (S)− tr (GS)

tr (G2)

]
, (14)

where α = tr (G)
2
/tr
(
G2
)
. Combined with (13), we

arrive at

Λ̂AVC =
tr
(
G
(
S − σ̂2

AVCI
))

tr (G2)
D. (15)

While AVCs may be used as variance components es-

timates under certain circumstances, the main purpose

is to speed up estimating the fixed-effect coefficients.

The complexity for computing the AVCs is O
(
n3
)
, if

S is given. Like the dual fixed-effects estimator (6), the

computational bottleneck of AVCs also lies in evaluating

XΦX>.

4 FAST COMPUTATIONAL

ALGORITHMS

In this section, we further improve the computational

complexity O
(
n2p
)

of the proposed approximate esti-

mators in the high-dimensional setting p � n, where

the computation bottleneck lies in evaluating the ker-

nel XΦX>. We adopt the subsampled randomized

Hadamard transform (SRHT) (Tropp, 2011) to compute

the kernel matrix efficiently. In particular, the high-

dimensional data is first projected into lower dimensions

using SRHT, and the parameters of the LMM are then es-

timated using the projected data. However, there are two

main challenges involved: 1) the estimated parameter β̂

now corresponds to the projected data of reduced dimen-

sions, whereas the coefficients of the full original covari-

ates are desired; and 2) the impact of applying the SRHT

on the accuracy of parameter estimation needs to be jus-

tified. The techniques developed in this section recovers

the coefficients to the full covariates from the SRHT pro-

jected data with high accuracy, as will be shown in § 5.

4.1 NON-ITERATIVE ALGORITHM FOR

GENERAL LMMS

In this subsection, we provide a fast algorithm for pa-

rameter estimation in case of a general covariance ma-

trix. Algorithm 1 takes as input the matrices X and Φ

Algorithm 1 Approximate kernel matrix computation.

Require: X , Φ, and error tolerance ε.
1: Let p′ = 2dlog2 pe, append p′ − p all zero columns

to X , and p′ − p all zero rows and columns to Φ.

Compute a diagonal matrix D of dimension p′ with

Rademacher random diagonal elements.

2: Denote the fast Walsh-Hadamard transform by

Wp′ =

[
Wp′/2 Wp′/2

Wp′/2 −Wp′/2

]
with W1 = 1.

Let r be the rank of X or r = n for unknown rank,

then define

sε :=
6
[√

r +
√
8 log (rp′)

]2
log r

ε2
.

Sample without replacement m rows of Wp′D/
√
sε

to obtain the SRHT Π. Compute A = X
√
ΦΠ

>.

3: return the approximate kernel AA>, A, and Π.

(which will be typically diagonal) and an approximation

error ε described in § 5. Both an approximation to the

kernel matrix XΦX> and the SRHT matrix Π are com-

puted. The computational efficiency of the algorithm is

a result of replacing X with the smaller transform A in

subsequent operations. Additionally, the structure of the

SRHT allows for a divide-and-conquer scheme to com-

pute A = X
√
ΦΠ

> in O (np log p) time. Note that

the matrix Wp′ is not formed explicitly. The computa-

tion AA> requires O
(
n2sε

)
time, which becomes dom-

inant setting ε ≤ Cn
√

logn
p log p for some universal con-

stant C. Thus, the overall runtime for the algorithm is

O
(

n3 logn
ε2

)
for dense full-rank X , and will be faster if

X is of low rank. The quality of the approximation de-

pends on ε, which will be discussed in § 5.

Given the approximate kernel, it is straight forward to

compute the AVCs ΛAVC and σ2
AVC via (12). The coef-

ficients for the fixed-effects can also be computed effi-

ciently using the following estimator

β̂ =
√
ΦΠ

>A>V̂ −1L
(
I +AA>V̂ −1L

)−1

y.

(16)

Given the approximate kernel matrix and A, com-

puting A>V̂ −1L
(
I +AA>V̂ −1L

)−1

y takes time

O
(
max

{
n2sε, n

3
})

and multiplication of this vector

by
√
ΦΠ

> is O (p log p) due to the structure of the

SRHT matrix as well as the fact that
√
Φ is diago-

nal. The resulting complexity in computing (16) is

O
(
max

{
n2sε, n

3, p log p
})

.



Approximating the kernel matrix using the SRHT was

proposed for ridge regression in (Lu et al., 2013), a spe-

cial case of our setting. A method for estimating the full

set of fixed-effects coefficients was not provided in (Lu

et al., 2013). Instead, a reduced set of m fixed-effects co-

efficients corresponding to the transformed covariate ma-

trix XΠ
> was reported. For many applications, a major

point of using an LMM is to estimate the effect-size of

the fixed-effect coefficients, so computing β̂ is essential

to the problem.

4.2 FAST EM FOR MULTI-GROUP LMMS

For efficient parameter estimation in L2-regularized

LMMs with repeated measurements, we extend the EM

algorithm for the low-dimensional setting n ≥ p (Laird

et al., 1987) by combing the kernel estimators and Algo-

rithm 1. While this high-dimensional EM variant is iter-

ative, we show that the per-iteration computational cost

is scalable in p.

The log-likelihood of the L2-regularized LMM (17) can

be rewritten in terms of class-specific variables as

log p
(
y,γ,β |X;σ2,Λ

)

∝ −1

2
β>

Φ
−1β − n

2
log σ2 − m

2
log detH

− 1

2

m∑

i=1

γ(i)>H−1γ(i) − e>e

2σ2
,

(17)

where e = y − c1−Xβ −Zγ.

From the above log-likelihood, the posterior distri-

bution of β conditioned on the data and parameter

estimates P̂ :=
{
ĉ, σ̂2, Ĥ

}
is multivariate normal

with mean ΦX>M̂−1 (y − ĉ1) and covariance Φ −
ΦX>M̂−1XΦ. Similarly, the posterior distribution

of the vector of latent variables γ is multivariate nor-

mal with mean Λ̂Z>M̂−1 (y − ĉ1) and covariance Λ̂−
Λ̂Z>M̂−1ZΛ̂. Denote by γ̂ the mean of the posterior

distribution of γ, we also obtain the following posterior

distributions of class-specific latent variable γ(i):

N
(
γ̂(i), Ĥ − ĤZ(i)>

(
M̂−1

)(i)
Z(i)Ĥ

)
. (18)

Note that ·(i) represents the block matrix corresponding

to group i. These posteriors are used in the E-step, dis-

cussed next.

E-step In the E-step, we derive the expectation of the

log-likelihood (17) with respect to the aforementioned

posterior distribution of β and γ(i):

E
β,γ|y,P̂

[
log p

(
y,γ,β |X;σ2,H

)]
.

We only need to consider terms in the expectation that

involve c, σ2, and H . Denote by Σ̂γ(i) the variance of

(18), the following holds E
β,γ|y,P̂

(
γ(i)>H−1γ(i)

)
=

γ̂(i)>H−1γ̂(i) + tr
(
Σ̂γ(i)H−1

)
. Using the previously

derived posterior distributions, we get

E

(
e | y, P̂

)
= y −Xβ̂ −Zγ̂ − ĉ1

cov
(
e | y, P̂

)
= σ̂2I − σ̂4M̂−1.

Thus, we arrive at E
β,γ|y,P̂

(
e>e

)
= ê>ê + σ̂2I −

σ̂4M̂−1, where ê := E

(
e | y, P̂

)
.

M-step We now update the parameter estimates with

the maximizers of the expectation from the E-step. First,

observe that the β estimate from the posterior distribu-

tion is the same as the the dual estimator developed in

§ 3. To maximize the expectation with respect to H and

σ2, we take the partial derivatives with respect to H−1

and σ−2, and set them to zero. This gives the following

M-step updates:

Ĥ ← 1

m

m∑

i=1

(
γ̂(i)γ̂(i)> + Σ̂γ(i)

)

σ̂2 ← σ̂2 +
1

n

[
ê>ê− σ̂4 tr

(
M̂−1

)]
.

(19)

The fast version of the above EM variant uses Algo-

rithm 1 for computing the kernel. Note that the original

X is no longer needed after the SRHT projection. This

provides additional space advantages as data X can be

preprocessed, and the Hadamard transform in Step 1 re-

quires a small constant amount of memory. Overall, the

per-iteration computational complexity of the EM algo-

rithm is O
(
max

{
n2sε, n

3
})

.

5 THEORETICAL GUARANTEES

In this section, we provide an analysis of the difference in

the parameters estimated via the approximate algorithms

versus minimizing the L2-regularized LMM. We are not

proving consistency of our estimator—convergence of

the parameter estimates to the population quantity. Con-

sistency results for LMMs and-regularized LMMs were

provided in (Schelldorfer et al., 2011; Cui et al., 2004;

Hall and Yao, 2003). See the supplementary materials

for proofs of the theorems in this section.

Theorem 1 (Fixed-effect norm error). Let β̂ be the fixed-

effect coefficients estimated by (5) and β̂′ be the fixed-

effect coefficients estimated by the approximate proce-



dure in (16). Then, with probability at least 1− 3/n

∥∥∥β̂ − β̂′
∥∥∥

∥∥∥β̂
∥∥∥

≤ ε

1− ε

∥∥Φ−1
∥∥
2
κ (Γ)

‖Φ‖−1
2

1+
√

2/3ε
+ λmin (X>V −1X)

with Γ := Φ
−1 +X>V −1X , or loosely

∥∥∥β̂ − β̂′
∥∥∥

∥∥∥β̂
∥∥∥

≤
ε
(
1 +

√
2/3ε

)

1− ε
κ (Φ)κ (Γ)

for all 0 ≤ ε < 1.

An intuitive interpretation of the theorem is that the

fixed-effects coefficients estimator (16) has better accu-

racy when the predefined Φ is better conditioned and has

smaller spectral norm. One can certainly improve the ac-

curacy by setting a smaller ε, which in turn uses more

samples in Algorithm 1.

Theorem 2 (AVC approximation errors). Let σ2
AVC and

Λ̂AVC be computed using (12). Let σ̂′2
AVC and Λ̂

′
AVC be

computed using the same equations but with approximate

kernel from Algorithm 1. Then, the following two state-

ments hold jointly with probability at least 1− 3/n:

∣∣σ̂2
AVC − σ̂′2

AVC

∣∣ ≤ ε ·
∣∣∣∣∣∣XΦX>

∣∣∣∣∣∣
n−q

n− q
and

∥∥∥Λ̂AVC − Λ̂
′
AVC

∥∥∥
2

≤ ε

σ̂min (Z)
2

(
∥∥XΦX>

∥∥
2
+

∣∣∣∣∣∣XΦX>
∣∣∣∣∣∣

n−q

n− q

)
.

Note that the fraction of the Ky Fan norm does not

exceed the spectral norm. A looser but more conve-

nient bounds are
∣∣σ̂2

AVC − σ̂′2
AVC

∣∣ ≤ ε
∥∥XΦX>

∥∥
2

and∥∥∥Λ̂AVC − Λ̂
′
AVC

∥∥∥
2
≤ 2εσmin (Z)

−2 ∥∥XΦX>
∥∥
2
.

6 EXPERIMENTS

In this section, we conduct a simulation study as well

as numerical experiments on real data. The simula-

tion study demonstrates the accuracy of parameter es-

timation using the proposed Approximate Ridge LMM

(arLMM) methods. We also examined the results on a

real data example from the Wellcome Trust Case Control

Consortium (WTCCC) study (The Wellcome Trust Case

Control Consortium, 2007), which include about 14,000

cases from seven common diseases and a total of about

450,000 SNPs.

The main finding of the experiments is that the pro-

posed approximate inference algorithms enjoy similar

predictive accuracy as state-of-the-art methods at a sig-

nificantly reduced computation cost in practice. In par-

ticular, our Matlab prototype implementation is 6x faster

than the optimized C implementation of the state-of-the-

art BSLMM method for genome-wide association studies.

6.1 SIMULATION STUDIES

To evaluate parameter estimation, we consider two per-

formance metrics. The first one is the correlation be-

tween the estimated and ground-truth fixed-effect coef-

ficients. The second metric is the Negative Log Likeli-

hood (NLL) of the standard LMM, which meaningfully

reflects the quality of variance estimation.

For the simulation, we compare the performance of

our non-iterative algorithm arLMM-AVC based on (16)

and (12), the proposed multi-group variant arLMM-EM

based on (19), the standard REML (Bates et al., 2015),

L1-regularized LMM lmmlasso (Schelldorfer et al.,

2011), and CovexLasso using both L1- and L2-

regularization (Jakubı́k, 2015).

Synthetic data generation The simulation is based on

synthetic training and validation sets sampled from a

fixed LMM distribution. The design matrices as well as

the parameters for the fixed LMM are randomly gener-

ated. Specifically,

Xij
i.i.d.∼ N (0, 1) Z

(k)
ij

i.i.d.∼ U (0, 1)

γ(k) i.i.d.∼ N
(
0,K>K

)
Kij

i.i.d.∼ N (0, 1)

β ∼ N (0, I) σ2 ∼ U (0, d) .

Note that there are d random-effect variables with co-

variance K>K. Thus, the random-effect design ma-

trix Z ∈ R
n×q , q = md, will be block-diagonal with

diagonal blocks Z(k). Given the number of observa-

tions n, we randomly sample nk observations for each

group k, where the fractions nk/n are specified by the

Dirichlet distribution with the concentration parameters

(1, 1, · · ·)>.

Overdetermined settings Let us first consider the

standard setting n > p, which are supported by many

parameter estimation algorithms of LMMs. We evalu-

ate the performance of arLMM-AVC and arLMM-EM in

a variety of p, d, and m settings. The parameter es-

timates obtained using the proposed methods are com-

pared with the estimates given by the standard REML

(see e.g., (Kang et al., 2008; Lippert et al., 2011; Laird

et al., 1987; Bates et al., 2015)) which is known to pro-

duce unbiased estimates.
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Figure 1: Comparing the performance of parameter esti-

mation on synthetic data with n = 1, 000 observations.

Note that arLMM-AVC is only applicable to the single

group setting. This figure shows that the arLMM-EM

and arLMM-AVC achieve comparable estimation perfor-

mance as REML.

Figure 1 shows the error for the fitted parameters using

1,000 observations sampled from the underlying LMM.

The average results are reported over 10 runs on inde-

pendently generated datasets. These generated datasets

have the same number of observations n = 1, 000 but

different settings of p, d, and m.

As shown in Figure 1, arLMM-EM and arLMM-AVC

exhibit comparable estimation accuracy as the standard

REML. Note that arLMM-AVC is applicable only when

m = 1 (the first row of Figure 1). Since arLMM-AVC

is based on non-iterative approximation to the variance

components, the error is slighted higher than the others

as expected.

High-dimensional (underdetermined) setting We

also examined the performance of our model in the high-

dimensional setting where we are interested in variable

selection based on the fixed-effects coefficients. In Ta-

ble 2, we specify the three regimes for which we generate

simulated data: an overdetermined LMM, a moderate-

dimensional LMM, and a high-dimensional LMM. Each

regime is characterized by n, p, d, and m, and an extra

parameter s, the number of non-zeros in the ground-truth

βTrue. Since m > 1 we did not apply arLMM-AVC.

Table 2: Regimes of data.

(n, p, d,m, s)
LOW (100, 1000, 5, 3, 10)
MOD

(
200, 104, 5, 3, 10

)

HIGH
(
104, 106, 10, 100, 100

)

Figure 2 reports variable selection results for

arLMM-EM, lmmlasso (Schelldorfer et al., 2011), and

ConvexLasso. All the settings in Table 2 have sparse

ground-truth βTrue. Figure 2 shows the fraction of the

signal (non-zeros in βTrue) recovered in the estimate

β̂. We varied the regularization parameters to obtain

β̂ with different sparsity

∥∥∥β̂
∥∥∥
0
. The entries with the

largest magnitude of β̂ is considered the signal in these

evaluations. As can be seen, arLMM-EM delivers a

competitive signal recovery ratio for p = 103, 104, and

scales to considerably large dimensions n = 104 and

p = 106, which the other two methods cannot handle.

6.2 GENOME WIDE ASSOCIATION STUDIES

LMMs have been used extensively for mapping traits in

statistical genetics. The problem formulation is that of

regressing a quantitative or categorical trait onto a high-

dimensional vector of 450,000 single nucleotide poly-

morphisms (SNPs), or locations of discrete genetic vari-

ation, for each subject included in the study. The random

effects are driven by population structure or the pairwise

similarity or relatedness between individuals.

We compare our approximate estimator to the per-

formance of a state-of-the-art estimator called BSLMM

(Bayesian sparse linear mixed model) (Zhou et al., 2013).

Specifically, we run BSLMM in its ridge-regression with

mixed models setting, the fastest setting of the package

for a fair comparison. In this setting BSLMM is comput-

ing the maximum a posteriori estimate of the regularized

LMM. We compare performance on the Wellcome Trust

Case Control Consortium (WTCCC) dataset of 14,000

cases of 7 diseases - bipolar disorder (BD), coronary

artery disease (CAD), Crohn’s disease (CD), hyperten-

sion (HT), rheumatoid arthritis (RA), type 1 diabetes

(T1D), and type 2 diabetes (T2D) - and 3,000 shared con-

trols. This dataset characterizes over 450,000 single nu-
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Figure 2: Fraction of signals captured by β̂. From left to right, the configurations are respectively LOW, MOD, and

HIGH in Table 2. It shows that arLMM-EM performs competitively in variable selection.

Table 3: Comparing the prediction performance as well as the runtime of BSLMM and arLMM-AVC on the WTCCC

dataset. Corr
(
β̂BSLMM, β̂arLMM-AVC

)
denotes the correlation between the fixed-effect coefficient estimates given by

BSLMM and arLMM-AVC.

DISEASE
TIME (MIN) AUC

CORR

(
β̂BSLMM, β̂ARLMM-AVC

)
BSLMM ARLMM-AVC BSLMM ARLMM-AVC

BD 115.8 25.1 0.6520 0.6461 0.9898
CAD 161.0 26.1 0.5899 0.5937 0.9776
CD 110.3 25.4 0.6260 0.6328 0.9862
HT 120.6 19.4 0.5956 0.6010 0.9766
RA 147.4 19.9 0.6173 0.6206 0.9834
T1D 120.0 20.4 0.6846 0.6840 0.9939
T2D 155.3 18.9 0.6003 0.5993 0.9783

cleotide polymorphisms (SNPs), or locations of discrete

genetic variation, for each subject included in the study.

Disease status is indicated as a binary response (1 for

disease case, −1 for control). Each of the datasets had

roughly equal numbers of cases and controls.

For this experiment, we adopted the same random-

effect covariance parameterization used to control for

population structure θXX>/p as BSLMM, and used

arLMM-AVC with AVCs (15) and (14). arLMM-AVC

and BSLMM were run under identical conditions on each

of the seven approximately 5,000-subject × 450,000-

SNP datasets. This was the same experimental setup

used to validate BSLMM in (Zhou et al., 2013).

Observed runtimes for each of the seven datasets are re-

ported in Table 3. Correlation between the β̂ reported

by arLMM-AVC and BSLMM in all cases was very high,

0.977 or greater.

We also compared disease status prediction by splitting

each dataset into a training set comprised of 80% of sub-

jects and a test set of the remaining 20%, selected at ran-

dom. arLMM-AVC and BSLMM each estimated β̂ from

the training set and attempted to predict disease status on

the held-out set. We repeated this 20 times for each of the

seven datasets and evaluated performance of prediction

on the held-out set by area under the ROC curve (AUC).

These results are also given in Table 3. Predictive per-

formance by arLMM-AVC and BSLMM was almost iden-

tical. Predicting disease status from genetic markers is

hard and it is well known that the effect sizes of genetic

variants are individually small and that a great deal of

variance in the response will also be driven by environ-

mental factors.

7 CONCLUSIONS

State-of-the-art parameter inference in LMMs requires

computational complexity which depends at least lin-

early on the number of covariates p and generally relies

on heuristics. In this paper, we presented scalable learn-

ing algorithms which have sublinear computational com-

plexity in p and provide theoretical guarantees for the

accuracy of parameter estimation. Our approach com-

bines novel approximate estimators that use a kernel ma-

trix of the observations and the subsampled randomized

Hadamard transform. Experiments on synthetic and real

data corroborate the theory.
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