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Abstract—Network programmers can currently deploy an
arbitrary set of protocols in forwarding devices through data
plane programming languages such as P4. However, as any
other type of software, P4 programs are subject to bugs and
misconfigurations. Network verification tools have been proposed
as a means of ensuring that the network behaves as expected,
but these tools typically require programmers to manually model
P4 programs, are limited in terms of the properties they can
guarantee and frequently face severe scalability issues. In this
paper, we argue for a novel approach to this problem. Rather
than statically inspecting a network configuration looking for
bugs, we propose to enforce networking properties at runtime.
To this end, we developed P4box, a system for deploying runtime
monitors in programmable data planes. Our results show that
P4box allows programmers to easily express a broad range of
properties. Moreover, we demonstrate that runtime monitors
represent a small overhead to network devices in terms of latency
and resource consumption.

I. INTRODUCTION

Programmable data planes allow network operators to mod-
ify the packet processing pipeline of network devices to
quickly deploy new protocols, customize network behavior,
and implement advanced network services. The introduction
of the P4 [1] programming language has greatly lowered
the barriers to doing so, bringing data plane programming
into the mainstream. Over the last years, an ecosystem of
data plane software has emerged (e.g., [2], [3]), and we can
expect to see network devices running code written by teams
of developers across multiple organizations, assembled by a
network operator from libraries and modules, in the near
future.

Despite the simplicity of its programming model, P4 pro-
grams have demonstrated to be prone to a variety of bugs
and misconfigurations [4], [5]. As a result, network operators
need ways to ensure that the programs they produce behave
correctly in order to reap the benefits of a data plane software
ecosystem. Decades of progress in software engineering have
produced mature tools and methodologies for ensuring that
certain properties hold in a program, and this idea has been
gradually extended to the networking domain. State-of-the-art
network verification tools can take a model of the network,
its configuration, and a set of properties specified using
traditional formalisms (e.g., temporal logic or Datalog rules)
and automatically check whether these properties hold for any
packet [6], [7].
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Although these tools have helped network operators to
identify bugs before they manifest, they still face important
issues that hinder their adoption in production networks. First,
most of these tools require programmers to manually model
data plane programs, which is a cumbersome and error-prone
task [7]. Second, these tools are usually restricted in terms of
the properties they can guarantee. For example, some of them
are specialized to the verification of reachability properties in
order to reduce verification times [8]. Third, more expressive
tools capable of verifying multiple properties frequently face
severe scalability issues (e.g., checking conformance with a
protocol specification can take days even for a single data
plane program [4]). Finally, programmers usually have to
be proficient in formal verification techniques for correctly
specifying their properties.

In this paper, we propose a novel approach to this problem
which is based on dynamic (or runtime) enforcement rather
than static verification. While the former cannot always pro-
vide the kind of strong correctness guarantees that the latter
can, it has several practical advantages. First, we do not need
to wait for the outcome of a long verification process in order
to push a new configuration out to the network switches.
In addition, runtime enforcement can promptly intervene if
problematic situations actually occur. It means we can still
extract some useful work from buggy code when it behaves
correctly, and perhaps repair problems without disturbing any
network service (see an example in Section IV-B3).

In contrast to static verification, run-time enforcement also
lets the developer express policy and mechanism using the
same programming environment as the rest of the program.
The value of this should not be underestimated: not only does
it make life easier for the developer, it also prevents translation
errors between implementation and policy domains. That is,
rather than expressing a property, such as loop-free forwarding
using a separate modeling or formal reasoning language, the
programmer can write code to enforce and verify the desired
properties in the language of the program (i.e., P4 in our case).

To realize the benefits of our dynamic enforcement approach
we developed P4box, a system for deploying runtime monitors
in programmable data planes. A program monitor is a lan-
guage construct we developed (as an extension to P4) inspired
by the Aspect-Oriented Programming (AOP) paradigm [9]
which provides language-level constructs for attaching code
to designated points in an existing program without modifying
the program itself. Programmers can use monitors to modify
or verify the behavior of control blocks, parsers, and external



functions of P4 programs, and thus ensure they respect a set
of desired properties. Monitors are particularly well-suited to
the context in which data plane programs are assembled from
externally-maintained modules, where it may be desirable
to alter or verify the behavior of these modules without
modifying their code.

P4box instruments a P4 program with monitors at compile-
time in such a way that the former cannot circumvent or
interfere with the latter. Moreover, monitors can be combined
to enforce more complex properties such as the ones involving
extraction and emition of labels on packets (see an example
in Section IV-B1). In summary, we make the following con-
tributions:

“ We design an extension to the P4 data plane program-
ming language, called a monitor, that allows a program-
mer to specify properties about the network (using P4)
in the form of pre- and post-conditions to control-blocks,
parsers and extern functions (Section III).

% We develop P4box, a system for deploying runtime
monitors in programmable data planes by instrumenting
P4 programs at compile-time in such a way that the
former cannot be hindered, tampered or circumvented
(Section III).

< We show how P4box can be used to enforce several
networking properties, including packet well-formedness,
header protection, and waypointing (Section IV).

% We show that monitors impose low overhead to net-
work devices in terms of latency and memory consump-
tion (Section V).

The remaining of this paper is organized as follows. Sec-
tion II reviews the architecture of programmable network
devices, summarize the main aspects of P4 programs, and
motivates the development of property enforcement mecha-
nisms in programmable data planes. Section VI discusses key
aspects of runtime enforcement, P4box and program monitors.
Section VII compares our proposal with related work, and
finally Section VIII concludes the paper.

II. BACKGROUND AND MOTIVATION
A. Programmable network devices

Programmable network devices (a.k.a. fargets) are packet
processing elements (i.e., switches, SmartNICs, NetFPGAs)
that allow network programmers to configure their data plane.
These devices implement variations of an architecture known
as PISA (Protocol Independent Switch Architecture)'. PISA-
based devices contain multiple programmable blocks, which
can be parsers, deparsers, match-action stages or queueing
systems. Figure 1 presents an example of a PISA-based
switch containing three programmable blocks (dashed boxes):
a parser, a match-action pipeline and a deparser. Each pro-
grammable block can be configured by developers using a
data plane programming language (typically P4), and the
organization and capabilities of these blocks are abstracted
to P4 programs as an interface or architecture model.

Uhttps://p4.org/assets/p4-ws-2017-p4-architectures.pdf
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Fig. 1. Example of PISA-based switch. Dashed blocks can be programmed
in P4.

1 parser ParserImpl( packet_in packet ){...}

2

3 control Pipeline( inout headers hdr ){

4 A

5 action route( bit<9> iface ){ ... }

6

7 /* Route IPv4 packets */

8 table route_packet {

9 actions = { route; }

10 key = {

11 hdr.ipv4.srcAddr : ternary;

12 hdr.ipv4.dstAddr : ternary;

13 }

14 size = 1024;

15  }

16

17 apply{ route_packet.apply(); }

18

19

20 control DeparserImpl( packet_out packet ){...}

21

22 Switch(ParserImpl(), Pipeline(), DeparserImpl())

Fig. 2. Example P4 program

B. P4 Programs

As a domain specific language, P4 offers many constructs to
facilitate the specification of packet processing tasks. Program-
mers can, for example, declare packet headers, parsers, tables,
actions to modify packets, and control blocks to compose
sequences of tables. These abstractions are used to configure
different programmable blocks in network devices, and the
configuration of all blocks comprises a P4 program. Figure
2 shows an example of a program for configuring the PISA-
based switch described in Section II-A. In this example, the
match-action pipeline block implements a single table that
routes packets based on their IPv4 addresses (1.8-15).

C. Data Plane Bugs

Although the simplicity of its programming model (e.g., P4
programs have no loops or dynamic memory allocation [1]),
data plane programs have demonstrated to be prone to many
bugs and misconfigurations. Bugs in P4 vary in nature, but
overall they can be both generic bugs (i.e. well-known from
other programming languages) such as information overwrit-
ing? and data use-before-initialization®, and also network
specific bugs such as the creation of malformed packets
[8], incorrect implementation of protocol specifications [5]
or policy violations due to bad table configurations. In this
context, it is essential to develop mechanisms that support the
development of secure and correct network data planes.

Zhttps://github.com/p4lang/switch/issues/97
3https://github.com/p4lang/switch/pull/102
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Fig. 3. P4box programming model.

III. P4BOX

P4box is a system that allows network programmers to
deploy runtime monitors in programmable data planes. Using
P4box programmers can attach monitors before and after
control blocks, parser state transitions, and calls to external
functions of a P4 program. Each monitor can modify the input
and output of the code block or function it monitors. This
enables the verification of pre- and post-conditions which can
be used to enforce specific properties or modify the behavior
of the monitored block. P4box inclines monitor code into
the monitored P4 program at the intermediate representation
level (i.e., during the compilation of the latter). The result-
ing program (original code plus monitors) then continues
the compilation as before, which allows P4box to be used
with any backend compiler based on the P44 reference
implementation. In the rest of this section, we provide an
overview of P4box and its runtime monitors (Section III-A),
describe the three kinds of monitors P4box can deploy in detail
(Sections III-B, III-C, and III-D) and present our prototype
implementation (Section III-E).

A. Overview

A runtime monitor interposes on the interaction of a P4
control block or parser with the rest of the execution en-
vironment (Figure 3), allowing the monitor programmer to
modify the behavior of the enclosed P4 block with the rest of
the environment. A P4 programmable block (either a control
block or parser) interfaces with the rest of the P4 execution
environment at entry into the block, return from the block,
and at calls to architecture-supplied external functions. In the
P4box programming model, when a programmable block is
invoked, control first passes to a monitor, also written in P4,
before passing to the intended programmable block. Similarly,
when a programmable block completes processing, control
first passes to the monitor before returning to the device. This
allows a monitor to modify the behavior of programmable
blocks in a well-defined way.

Monitors can also interpose on calls to external functions:
when a programmable block invokes an external function,
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Fig. 4. P4box workflow.

control first passes to the monitor, then the function, and
then back to the monitor again, before returning to the
programmable block. A monitor can thus modify the apparent
behavior of a external function. Monitors are declared and
defined at the top level of a P4 program, alongside control
blocks, parser blocks, and other top-level declarations. The
syntax for a monitor is:

monitor <name> ( [param-list] )
[local-declarations]
(before | after) { <pi4-statements> }

on <object> {

}

Each monitor is identified by a unique <name> and
may receive additional parameters (<param-list>) containing
headers and metadata in addition to the parameters of the
monitored object. Every monitor must be associated with a
data plane <object>, which can be a parser, control block or
extern function. The resource type defines the set of <p4-
statements> elements the monitor supports. Monitors can
have two types of methods, namely: before and after, which
specify code fragments that are executed before and after
the monitored resource, respectively. Finally, they can also
contain local declarations (e.g., actions, tables) visible inside
the monitor but not the monitored block.

Figure 4 shows the P4box workflow. The original P4
program and P4 source files defining runtime monitors are
provided to P4box which combines the original program
with the monitors at the intermediate level to produce a
new program suitable for further compilation. At the end,
machine-level code containing all monitors is generated for a
variety of targets. During the instrumentation process, P4box
takes advantage of language features provided by P4 such as
separate scopes and namespaces in addition to static analysis
to provide the following guarantees for each monitor:

o Complete mediation: The flow of execution of the origi-
nal data plane program will always pass through a monitor
(when one is defined by the programmer). This means it
is not possible for the original program to circumvent a
monitor.

o Non-interference: The original program cannot interfere
in the operation of a monitor (e.g., by modifying its local
variables or headers), which means monitors are completely
isolated from the data plane program.

Together, the complete mediation and non-interference



properties allow monitors to restrict what the original P4
program is allowed to do even when the latter is untrusted
(e.g., a third-party program). Monitors are thus not only an
aspect-oriented P4 program structuring mechanism, but also a
software sandbox that can be used to encapsulate untrusted or
buggy P4 code. Next, we show examples and describe each
of the three kinds of monitors P4box supports in more detail.

B. Control block monitors

P4box can attach monitors to top-level control blocks. In
this case, before and after contain statements that will be
executed at the beginning and the end of block, respectively.
Figure 5 shows an example of a control block monitor, which
could be used to detect and process information overwriting
bugs?. This monitor is responsible for ensuring that a header
is not erroneously modified by the data plane program. The
monitor is attached to the processing pipeline and has two
elements: i) before the programmable block, it collects state
from the original packet as soon as it is parsed (1.5-8); and
ii) after the block, it tests whether monitored headers were
modified (1.10-17). Local variables (i.e., visible only to the
monitor) are used to store protected headers (1.2-3). If the
monitor detects a violation, different actions can be performed
to enforce the desired property (e.g., restore the original header
value, notify the network controler, log an event), being up to
the programmer to decide what to do.

P4box performs the instrumentation of control blocks in
three steps: first, monitor parameters containing headers and
metadata are merged with parameters of the monitored block
(e.g., joining the fields of two structs to create a super struct).
If during this process P4box identifies there is no feasible
mapping (e.g., because there is no parameter in the monitored
block that supports the merge operation), a message is emitted
and the instrumentation process is aborted; second, before and
after blocks as well as local declarations are inserted in the
monitored block; finally, a name resolution pass maps monitor
names to their new namespaces. The left part of Figure 6
illustrates this transformation, where a generic control block is
instrumented with its monitoring primitives. A corresponding
example is shown on the right, representing the instrumen-
tation performed to the monitor specified in Figure 5. As a
result of this transformation, all packets crossing the control
block also pass through the monitor since P4 assumes network
devices execute statements in order.

C. Parser monitors

Parser monitors, on their turn, can be attached to top-level
parsers. As such, before and after can contain finite state ma-
chines and both of them must have a start and accept state. It is
possible to specialize a parser monitor to a specific parser state,
in which case before and after are associated only to the latter.
An example of a parser monitor is shown in Figure 11-lines 6
to 17, where the monitor is attached to the parse_ethernet state
and used to extract an enforcement header. Parser monitors are
also particularly useful for skipping the extraction of packet

1 monitor hdrInvMonitor() on Pipeline {
2 ipv4_t protec_ipv4;

3 udp_t protec_udp;

4

5 before {

6 protec_ipv4 = hdr.inner_ipv4;

7 protec_udp = hdr.inner_udp;

8 }

9

10  after {

11 if( protec_ipv4 != hdr.inner_ipv4 |
12 protec_udp != hdr.inner_udp ){
13 /*Run enforcement action

14 (e.g., restore original header
15 value, notify the control plane,
16 write log) */

17 3}

15 }

Fig. 5. Example of control block monitor to enforce header protection.

bits that for some reason (e.g., confidentiality) should not be
visible to the data plane program.

To instrument parsers, P4box takes into account if before
and after are attached to states or not. If not, it assumes the
start and end (i.e., accept) states of the monitored parser as its
hooking points. The left part of Figure 7 shows the transfor-
mations P4box applies. Assuming state Sy is being monitored,
P4box links the finite state machine specified inside before
(before_FSM) between states Si_; and Sj, by modifying state
transitions. An analogous process is performed for the finite
state machine specified inside after (after_FSM), linking it
between states S and Sg4;. The right part of Figure 7, on
its turn, shows an example of these transformations, where
P4box performs the instrumentation to the parser monitor
specified in Figure 11. Instead of transitioning directly from
state parse_ethernet to parse_ipv4, the execution flow goes
through states _M_START_ and parse_wp_header.

D. Extern monitors

Extern monitors are attached to extern calls. Their capa-
bilities are restricted to what actions can do in P4 because
of limitations the latter have on extern callers (e.g., it is not
possible to make local declarations or invoke a table from
inside an action). Similar to parser monitors, extern monitors
can also be specialized to subgroups of a resource. In this case,
a type signature is used to apply a monitor only to a subset of
the extern calls. An example is presented in Figure 11-lines
20 to 24, where the extern monitor is applied only to calls
for emitting headers of type ethernet_t. Extern monitors are
useful to mediate how the data plane program interacts with
the platform underlying it.

P4box instruments extern calls by adding before and after
blocks right before and after every monitored call, respectively.
The left part of Figure 8 illustrates this transformation, where
the same extern call appears twice (inside an action and
directly in the control block body). For the particular case
in which a monitor has a type signature, only calls with
that signature are instrumented. As an example, the right part
of Figure 8 shows the instrumentation to the extern monitor
specified in Figure 11.



control <control_name>
( <combined-params> ){
[local_elements]
[monitor_local_elements]

control pipeline(inout newHeaders hdr,
inout metadata meta){
ipv4_t protec_ipv4;
apply {
apply{ protec_ipv4 = hdr.inner_ipv4;
[before_statement] .
Cs if(protec_ipv4 != hdr.inner_ipv4
[block_statement] || protec_udp != hdr.inner_udp){
[after_statement] }
} }
} }

Fig. 6. Instrumentation of control blocks.

parser <parser_name>
( <combined-params> ){
[local_elements]
[monitor_local_elements]

parser pipeline(packet_in packet,
out newHeaders hdr){

state parse_ethernet {
s transition _M_START_;
state <s_k-1> { 3
transition [before_FSM]; state _M_START_ {
transition select(...){
[state before_FSM { 16wOXFFFF : parse_wp_header;
transition <s_k> }] -
state <s_k> { 3}
transition [after_FSM]; }
3 state parse_wp_header {
[state after_FSM { transition parse_ipv4;
transition <s_k+1> }] 3}
state <s_k+1> { state parse_ipv4 {
transition <s_k+2> transition parse_tcp;

3 3
}.” }.”

Fig. 7. Instrumentation of parsers.

control <control_name>
( <combined-params> ){
action <action_name>(){

control DeparserImpl(
packet_out packet,
in newHeaders hdr){

Ce apply{

[before_statement]

[extern_A_call]

[after_statement]

packet.emit (hdr.ethernet);
packet.emit (hdr.wp_header);

cee packet.emit (hdr.ipv4);
} .

apply{ }

[before_statement]
[extern_A_call]
[after_statement]

Fig. 8. Instrumentation of extern calls.

E. Implementation

We implemented a prototype of P4box by extending the
P4, reference compiler®. Our system has around 1.5K lines of
C++ code and is publicly available’. We modified the front-end
compiler to instrument programs by adding additional passes
over their intermediate representation. Our examples and the
workloads used in our experiments are also available online.

“https://github.com/p4lang/pdc
Shttps://github.com/mcnevesinf/p4box

IV. ENFORCING PROPERTIES

The value of a mechanism like P4box is best seen through
examples. In this section, we show how P4box can be used to
enforce several kinds of properties in the data plane. Generally,
these fall into two categories: program properties, which are
properties of a single program’s behavior, and network-wide
properties, which are properties of several network devices’
behavior.

A. Program Properties

Program properties concern the behavior of a program
running on an individual device. These properties must hold
regardless of how the device is configured or connected in
a topology. They are also referred to as network function
properties in the literature [10]. In this work, we consider
two types of program properties: generic safety properties,
which correspond to low-level properties related to the correct
operation of a data plane program (e.g., packet formation prop-
erties and use-after-initialization), and functional or semantic
properties, which guarantee the program conforms to a given
user-specification (e.g., an RFC). Below we show how we
enforce some program properties of interest, well-formedness
and header protection.

1) Well-formedness: The output of a data plane program
is well-formed if it complies with relevant protocol standards.
Well-formedness determines the interoperability between mul-
tiple implementations of a protocol stack. In terms of pro-
grammable data planes, this means that the packets produced
by one data plane program can be processed by another, and
vice-versa. Enforcing well-formedness invariants is particu-
larly useful in hybrid networks (i.e., networks containing both
P4-enabled and legacy devices), where the elements may not
support the same set of protocols. P4box can enforce well-
formedness properties (e.g., packets do not contain both an
IPv4 and IPv6 header, ICMP packets always have an IPv4
header) with simple checks of header validity at the end of
the processing pipeline.

2) Header protection: In some cases, it may be desirable
to ensure that a header is not modified by a forwarding device
or programmable block. For example, in an deployment where
VLANS are used to isolate potentially untrusted domains, it
may be necessary to provide strong assurance that a VLAN tag
is not modified by a forwarding device. P4box can be used to
ensure that headers are not modified by collecting the appro-
priate packet state at the beginning of the processing pipeline
(e.g., the value of a VLAN tag), and comparing it against
the emitted headers. Such properties can be easily extended
to allow only transformations to a pre-defined domain (e.g.,
source MAC can be modified only to a set of output interface
addresses).

B. Network-Wide Properties

Network-wide properties concern forwarding devices when
configured and connected in a particular topology [10]. These
properties may involve basic predicates (e.g., A can reach B)
as well as state and quantities (e.g., express desired behaviors
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Fig. 9. Example topology for way- Fig. 10. Interaction between P4box
pointing. and the P4 program to enforce way-
pointing.

struct p4boxState {
waypoint_t wp_header;

}

//Parser monitor to extract enforcement header
monitor wpParser(inout p4boxState pstate) on ParserImpl {
after parse_ethernet {
state start {
9 transition select(packet.lookahead<bit<32>>()){
10 16wOXFFFF : parse_wp_header;
11 default : accept;
12 3}
13 3}
14 state parse_wp_header {
15 packet.extract(pstate.wp_header);
16 transition accept;

17 3}

0w ~NOUOAWNERE

19 //Extern monitor to emit enforcement header
20 monitor wpExtern(inout p4boxState pstate)

21 on emit<ethernet_t>{
22 after {

23 packet.emit(pstate.wp_header);

24 3}

25

26 monitor wpControl(inout p4boxState pstate) on Pipeline {

28 table check_waypoint {...}

29

30

31 before {

32 //Enforce waypointing property
33 insert_label.apply();

34 check_waypoint.apply();

35 remove_label.apply();

36 1}

Fig. 11. Supervisor to enforce waypointing.

for networks containing middleboxes or having latency con-
straints). We now describe how P4box can enforce common
network-wide properties.

1) Waypointing: Network operators may want to force
packets to pass through a sequence of devices (waypoints)
before the network delivers them to an end host. P4box can
enforce waypoint properties by checking and updating labels
whenever these packets cross a device in the chain. As an
example, Figure 9 shows a scenario where packets coming
from an external network (i.e., through router R) must first be

P4 program P4 box

begin parser

parse ethernet
| ! parse loop
parse ipv4 — |labels

end parser i i Insert/check
loop labels
begin pipeline |

end pipeline \ Remove
R1
begin deparser / loop labels
T emit ethernet
R3[R2[R1[Load ! emit loop
labels
R2 emit ipv4 — |

==
end deparser

v v

Fig. 12. Example topology for loop Fig. 13. Interaction between P4box

detection. and the P4 program to enforce loop
detection.

struct p4boxState {

//Header stack to store sequence of labels

loop_header_t[10] loopHeader;

monitor loopMonitor(inout p4boxState pstate)

on Pipeline{

action loop_detected(){ ... }

10 action insert_label( bit<32> label ){ ... }
11

12 /*Check if sequence of labels in a packet
13 contains router ID (i.e., has a loop)*/
14 table check_loop {

15 actions = { insert_label; loop_detected; }
16 key = {

17 pstate.loopHeader[0].label : ternary;
18 .

19 pstate.loopHeader[9].label : ternary;
20 3}

21 size = 10;

22 }

23

24 before {

25 check_loop.apply();

26 }

27 }

Fig. 14. Supervisor to detect forwarding loops.

inspected by an IDS system before arriving at a web server
(hosts HI-H3). In this case, a P4box monitor in R introduces
labels in each packet in order to enforce waypointing. These
labels are then updated by another monitor at switch SI,
and a third monitor checks them at switch S2 for dropping
packets that are destined to the web servers and do not contain
the updated tag (L1). Figure 10 shows how P4box interacts
with the P4 program to enforce waypointing, where vertical
arrows represent the flow of execution. Note that P4box traps
the program at three points: first, between the parsing of
the Ethernet and IPv4 headers, to check whether the packet
contains a label and extract the latter; second, right before the
beginning of the match-action pipeline, to operate on the label
(e.g., check, updates or remove) depending on how the device
is connected in the topology; finally, to emit the label during



the deparsing phase.

Figure 11 shows a summary (with some parts omitted due
to space constraints) of the code used to enforce waypoint
properties. Each trap is programmed as a separate monitor.
Parser (1.6-17) and extern (1.20-24) monitors are employed to
extract and emit labels, which are declared in the wp_header
(1.2). Moreover, a control block monitor uses match-action
tables to insert, check/update and remove labels according to
the incoming/outgoing ports of the packet. P4box monitors
can be configured (proactive or reactively) to reroute packets
on-the-fly and correct property violations. Moreover, we can
extrapolate the labeling mechanism described above to enforce
path conformance (i.e., to guarantee that the actual path taken
by a packet conforms to the operator policy). In this case,
P4box monitors check and update packet labels on every hop.

2) Loop detection: P4box can also detect forwarding loops
by adding labels to packets. However, unlike waypointing,
it appends a new label rather than updating a single one
whenever the packet traverses a different hop. Figure 12
illustrates this idea, where labels contain router IDs. To detect
a loop, a P4box monitor compares the sequence of labels
already in the packet with the new one. If there is a match, then
a loop is identified. Figure 13 shows the interaction between
P4box and the P4 program in order to enforce loop detection.
Similar to waypointing, P4box first hooks the program parser
in order to extract the sequence of labels attached to the
packet. However, two (rather than one) traps are needed during
the match-action processing, one before and another after the
pipeline. The former ensures the device does not waste time
processing a packet that is in a loop and will be discarded
anyway, while the latter is used to guarantee that the labels
are only removed after a packet gets its output port in the last
hop.

Figure 14 summarizes monitors for enforcing loop detec-
tion. Parser and extern monitors, which are used to extract
and emit the sequence of labels, are omitted due to space
constraints. Moreover, the sequence of labels is manipulated
using a header stack (1.3). A control block monitor contains
the match-action tables to check, insert and remove labels (1.6-
27). Entries to these tables place the router ID in each position
of the stack in order to detect a loop.

3) Traffic locality: Sometimes operators want to preserve
traffic locality, e.g., packets flowing between two VMs in the
same rack must not leave the top-of-rack switch in a data
center, or traffic between two hosts in the same autonomous
system should not leave its borders [7]. P4box can enforce
traffic locality by controlling the set of output ports a packet
can take. For example, packets from host A to B in Figure
15 are not allowed to be forwarded to upper ports. Figure 16
shows how P4box interacts with the P4 program to enforce
traffic locality. First, it hooks the flow of execution at the
beginning of the processing pipeline to save the state of
required headers (e.g., MPLS or IPv4) before the program
can modify them. Then, at the end of the pipeline, it uses the
saved state as well as information about the outgoing port to
check whether the packet can be forwarded. Figure 17 shows

P4 program P4 box

begin parser

end parser \ save control
o / headers
begin pipeline

end pipeline \ enforce
/ locality
begin deparser

end deparser

v \ 4

Fig. 16. Interaction between P4box

Fig. 15. Example topology for traffic and the P4 program to enforce traffic

locality. locality.
1 monitor tlMonitor(inout p4boxState pstate)
2 on Pipeline {
3 //Run enforcement action
4 action enforce_locality(){ ... }
5
6 //Check if packet violates locality
7 //(i.e., tries to leave AS)
8 table traffic_locality_table {
9 actions = { NoAction; enforce_locality; }
10 key = {
11 hdr.ipv4.srcAddr : ternary;
12 hdr.ipv4.dstAddr : ternary;
13 standard_metadata.egress_port : exact;
14 3}
15 size = 512;
16 3}
17

18 after { traffic_locality_table.apply(); }

Fig. 17. Supervisor to enforce traffic locality.

relevant parts of the monitor used to enforce traffic locality. It
contains a single table that matches a set of control headers
and the outgoing port (1.8-16), and runs an enforce_locality
action (e.g., send the packet to a different outgoing port) when
a violation is detected (1.4).

V. PERFORMANCE

Because dynamic enforcement happens at run time, it may
impose a performance penalty compared with static verifica-
tion techniques. In this section, we analyze the performance
overhead of P4box in terms of logical resources (i.e., tables,
actions, headers) required for enforcing each property. We
favor this kind of evaluation in a preliminary analysis because
these metrics are target-independent and thus can be used to
estimate the overhead for different types of network devices
(e.g., hardware and software switches, SmartNICs and NetF-
PGAs). Moreover, they are not associated with any specific
data plane program running on these devices, which could
affect metrics such as latency and throughput. Overall, the
higher the number of logical units in a P4 program, the higher
the overhead in the data plane. For example, packet parsing
latency increases with the number of headers (or bits) to be
extracted, and a match-action stage takes longer to process a
packet if we increase the number of tables or the complexity
of the actions to be performed.

Table I summarizes the overhead of P4box for enforcing
the properties described in Section IV. The column key size



TABLE I
P4BOX PERFORMANCE OVERHEAD. 1 = #CHECKS, m = #PROTECTED HEADERS, p = LABEL SIZE, ¢ = #LABELS, s = LENGTH OF CONTROL FIELDS

#Parsed Key size #Field #Lines of
Property bits #Tables (bits) writes code
Well formedness (Sec. IV-Al) 0 0 0 1 n+4
Header protection (Sec. IV-A2) 0 0 0 m 2m + 12
Waypointing (Sec. IV-B1) p 3 p+s 5 80
Loop detection (Sec. IV-B2) qp 3 qp 4q 5q + 80
Traffic locality (Sec. IV-B3) 0 1 s 2 25
switch.p4 - IPv4 384 40 280 =~ 50 ~ 6K

reflects the size of the largest matching key when multiple
tables are applied, and the column field writes corresponds
to operations such as adding and removing headers as well
as field assignments in actions. We use variables to indicate
parameters that can be adjusted when enforcing each property.
For example, header protection requires one field write for
saving the state of each protected header (see lines 5-8 in
Figure 5), in which case we represent the number of protected
headers as m. This number may change from program to
program. Other variables include the number of header validity
checks for enforcing well-formedness, n, the size of the
labels attached to packets for enforcing waypointing and loop
detection, p, the maximum amount of labels, ¢, and the total
length (in bits) of the fields used to control the operation of a
monitor (e.g., IP addresses in traffic locality), s.

To put the numbers from Table I in perspective, we compare
them with switch.p4%, a widespread data plane program that
implements a top-of-rack switch for data centers. Switch.p4
has more than 6K lines of code, and requires parsing 384 bits
and applying 40 tables to process a traditional IPv4 packet.
In order to enforce waypointing for example, P4box requires
parsing only 8 bits (assuming p = 8) and applying 3 tables
which are specified in 80 lines of code. In practice, this
represents an increase lower than 5% in the packet processing
latency according to the experiments we performed in a
software switch’. Regarding resource consumption, if we con-
sider hardware-based devices such as NetFPGAs, waypointing
requires less than 3% additional memory blocks, flip-flops
and lookup tables according to the literature [11] (assuming
key sizes of 72 bits and a hash-based associative memory
implementation).

In our ongoing work, we are investigating optimizations
for enforcing each property (e.g., combining tables among
them) in order to reduce even more these overheads. Moreover,
P4box could benefit from parallelizations available in network
devices to process monitors concurrently [12]. We plan to
extend the evaluation for including measurements performed
on high-performance P4-enabled devices (e.g., SmartNICs and
NetFPGAs) as a future work.

VI. DISCUSSION
Monitor correctness. Although monitors can also contain
bugs themselves, that is less likely to happen compared to

Shttps://github.com/p4lang/switch/
7https://github.com/p4lang/behavioral-model

the original program due to their intentionally small code
base. Moreover, their simplicity makes them suitable to formal
analysis (e.g., model checking or theorem proving) when
security or reliability are important. In our ongoing work,
we are exploring automatically converting monitors into an
equivalent model in C and using an off-the-shelf symbolic
execution engine (e.g., KLEE [13]) to prove their correctness.

High-level abstractions. While P4box allows programmers
to use P4 for specifying properties, it is still necessary to think
about each monitor individually. For example, programmers
may need to create multiple monitors to enforce a network-
wide property (e.g., a monitor for inserting and other for
removing a label from packets). This can easily become a
tedious process in large networks containing thousands of
devices. Recent research efforts have proposed to automat-
ically synthesize network configurations from higher-level
abstractions (e.g., graphs or intents) [14]. We plan to extend
P4box to support these abstractions in order to facilitate the
enforcement of more complex properties or their combination.

VII. RELATED WORK

Network verification. Many tools have been proposed for
verifying that a network behaves as expected. Moreover, these
tools focus on either the control or the data plane. ERA [15]
and Minesweeper [6] use models of networking protocols
(e.g., BGP and OSPF) to analyze the network control plane.
Although they can check multiple data plane configurations
with this approach (i.e., the ones resulting from different
protocol interactions), they are restricted to a limited number
of protocols. Veriflow [16], NoD [7] and SymNet [17], on the
other hand, are data plane verifiers. They take a single data
plane configuration (i.e., set of forwarding rules) as input, and
check whether certain properties hold for all possible packets.
Data plane verification approaches are typically not tied to any
specific protocol, but network programmers need to manually
build a separate model for each data plane program, which
may be a cumbersome and error prone task.

P4v [18] and ASSERT-P4 [5] can automatically verify P4
programs, but they are able to check only program-specific
properties. Finally, Vera [4] and P4Nod [8] create models for
data plane programs that can be used as input to SymNet and
NoD, respectively. Although they can quickly verify small data
plane programs (i.e., in the order of seconds), the verification
time grows exponentially with both the program and the
network size.



Network debugging. Another dynamic approach to ensure
security and correctness properties in networks is debugging.
This approach is essentially based on monitoring and col-
lecting statistics from network devices to perform an offline
analysis. For example, Marple [19] proposes a query language
for specifying monitoring tasks. Stroboscope [20] extends
this idea and also considers scheduling to meet resource
constraints. Instead of monitoring and collecting data, P4box
processes information embedded on packets in switches at run-
time. This design enables our mechanism to promptly react to
property violations, containing them before they compromise a
network policy. In-band Network Telemetry (INT)® provides
flexibility similar to ours. However, it assumes information
embedded on packets can not be compromised by buggy or
malicious data plane programs. P4box, on the other hand,
creates an isolated environment that can be used by network
programmers to securely enforce policies of interest.

Runtime enforcement. The idea of using runtime monitors
to enforce properties was first introduced by [21] in the context
of system security more than forty years ago. In computer
networks, FlowTags is a seminal work that proposed to extend
middleboxes to add tags on packets which would be used by
switches to enforce path conformance and origin binding [22].
However, unlike P4box, it does not take data plane programs
and all possible bugs that come with them into account.

VIII. CONCLUSION

P4 and programmable data planes lowered the barrier for
innovation in networking, but at the same time also made
networks more prone to bugs and misconfigurations. To solve
this problem we proposed P4box, a system for dynamically
enforcing properties in programmable data planes through run-
time monitors. P4box can enforce both program and network-
wide properties while requiring a small effort from network
programmers. Moreover, it represents a modest overhead to
network devices in terms of latency and memory consumption.
As future work, we plan to combine static verification and dy-
namic enforcement to build efficient, correct-by-construction
programmable data planes.
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