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ABSTRACT

Channel-gain cartography relies on sensor measurements to

construct maps providing the attenuation profile between

arbitrary transmitter-receiver locations. State-of-the-art on

this subject includes tomography-based approaches, where

shadowing effects are modeled by the weighted integral of

a spatial loss field (SLF) that captures the propagation envi-

ronment. To learn SLFs exhibiting statistical heterogeneity

induced by spatially diverse propagation environments, the

present work develops a Bayesian approach comprising a

piecewise homogeneous SLF with an underlying hidden

Markov random field model. Built on a variational Bayes

scheme, the novel approach yields efficient field estimators

at affordable complexity. In addition, a data-adaptive sensor

selection algorithm is developed to collect informative mea-

surements for effective learning of the SLF. Numerical tests

demonstrate the capabilities of the novel approach.

Index Terms— channel-gain cartography, radio tomogra-

phy, variational Bayes, active learning

1. INTRODUCTION

Based on measurements collected by a network of spatially

distributed sensors, channel-gain (CG) cartography constructs

maps providing channel-state information for links even be-

tween locations where no sensors are present [14]. Such maps

can be employed by cognitive radio communication networks

to monitor and control the interference that the secondary net-

work inflicts to primary users that do not transmit – a setup

encountered with television broadcast systems [2, 26, 6, 13].

The non-collaborative nature of these primary users precludes

any direct form of pilot-based or blind channel estimation be-

tween secondary transmitters and primary receivers.

Existing methods for channel-gain cartography build

upon the intuitive principle that spatially close radio links

exhibit similar shadowing [1]. Most of these methods adopt

a tomographic approach [22], where shadowing is modeled

as the weighted integral of an unknown spatial loss field

(SLF) capturing the absorption induced by objects located

across the propagation medium [22, 25, 5, 17]. The weights
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in the integral are determined by a function depending on

transmitter-receiver locations that is either selected based

on heuristic criteria [22, 9], or blindly learned using non-

parametric kernel regression [23]. A channel gain map can

thus be obtained once the SLF has been estimated.

Conventionally, the SLF is learned via regularized least-

squares (LS) methods tailored to the propagation environ-

ment [17, 9, 25]. However, these approaches are less effec-

tive when the propagation environment is spatially heteroge-

neous due to a combination of free space and objects present

in different sizes and materials (the typical setup in e.g., an

urban area), which subsequently induces statistical diversity

in the SLF. To deal with such heterogeneous environments,

we proposed in [16] a Bayesian approach to learn piecewise

homogeneous SLFs through a hidden Markov random field

(MRF) model [11] obtained via Markov chain Monte Carlo

(MCMC) [7]. However, MCMC can be computationally de-

manding and limits its use to a small-scale problem.

To provide efficient field estimators with low computa-

tional complexity, we derive here a variational Bayes esti-

mator to approximate the analytically intractable minimum

mean-square error (MMSE) or maximum a posteriori (MAP)

estimators. We further develop a data-adaptive sensor selec-

tion method to permeate benefits of active learning [18], and

collect informative data that lower SLF uncertainty.

Notation. Matrix In is the n × n identity matrix; superscript
> stands for transposition; and | · | for set cardinality.

2. MODEL AND PROBLEM STATEMENT

Consider a set of sensors deployed over a two-dimensional

geographical area indexed by a set A ⊂ R
2. After averaging

out small-scale fading effects, the channel-gain (CG) over a

link between a transmitter located at x ∈ A, and a receiver

located at x′ ∈ A, can be represented (in dB) as

g(x,x′) = g0 − γ10 log10 d(x,x
′)− s(x,x′) (1)

where g0 is the path gain at unit distance; d(x,x′) := ‖x −
x
′‖2 is the distance between the transceivers at x and x

′; γ
is the pathloss exponent; and s(x,x′) denotes the attenuation

due to shadow fading. A tomographic shadow fading model

typically adopted in CG cartography is [22, 9, 17]
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s(x,x′) '

Ng∑

i=1

w(x,x′, x̃i)f(x̃i). (2)

where {x̃i}
Ng

i=1 is a grid of points over A, f : A → R denotes

the spatial loss field (SLF) capturing the attenuation at each

location, and w(x,x′, x̃) is the weight function modeling the

influence of the SLF at x̃ to the shadowing experienced by

the link x–x′. Examples of the weight function include the

normalized ellipse model taking the form [25]

w(x,x′, x̃) :=







1/
√

d(x,x′), if d(x, x̃) + d(x′, x̃)

< d(x,x′) + λ

0, otherwise

(3)

where λ > 0 is a tunable parameter. The value of λ is com-

monly set to half the wavelength to assign non-zero weights

only within the first Fresnel zone. Overall, the model in (2)

shows how nature and the spatial distribution of obstructions

in the propagation medium influence the attenuation between

a pair of locations.

To estimate the CG map, N sensors located at {x1 · · ·xN}
∈ A collaboratively obtain CG measurements. At time

slot τ , the radios indexed by n(τ) and n′(τ) measure the

channel-gain gτ := g(xn(τ),xn′(τ)) by exchanging pilot se-

quences, where n(τ), n′(τ) ∈ {1, . . . , N}. It is supposed

that g0 and γ have been estimated during a calibration phase.

After subtracting these from gτ , the shadowing estimate

šτ := š(xn(τ),xn′(τ)) := s(xn(τ),xn′(τ)) + ντ is obtained,

where ντ denotes estimation and measurement noise.

Given št := [š1, . . . , št]
> ∈ R

t, along with the known set

of link locations {(xn(τ),xn′(τ))}
t
τ=1 and the weight func-

tion w, the goal is to estimate g(x,x′) between any pair of

locations (x,x′) ∈ A. To this end, it suffices to estimate f ,

or equivalently f := [f(x̃1), . . . , f(x̃Ng
)]> ∈ R

Ng . After-

wards, the arbitrary channel-gain g(x,x′) can be obtained by

substituting (2) into (1) and replacing f with its estimate.

3. ADAPTIVE BAYESIAN CG CARTOGRAPHY

In this section, we propose a variational Bayes approach for

inference with a two-layer Bayesian SLF model; and a data-

adaptive sensor selection method via uncertainty sampling.

3.1. Field estimation via variational Bayes

Let A consist of two disjoint homogeneous regions A0 :=
{x|E[f(x)] = µf0 ,Var[f(x)] = σ2

f0
,x ∈ A} and A1 :=

{x|E[f(x)] = µf1 ,Var[f(x)] = σ2
f1
,x ∈ A}, giving rise to a

hidden label field z := [z(x̃1), . . . , z(x̃Ng
)]> ∈ {0, 1}Ng of

binary labels with z(x̃i) = k if x̃i ∈ Ak ∀i, and k = 0, 1. We

then model the conditional distribution of f(x̃i) as

p(f(x̃i)|z(x̃i) = k) = N (µfk , σ
2
fk
) . (4)

and let z adhere to an Ising model [24], which is a binary

version of the discrete MRF with the Potts model [11]. This

Ising model captures the dependency among spatially corre-

lated labels, and by the Hammersley-Clifford theorem [10], it

corresponds to drawing labels from a Gibbs distribution

p(z;β) =
1

C(β)
exp



β

Ng∑

i=1

∑

j∈N (x̃i)

δ(z(x̃j)− z(x̃i))



 (5)

where N (x̃i) is a set of indices associated with one-hop

neighbors of x̃i on the rectangular grid, β is the gran-

ularity coefficient to control the degree of homogeneity

in z, δ(·) is the Kronecker delta function, and C(β) :=
∑

z∈Z exp
[

β
∑Ng

i=1

∑

j∈N (x̃i)
δ(z(x̃j)− z(x̃i))

]

is the par-

tition function with Z := {0, 1}Ng . By assuming conditional

independence of {f(x̃i)}
Ng

i=1 given z, the resulting model is

referred to as the mixture of independent Gaussians (MIG)

having a Potts prior model [3] with two labels.

Suppose ντ is independent and identically distributed

(i.i.d) Gaussian with zero mean and variance σ2
ν , and let θ de-

note the known parameter vector including σ2
ν , β, and θf :=

[µf0 , µf1 , σ
2
f0
, σ2

f1
]> to ease exposition. The weight matrix

Wt ∈ R
Ng×t is constructed with columns equal to w

(n,n′)
τ :=

[w(xn(τ),xn′(τ), x̃1), . . . , w(xn(τ),xn′(τ), x̃Ng
)]> ∈ R

Ng of

the link xn(τ)–xn′(τ) for τ = 1, . . . , t. Then, one can cast

Bayesian CG cartography through the joint posterior

p(f , z|št;θ) ∝ p(št|f ;σ
2
ν)p(f |z;θf )p(z;β) (6)

where p(št|f ;σ
2
ν) ∼ N (W>

t f , σ
2
νIT ) is the data likeli-

hood. By utilizing the posterior in (6), the MMSE es-

timator of f is f̂MMSE := E[f |z = ẑMAP, št], where

z is fixed to the marginal MAP estimate of z, that is,

ẑMAP = argmaxz p(z|št).
Although the suggested estimators have been advocated

in [12], analytical solutions are not available because the

posterior (6) needed for marginalization or maximization has

complex form. To bypass this challenge, we will consider

approximate yet analytically tractable solutions from a sur-

rogate distribution close to the posterior in (6). Variational

Bayes (VB) is a family of techniques providing an analytical

approximation to a complex distribution, that is referred to

as variational distribution. A typical choice of an approxima-

tion criterion is to find the variational distribution minimizing

the Kullback-Leibler (KL) divergence to a target distribution.

The variational distribution is further assumed to belong to a

certain family of distributions maintaining a simpler form of

dependence between variables than the original one; see also

[21] for the so-termed mean-field approximation.

Let q and Q denote the variational distribution and

the associated family of distributions, respectively. Then,

q(f , z) of the posterior in (6) can be found by solving

minq(f ,z)∈Q DKL (q(f , z)‖p(f , z|št;θ)), where DKL (q‖p)
is the KL divergence from q to p, or equivalently

(P1) max
q(f ,z)∈Q

Eq(f ,z) [ln p(f , z, št;θ)]− Eq(f ,z) [ln q(f , z)]
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since only p(f , z, št;θ), which is equal to the right-hand

side of (6), is available in practice, not the exact posterior

p(f , z|št;θ). To take into account the dependence between

f and z, the family Q is defined as

Q :=

{

q : q(f , z) := q(f |z)q(z) =

Ng∏

i=1

q(fi|zi)

Ng∏

i=1

q(zi)

}

(7)

with fi := f(x̃i) and zi := z(x̃i) ∀i for simplicity. Then,

(P1) can be solved via coordinate descent w.r.t. each factor of

q(f , z) in (7) [20]. The optimal solutions have the form

ln q∗(fi|zi) = E
∏

j 6=i
q(fj |zj)q(z)[ln p(f , z, št;θ)] + c ∀i (8)

ln q∗(zi) = Eq(f |z)
∏

j 6=i
q(zj) [ln p(f , z, št;θ)] + c ∀i (9)

where c is a generic normalization constant. Note that the so-

lutions in (8) and (9) are intertwined since the evaluation of

the former requires the latter, and vice versa. For this rea-

son, we can show that the optimal solutions can be obtained

iteratively; that is ∀i, at iteration ` = 1, 2, . . ., we have

q(`)(fi|zi = k) = N (µ̆
(`)
fk

(x̃i), σ̆
2
fk
(x̃i)) ∀k (10)

q(`)(zi = k) ∝ exp

{

−
1

2σ2
fk

[

σ̆2
fk
(x̃i) +

(

µ̆
(`)
fk

(x̃i)
)2

(11)

− 2µfk µ̆
(`)
fk

(x̃i) + µ2
fk

]

+
∑

j∈N (x̃i)

βq(`−1)(zj = k)

}

∀k

with

σ̆2
fk
(x̃i) =

[

1

σ2
ν

t∑

τ=1

[W>
t ]

2
τ,i +

1

σ2
fk

]−1

(12)

µ̆
(`)
fk

(x̃i) = f̄
(`−1)
i + σ̆2

fk
(x̃i) (13)

×

[
µfk − f̄

(`−1)
i

σ2
fk

+
1

σ2
ν

t∑

τ=1

[W>
t ]τ,i

(
šτ − s(`−1)

τ

)
]

,

where f̄
(`)
i :=

∑1
k=0 q

(`)(zi = k)µ̆
(`)
fk

(x̃i), and s
(`)
τ :=

∑Ng

i=1[W
>
t ]τ,if̄

(`)
i .

Accordingly, the MAP estimator of z can be approxi-

mated as ẑMAP,i = argmaxzi∈{0,1} q
∗(zi) ∀ i and subse-

quently, the approximate MMSE estimator of f is given by

f̂i,MMSE = Eq∗(fi|ẑMAP,i) [fi] = µ̆∗
fẑMAP,i

(x̃i) ∀ i.

The VB algorithm to obtain f̂MMSE := {f̂i,MMSE}
Ng

i=1,

q∗(f |z), and q∗(z) is tabulated as Alg. 1.

3.2. Adaptive data collection via uncertainty sampling

The proposed framework accounts for the uncertainty of f

through σ̆2
fk
(x̃i) in (10). Therefore, one can adaptively collect

a measurement (or a mini-batch of measurements) when a set

of available sensing radio pairs is revealed, with the goal of

reducing the uncertainty of f . To this end, the conditional

entropy [4] is considered as an uncertainty measure of f at

time slot τ , namely,

Algorithm 1 Field estimation via variational Bayes

Input: št, Wt, {µ̆
(0)
fk

(x̃i), q
(0)(zi = k)}1k=0 ∀ i, and NIter.

1: Obtain σ̆2
fk
(x̃i) ∀ i, k with (12)

2: for ` = 1 to NIter do

3: Obtain µ̆
(`)
fk

(x̃i) ∀ i, k with (13)

4: Obtain q(`)(zi = k) ∀ i, k with (11)

5: end for

6: Set q∗(fi|zi) = q(NIter)(fi|zi) and q∗(zi) = q(NIter)(zi) ∀i
7: Estimate ẑMAP,i = argmaxzi∈{0,1} q

∗(zi) ∀ i

8: Estimate f̂i,MMSE = µ̆∗
fẑMAP,i

(x̃i) ∀ i

9: return f̂MMSE, q∗(f |z), and q∗(z)

Algorithm 2 Adaptive Bayesian CG cartography

Input: š0, W0, {µ̆
(0)
fk

(x̃i), q
(0)(zi = k)}i,k, NIter, g0, and γ.

1: for τ = 0, 1, . . . do

2: Obtain f̂MMSE, q∗(f |z), and q∗(z)

via Alg. 1(šτ ,Wτ ,{µ̆
(0)
fk

(x̃i), q
(0)(zi = k)}i,k,NIter)

3: Evaluate h̄(w(n,n′)) in (P2’) ∀{n, n′} ∈ Mτ+1

4: Collect šτ+1 from (n∗, n′∗) with max h̄(w(n,n′))

5: Set šτ+1 = [š>τ , šτ+1]
> and Wτ+1=[Wτ ,w

(n∗,n′∗)
τ+1 ]

6: end for

7: Consider arbitrary locations {x,x′} ∈ A

8: Estimate ŝ(x,x′) via (2) by using f̂MMSE

9: Estimate ĝ(x,x′) via (1) by using g0, γ, and ŝ(x,x′)

Hτ (f |z, šτ ;θ)=
∑

z′∈Z

∫

p(z′, š′τ ;θ)H(f |z=z′, šτ=š
′
τ ;θ)dš

′
τ

where H(f |z = z′, šτ = š
′
τ ;θ) := −

∫
p(f |z = z′, šτ =

š
′
τ ;θ) ln p(f |z = z′, šτ = š

′
τ ;θ)df . To obtain šτ+1, one

can choose a pair of sensors (n∗, n′∗), or equivalently find

w
(n∗,n′∗) minimizing Hτ+1. Given šτ , then, w(n∗,n′∗) can

be obtained by solving (see [16] for the derivation of (P2))

(P2) max
w

(n,n′):

(n,n′)∈Mτ+1

Ep(z|šτ ;θ)

[

h(z,w(n,n′);θ)
]

where Mτ :={(n, n′)|∃(xn–xn′) at τ, (n, n′) ∈ {1, . . . , N}}
is a set of available sensing radio pairs at time slot τ and

h(z,w;θ) := ln
(
1 + σ−2

ν w
>
Σf |z,šτ ;θw

)
with [Σf |z,šτ ;θ]i,j

:= cov[fi, fj |z, šτ ;θ] ∀i, j. However, (P2) cannot be directly

solved because p(z|šτ ;θ) is not available via marginalization

of the complex form (6); and evaluating the cost of (P2) is

|Z| = 2Ng , which is intractable for large Ng .

Fortunately, the approximate formulation of (P2) can be

found by using the variational distributions as follows

(P2’) max
w

(n,n′):

(n,n′)∈Mτ+1

Ng∑

i=1

Eq(zi)

[

ln

(

1 +
σ̆2
fk
(x̃i)

σ2
ν

w2(xn,xn′ , x̃i)

)]

︸ ︷︷ ︸

=:h̄(w(n,n′))

Therefore, šτ+1 can be collected from the pair of sensors

(n∗, n′∗) associated with w
(n∗,n′∗) obtained by solving (P2’)
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Fig. 1: True fields for synthetic tests: (a) hidden label field Z0

and (b) spatial loss field F0 with N = 120 sensor locations

marked with crosses. Estimated SLFs F̂ at τ = 15 (700 mea-

surements) via: (c) Alg. 2; (d) non-adaptive VB method; (e)

adaptive and (f) non-adaptive MCMC methods in [16]; and

(g) ridge and (h) TV regularized-LS methods.
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Fig. 2: Progression of channel-gain estimation error.

in a greedy fashion. Note that the proposed data-adaptive sen-

sor selection scheme can be easily extended to a mini-batch

setup of size NBatch per time slot τ by finding weight vectors

{w(n(m),n′(m))}NBatch

m=1 associated with the NBatch largest values

of h̄(w(n,n′)) in (P2’), and collecting {š
(m)
τ+1}

NBatch

m=1 from pairs

of sensors revealed from those weight vectors.

The overall scheme for adaptive Bayesian CG cartogra-

phy is tabulated as Alg. 2.

4. NUMERICAL TESTS

This section validates the proposed algorithm through syn-

thetic tests. Tomographic measurements were taken by

N = 120 sensors uniformly deployed on boundaries of

A := [0.5, 40.5] × [0.5, 40.5], from which the SLF defined

over a grid {x̃i}
1,600
i=1 := {1, . . . , 40}2 was reconstructed.

To generate the ground-truth SLF f0, the hidden label field

z0 was obtained first via the Metropolis algorithm [19] by

using the prior of z in (5) with β = 1.3. Afterwards, f0

was constructed to have f(x̃i) ∼ N (0.2, 1) ∀x̃i ∈ A0

and f(x̃j) ∼ N (5, 0.2) ∀x̃j ∈ A1, resulting in θf =
[0.2, 5, 1, 0.2]>, based on labels in z0. True Z0 := unvec(z0)
and F0 := unvec(f0) are depicted in Figs. 1a and 1b with

sensor locations marked with crosses. Under the mini-batch

operation, a set of measurements {š
(m)
τ }NBatch

m=1 per time slot τ
were generated via (2) with f0, w set to the model in (3) with

λ = 0.39, and ντ ∼ N (0, 0.05). To construct Mτ+1 at time

slot τ , |Mτ+1| = 100 pairs of sensors were uniformly se-

lected at random with replacement. Then, NBatch = 40 mea-

surements were collected at step 4 of Alg. 2 for τ = 1, . . . , 15.

Note that Alg. 2 replacing steps 3-4 with random sampling

was considered as a non-adaptive VB method for comparison.

In all synthetic tests, NIter = 103 was used to run the pro-

posed algorithm. While {µ̆
(0)
fk

(x̃i)}
1
k=0 ∀i were randomly ini-

tialized, {q(0)(zi = k)}1k=0 were set to be equally likely ∀i.
Vector š0 was collected from randomly selected 100 pairs of

sensors. For competing alternatives, ridge and total variation

(TV) regularized-LS methods were considered, in which reg-

ularization parameters were found by the L-curve [15, Chap-

ter 26] and the generalized cross-validation [8], respectively.

The MCMC methods in [16] were also tested as sample-based

counterparts of the proposed field estimators.

Since g0 and γ are known, obtaining s(x,x′) amounts

to finding g(x,x′); cf. (1). This suggests adopting a perfor-

mance metric quantifying the mismatch between s(x,x′) and

ŝ(x,x′), using the normalized mean-square error

NMSE :=
E
[ ∫

A

(
s(x,x′)− ŝ(x,x′)

)2
dxdx′

]

E
[ ∫

A s2(x,x′)dxdx′
]

where the expectation is over the set {xn}
N
n=1 of sensor lo-

cations and realizations of {ντ}τ . Simulations estimated the

expectations by averaging over 20 independent Monte Carlo

runs with MATLAB. The integrals are approximated by aver-

aging the integrand over 500 pairs of (x,x′) chosen indepen-

dently and uniformly at random over the boundary of A.

Figs.1c–1h depict reconstructed SLFs F̂ := unvec(f̂) at

τ = 15 via Alg. 2 and the competing alternatives. Com-

parison with F̂ in Fig.1d obtained by the non-adaptive VB

method demonstrates the effectiveness of the proposed algo-

rithm in identifying object patterns in the SLF with adaptively

collected measurements. Furthermore, blurry images of F̂ in

Figs. 1g and 1h via the regularized LS showcase the benefit

of adopting the two-layer Bayesian model for the SLF.

Fig. 2 compares the NMSE of Alg. 2 with those of the

competing alternatives using the settings in Figs. 1c–1h. Evi-

dently, the proposed method achieves the NMSE comparable

to that of the MCMC method. Note that execution time was

1.5 (sec) per τ for Alg. 2, while that was 184.6 (secs) for the

MCMC method in [16]. Although the MCMC approach is a

viable solution for CG cartography as shown in Fig. 2, this

signifies a benefit of our algorithm in terms of computational

complexity reduction, while maintaining high estimation ac-

curacy.

5. CONCLUDING SUMMARY

This paper developed a novel variational Bayes algorithm for

adaptive Bayesian channel-gain cartography, which is capable

of constructing maps that provide channel-gain between arbi-

trary locations in a region of interest with low-computational

complexity. Efficacy of the proposed algorithm was further

improved by the data-adaptive sensor selection strategy.
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