
Dynamic Property Enforcement in

Programmable Data Planes

Miguel Neves∗, Bradley Huffaker†, Kirill Levchenko‡ and Marinho Barcellos∗

UFRGS∗, CAIDA/UCSD†, UIUC‡

Abstract—Network programmers can currently deploy an
arbitrary set of protocols in forwarding devices through data
plane programming languages such as P4. However, as any
other type of software, P4 programs are subject to bugs and
misconfigurations. Network verification tools have been proposed
as a means of ensuring that the network behaves as expected,
but these tools typically require programmers to manually model
P4 programs, are limited in terms of the properties they can
guarantee and frequently face severe scalability issues. In this
paper, we argue for a novel approach to this problem. Rather
than statically inspecting a network configuration looking for
bugs, we propose to enforce networking properties at runtime.
To this end, we developed P4box, a system for deploying runtime
monitors in programmable data planes. Our results show that
P4box allows programmers to easily express a broad range of
properties. Moreover, we demonstrate that runtime monitors
represent a small overhead to network devices in terms of latency
and resource consumption.

I. INTRODUCTION

Programmable data planes allow network operators to mod-

ify the packet processing pipeline of network devices to

quickly deploy new protocols, customize network behavior,

and implement advanced network services. The introduction

of the P4 [1] programming language has greatly lowered

the barriers to doing so, bringing data plane programming

into the mainstream. Over the last years, an ecosystem of

data plane software has emerged (e.g., [2], [3]), and we can

expect to see network devices running code written by teams

of developers across multiple organizations, assembled by a

network operator from libraries and modules, in the near

future.

Despite the simplicity of its programming model, P4 pro-

grams have demonstrated to be prone to a variety of bugs

and misconfigurations [4], [5]. As a result, network operators

need ways to ensure that the programs they produce behave

correctly in order to reap the benefits of a data plane software

ecosystem. Decades of progress in software engineering have

produced mature tools and methodologies for ensuring that

certain properties hold in a program, and this idea has been

gradually extended to the networking domain. State-of-the-art

network verification tools can take a model of the network,

its configuration, and a set of properties specified using

traditional formalisms (e.g., temporal logic or Datalog rules)

and automatically check whether these properties hold for any

packet [6], [7].

Although these tools have helped network operators to

identify bugs before they manifest, they still face important

issues that hinder their adoption in production networks. First,

most of these tools require programmers to manually model

data plane programs, which is a cumbersome and error-prone

task [7]. Second, these tools are usually restricted in terms of

the properties they can guarantee. For example, some of them

are specialized to the verification of reachability properties in

order to reduce verification times [8]. Third, more expressive

tools capable of verifying multiple properties frequently face

severe scalability issues (e.g., checking conformance with a

protocol specification can take days even for a single data

plane program [4]). Finally, programmers usually have to

be proficient in formal verification techniques for correctly

specifying their properties.

In this paper, we propose a novel approach to this problem

which is based on dynamic (or runtime) enforcement rather

than static verification. While the former cannot always pro-

vide the kind of strong correctness guarantees that the latter

can, it has several practical advantages. First, we do not need

to wait for the outcome of a long verification process in order

to push a new configuration out to the network switches.

In addition, runtime enforcement can promptly intervene if

problematic situations actually occur. It means we can still

extract some useful work from buggy code when it behaves

correctly, and perhaps repair problems without disturbing any

network service (see an example in Section IV-B3).

In contrast to static verification, run-time enforcement also

lets the developer express policy and mechanism using the

same programming environment as the rest of the program.

The value of this should not be underestimated: not only does

it make life easier for the developer, it also prevents translation

errors between implementation and policy domains. That is,

rather than expressing a property, such as loop-free forwarding

using a separate modeling or formal reasoning language, the

programmer can write code to enforce and verify the desired

properties in the language of the program (i.e., P4 in our case).

To realize the benefits of our dynamic enforcement approach

we developed P4box, a system for deploying runtime monitors

in programmable data planes. A program monitor is a lan-

guage construct we developed (as an extension to P4) inspired

by the Aspect-Oriented Programming (AOP) paradigm [9]

which provides language-level constructs for attaching code

to designated points in an existing program without modifying

the program itself. Programmers can use monitors to modify

or verify the behavior of control blocks, parsers, and externalISBN 978-3-903176-16-4 c©2019 IFIP















TABLE I
P4BOX PERFORMANCE OVERHEAD. n = #CHECKS, m = #PROTECTED HEADERS, p = LABEL SIZE, q = #LABELS, s = LENGTH OF CONTROL FIELDS

Property
#Parsed

#Tables
Key size #Field #Lines of

bits (bits) writes code

Well formedness (Sec. IV-A1) 0 0 0 1 n+ 4

Header protection (Sec. IV-A2) 0 0 0 m 2m+ 12

Waypointing (Sec. IV-B1) p 3 p+ s 5 80

Loop detection (Sec. IV-B2) qp 3 qp 4q 5q + 80

Traffic locality (Sec. IV-B3) 0 1 s 2 25

switch.p4 - IPv4 384 40 280 ≈ 50 ≈ 6K

reflects the size of the largest matching key when multiple

tables are applied, and the column field writes corresponds

to operations such as adding and removing headers as well

as field assignments in actions. We use variables to indicate

parameters that can be adjusted when enforcing each property.

For example, header protection requires one field write for

saving the state of each protected header (see lines 5-8 in

Figure 5), in which case we represent the number of protected

headers as m. This number may change from program to

program. Other variables include the number of header validity

checks for enforcing well-formedness, n, the size of the

labels attached to packets for enforcing waypointing and loop

detection, p, the maximum amount of labels, q, and the total

length (in bits) of the fields used to control the operation of a

monitor (e.g., IP addresses in traffic locality), s.

To put the numbers from Table I in perspective, we compare

them with switch.p46, a widespread data plane program that

implements a top-of-rack switch for data centers. Switch.p4

has more than 6K lines of code, and requires parsing 384 bits

and applying 40 tables to process a traditional IPv4 packet.

In order to enforce waypointing for example, P4box requires

parsing only 8 bits (assuming p = 8) and applying 3 tables

which are specified in 80 lines of code. In practice, this

represents an increase lower than 5% in the packet processing

latency according to the experiments we performed in a

software switch7. Regarding resource consumption, if we con-

sider hardware-based devices such as NetFPGAs, waypointing

requires less than 3% additional memory blocks, flip-flops

and lookup tables according to the literature [11] (assuming

key sizes of 72 bits and a hash-based associative memory

implementation).

In our ongoing work, we are investigating optimizations

for enforcing each property (e.g., combining tables among

them) in order to reduce even more these overheads. Moreover,

P4box could benefit from parallelizations available in network

devices to process monitors concurrently [12]. We plan to

extend the evaluation for including measurements performed

on high-performance P4-enabled devices (e.g., SmartNICs and

NetFPGAs) as a future work.

VI. DISCUSSION

Monitor correctness. Although monitors can also contain

bugs themselves, that is less likely to happen compared to

6https://github.com/p4lang/switch/
7https://github.com/p4lang/behavioral-model

the original program due to their intentionally small code

base. Moreover, their simplicity makes them suitable to formal

analysis (e.g., model checking or theorem proving) when

security or reliability are important. In our ongoing work,

we are exploring automatically converting monitors into an

equivalent model in C and using an off-the-shelf symbolic

execution engine (e.g., KLEE [13]) to prove their correctness.

High-level abstractions. While P4box allows programmers

to use P4 for specifying properties, it is still necessary to think

about each monitor individually. For example, programmers

may need to create multiple monitors to enforce a network-

wide property (e.g., a monitor for inserting and other for

removing a label from packets). This can easily become a

tedious process in large networks containing thousands of

devices. Recent research efforts have proposed to automat-

ically synthesize network configurations from higher-level

abstractions (e.g., graphs or intents) [14]. We plan to extend

P4box to support these abstractions in order to facilitate the

enforcement of more complex properties or their combination.

VII. RELATED WORK

Network verification. Many tools have been proposed for

verifying that a network behaves as expected. Moreover, these

tools focus on either the control or the data plane. ERA [15]

and Minesweeper [6] use models of networking protocols

(e.g., BGP and OSPF) to analyze the network control plane.

Although they can check multiple data plane configurations

with this approach (i.e., the ones resulting from different

protocol interactions), they are restricted to a limited number

of protocols. Veriflow [16], NoD [7] and SymNet [17], on the

other hand, are data plane verifiers. They take a single data

plane configuration (i.e., set of forwarding rules) as input, and

check whether certain properties hold for all possible packets.

Data plane verification approaches are typically not tied to any

specific protocol, but network programmers need to manually

build a separate model for each data plane program, which

may be a cumbersome and error prone task.

P4v [18] and ASSERT-P4 [5] can automatically verify P4

programs, but they are able to check only program-specific

properties. Finally, Vera [4] and P4Nod [8] create models for

data plane programs that can be used as input to SymNet and

NoD, respectively. Although they can quickly verify small data

plane programs (i.e., in the order of seconds), the verification

time grows exponentially with both the program and the

network size.



Network debugging. Another dynamic approach to ensure

security and correctness properties in networks is debugging.

This approach is essentially based on monitoring and col-

lecting statistics from network devices to perform an offline

analysis. For example, Marple [19] proposes a query language

for specifying monitoring tasks. Stroboscope [20] extends

this idea and also considers scheduling to meet resource

constraints. Instead of monitoring and collecting data, P4box

processes information embedded on packets in switches at run-

time. This design enables our mechanism to promptly react to

property violations, containing them before they compromise a

network policy. In-band Network Telemetry (INT)8 provides

flexibility similar to ours. However, it assumes information

embedded on packets can not be compromised by buggy or

malicious data plane programs. P4box, on the other hand,

creates an isolated environment that can be used by network

programmers to securely enforce policies of interest.

Runtime enforcement. The idea of using runtime monitors

to enforce properties was first introduced by [21] in the context

of system security more than forty years ago. In computer

networks, FlowTags is a seminal work that proposed to extend

middleboxes to add tags on packets which would be used by

switches to enforce path conformance and origin binding [22].

However, unlike P4box, it does not take data plane programs

and all possible bugs that come with them into account.

VIII. CONCLUSION

P4 and programmable data planes lowered the barrier for

innovation in networking, but at the same time also made

networks more prone to bugs and misconfigurations. To solve

this problem we proposed P4box, a system for dynamically

enforcing properties in programmable data planes through run-

time monitors. P4box can enforce both program and network-

wide properties while requiring a small effort from network

programmers. Moreover, it represents a modest overhead to

network devices in terms of latency and memory consumption.

As future work, we plan to combine static verification and dy-

namic enforcement to build efficient, correct-by-construction

programmable data planes.

Acknowledgments. This work has been supported by

grants from NSF (CNS-1740911), RNP/CTIC (P4Sec), CNPq

(140317/2017-1), and also by CAPES/Brazil – Finance Code

001.

REFERENCES

[1] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker,
“P4: Programming Protocol-independent Packet Processors,” SIGCOMM

Comput. Commun. Rev., vol. 44, no. 3, pp. 87–95, Jul. 2014.

[2] X. Jin, X. Li, H. Zhang, R. Soulé, J. Lee, N. Foster, C. Kim, and I. Stoica,
“Netcache: Balancing key-value stores with fast in-network caching,” in
Proceedings of the Symposium on Operating Systems Principles (SOSP),
2017, pp. 121–136.

[3] X. Jin, X. Li, H. Zhang, N. Foster, J. Lee, R. Soulé, C. Kim, and I. Sto-
ica, “Netchain: Scale-free sub-rtt coordination,” in Proceedings of the

USENIX Symposium on Networked Systems Design and Implementation

(NSDI), 2018, pp. 35–49.

8https://p4.org/assets/INT-current-spec.pdf

[4] R. Stoenescu, D. Dumitrescu, M. Popovici, L. Negreanu, and C. Raiciu,
“Debugging p4 programs with vera,” in Proceedings of the 2018

Conference of the ACM Special Interest Group on Data Communication

(SIGCOMM), 2018, pp. 518–532.
[5] M. Neves, L. Freire, A. Schaeffer-Filho, and M. Barcellos, “Verification

of p4 programs in feasible time using assertions,” in Proceedings of the

14th International Conference on Emerging Networking EXperiments

and Technologies (CoNEXT), 2018, pp. 73–85.
[6] R. Beckett, A. Gupta, R. Mahajan, and D. Walker, “A general approach

to network configuration verification,” in Proceedings of the ACM

SIGCOMM Conference, 2017, pp. 155–168.
[7] N. P. Lopes, N. Bjørner, P. Godefroid, K. Jayaraman, and G. Varghese,

“Checking beliefs in dynamic networks,” in Proceedings of the USENIX

Symposium on Networked Systems Design and Implementation (NSDI),
2015, pp. 499–512.

[8] N. Lopes, N. Bjorner, N. McKeown, A. Rybalchenko, D. Talayco, and
G. Varghese, “Automatically verifying reachability and well-formedness
in p4 networks,” Tech. Rep., September 2016.

[9] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M.
Loingtier, and J. Irwin, “Aspect-Oriented Programming,” in Proceedings

of the European Conference on Object-Oriented Programming, 1997, pp.
220–242.

[10] A. Zaostrovnykh, S. Pirelli, L. Pedrosa, K. Argyraki, and G. Candea,
“A formally verified nat,” in Proceedings of the ACM SIGCOMM

Conference, 2017, pp. 141–154.
[11] H. Wang, R. Soulé, H. T. Dang, K. S. Lee, V. Shrivastav, N. Foster, and

H. Weatherspoon, “P4fpga: A rapid prototyping framework for p4,” in
Proceedings of the ACM Symposium on SDN Research (SOSR), 2017,
pp. 122–135.

[12] L. Jose, L. Yan, G. Varghese, and N. McKeown, “Compiling packet
programs to reconfigurable switches,” in 12th USENIX Symposium on

Networked Systems Design and Implementation (NSDI 15), 2015, pp.
103–115.

[13] C. Cadar, D. Dunbar, and D. Engler, “Klee: Unassisted and automatic
generation of high-coverage tests for complex systems programs,” in 8th

USENIX Conference on Operating Systems Design and Implementation

(OSDI 08), 2008, pp. 209–224.
[14] A. Abhashkumar, J.-M. Kang, S. Banerjee, A. Akella, Y. Zhang, and

W. Wu, “Supporting diverse dynamic intent-based policies using janus,”
in Proceedings of the International Conference on Emerging Networking

EXperiments and Technologies (CoNEXT), 2017, pp. 296–309.
[15] S. K. Fayaz, T. Sharma, A. Fogel, R. Mahajan, T. Millstein, V. Sekar, and

G. Varghese, “Efficient network reachability analysis using a succinct
control plane representation,” in 12th USENIX Symposium on Operating

Systems Design and Implementation (OSDI 16), 2016, pp. 217–232.
[16] A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P. B. Godfrey, “Veriflow:

Verifying network-wide invariants in real time,” in Proceedings of the

USENIX Symposium on Networked Systems Design and Implementation

(NSDI), 2013, pp. 15–27.
[17] R. Stoenescu, M. Popovici, L. Negreanu, and C. Raiciu, “Symnet:

Scalable symbolic execution for modern networks,” in Proceedings of

the ACM SIGCOMM Conference, 2016, pp. 314–327.
[18] J. Liu, W. Hallahan, C. Schlesinger, M. Sharif, J. Lee, R. Soulé,

H. Wang, C. Caşcaval, N. McKeown, and N. Foster, “P4v: Practical
verification for programmable data planes,” in Proceedings of the 2018

Conference of the ACM Special Interest Group on Data Communication

(SIGCOMM), 2018, pp. 490–503.
[19] S. Narayana, A. Sivaraman, V. Nathan, P. Goyal, V. Arun, M. Alizadeh,

V. Jeyakumar, and C. Kim, “Language-directed hardware design for
network performance monitoring,” in Proceedings of the Conference

of the ACM Special Interest Group on Data Communication, ser.
SIGCOMM ’17, 2017, pp. 85–98.

[20] O. Tilmans, T. Bühler, I. Poese, S. Vissicchio, and L. Vanbever,
“Stroboscope: Declarative network monitoring on a budget,” in Pro-

ceedings of the USENIX Symposium on Networked Systems Design and

Implementation (NSDI), 2018, pp. 467–482.
[21] J. P. Anderson, “Computer security technology planning study,” Air

Force Electronic Systems Division, Tech. Rep., 1972.
[22] S. K. Fayazbakhsh, L. Chiang, V. Sekar, M. Yu, and J. C. Mogul,

“Enforcing network-wide policies in the presence of dynamic middlebox
actions using flowtags,” in Proceedings of the USENIX Symposium on

Networked Systems Design and Implementation (NSDI), 2014, pp. 543–
546.


