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ABSTRACT

Massive integration of renewables and electric vehicles
comes with unknown dynamics — what exemplifies the need
for fast, accurate, and robust distribution system state esti-
mation (DSSE). Due to limited real-time measurements how-
ever, optimization-oriented DSSE faces major challenges re-
lated to convergence, as well as multiple global/local minima.
To address these challenges, this paper puts forth a novel deep
neural network (DNN)-based computational framework for
DSSE that consists of two modules: a deep recurrent neu-
ral network (RNN) based pseudo-measurement postulating
module, and a prox-linear net-based real-time state estima-
tion module. Both RNN and prox-linear nets learn complex
nonlinear functions, and can afford efficient training by lever-
aging existing deep learning platforms. Numerical tests with
semi-real load data demonstrate the merits of the DNN-based
DSSE approach.

Index Terms— Distribution system state estimation,
pseudo measurement, recurrent neural network, deep neural
network.

1. INTRODUCTION

Fast and accurate estimation of power system states is crucial,
not only for situational awareness and system protection, but
also for energy management [1,2]. Given limited power mea-
surements acquired by supervisory control and data acquisi-
tion (SCADA) and distribution automation systems, state es-
timation (SE) aims to recover the unknown system state, that
is, the complex voltages across the network [1].

Different from transmission systems where metering de-
vices are placed at almost all buses, distribution grids only
have a limited number of meters [1], which causes partial
observability and also challenges conventional SE schemes.
To enhance observability, distribution system state estimation
(DSSE) has to rely on the so-called pseudo measurements that
can be generated via load, generation, and voltage forecasting
tools [1,3]. Typical pseudo-measurement generation schemes
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leverage feed-forward neural networks (FNNs) [4], and clus-
tering approaches [5].

Exploiting both actual and pseudo measurements, several
DSSE solvers have been proposed. DSSE was posed as a
weighted least-squares (WLS) problem, and it is often solved
via Gauss-Newton iterations in [6, 7]. Bayesian DSSE using
FNNs was suggested in [8]. To improve convergence, single-
layer FNNs were employed to obtain a suitable initialization
for Gauss-Newton iterations [9]. Successive WLS account-
ing for forecasted load values has been investigated in [10].
Nonetheless, all these optimization-oriented approaches are
computationally demanding, discouraging their implementa-
tion in real time. In addition, the role of pseudo measurements
on DSSE has not been investigated.

Along with our recent proposal on efficient SE of trans-
mission networks [11,12], we advocate here a real-time DSSE
framework leveraging data- and physics-driven DNNs. The
contribution is two-fold. First, we develop physics-specific
prox-linear nets for SE of unbalanced distribution grids. The
prox-linear net, constructed by unrolling the prox-linear SE
solver in [13], requires minimal tuning effort, and features
‘skip-connections,’ that enable efficient training of DNNs (see
e.g., [14]). Second, pseudo measurements such as forecasted
loads and voltages are postulated via deep RNNS, that are ca-
pable of capturing complex nonlinear dependencies present
in time series data. Subsequently, our overall DSSE scheme
comprising RNN-based measurement forecasting and prox-
linear net based state estimation modules is specified, and
tested. Simulated tests using semi-real load data showcase
the merits of the proposed DSSE framework.

2. NOVEL DSSE APPROACH

Consider an unbalanced distribution network comprising N +
1 buses indexed by n € N := {0,1,..., N}, and phases in-
dicated by ¢ € {a,b, c}. Suppose that the distribution grid
is functionally radial with the substation bus numbered by
n = 0. Per phase ¢ of bus n, let v, 4 := vy, , + juy, , denote
its associated complex voltages, and S, ¢ := Py, 4+ j@n ¢ its
complex power injections, with P, 4 (Q.,,) denoting respec-
tively the active (reactive) injections. For each line (nn’, ¢)
that connects phase ¢ of bus n with phase ¢ of bus n/, let
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.6 T jQ{m', » be the complex power flow at
the ‘forwarding’ end with Prfn,’ é (an,, ») denoting the ac-
tive (reactive) flow. Likewise, let S, ., P,/ 4, and Q7
represent the complex, active, and reactive flows at the ‘termi-
nal’ end of line (nn’, ¢). To perform DSSE, we measure M
system variables collected in the vector z := [21,..., 2] .
DSSE aims to retrieve the state vector v := [v],v%,. ..,
v, vi] T € RV from the generally noisy vector z. Con-
cretely, DSSE can be stated as follows. Given z and the asso-
ciated linear or quadratic functions {h.,,(-)}}_, obeying

Zm = hm (V) + €m, Ym=1,...,M €))

where ¢,, accounts for the measurement noise and modeling
errors, our goal is to find v € R2Y. To endow our estimate
with resilience to bad data due to e.g. cyber attacks, the fol-
lowing least-absolute-value estimate is sought (see e.g., [13])

M
. 1
arg VrenﬂglN i MXZ:I |2m — hm (V)] 2)

Existing solvers for (2) are often computationally heavy,
and several encounter even convergence issues especially
when the number of measurements M is small. With growing
network sizes as well as unpredictable dynamics of renewable
generation, real-time DSSE schemes are highly desirable. To
this end, the ensuing section develops learning-based DSSE.

2.1. Prox-linear net for power system state estimation

Learning-based DSSE seeks the function mapping from the
measurement vector z to v based on historical/simulated data.
As the relationship between z and v is complex, the function
mapping from z to v is arguably nonlinear; see e.g. [9, 11].
To render nonlinear estimators computationally tractable,
DNN [12] or kernel-based [15] approaches provide viable
solutions. Specifically, our physics-aware prox-linear neural
networks have been demonstrated empirically to be success-
ful in estimating the states of transmission networks [11].
The prox-linear net is devised by unrolling a recently
proposed prox-linear solver for (2) [13]. Here we will design
related prox-linear nets, but for DSSE. The architecture of
our 3(I + 1)-layer prox-linear net is depicted in Fig. 2, where
z denotes the input measurement vector, f in all the green-
ish boxes is the pre-selected nonlinear activation function
(understood entry-wise when applied to vector inputs), such
as ‘tanh’, soft-thresholding operator, or rectified linear unit
(ReLU). The vector {bf}géiff;z, and matrices {A; }o<i<1,
{Wf}é;ﬁ?}, BY%, and B7 contain weights learned from data
in the training phase. The number of hidden units per-layer
is set equal to the dimension of the input vector z. Relative
to the conventional feed-forward NN illustrated in Fig. 1,
the prox-linear net features ‘skip-connections’ through the
bluish lines in Fig. 2, connecting input z directly to interme-
diate/output layers. Empirical tests have demonstrated that

259

skip connections help avoid the so-termed ‘vanishing/explod-
ing’ gradient problems, thus facilitating the training process
of DNNs [14].

Upon learning the weight coefficients during the off-line
training stage, the prox-linear net can be employed for infer-
ring the distribution system states in real time. Unlike trans-
mission networks where metering devices are adequate, dis-
tribution grids suffer from partial observability due to limited
instrumentation. To enhance observability, data vector z have
to be augmented with pseudo measurements. In the ensuing
subsection, deep recurrent neural networks will be advocated
for predicting pseudo measurements.

2.2. RNNs for state predictions as pseudo-measurements

Besides the actual measurements acquired by smart meters,
load, generation, and voltage forecasting approaches can be
employed to generate pseudo-measurements. The forecasted
measurements z; at time ¢, obey the model

7 =h(v)+ & 3)

where &, accounts for the foresting error, and fl() as in
(1) represents linear or quadratic functions dictated by the
physics. Clearly, z; provides additional equations that aug-
ment (1), thus enhancing system observability. Given time
series {27}3;10, the following model is typically adopted

Ze = @(Zp—1,Z4—2, ..., Zy—yp) + M 4

where r is the number of past measurements used for predict-
ing z;, M captures the modeling inaccuracies, and ¢ repre-
sents the unknown function representing the load/state tran-
sitions. To obtain pseudo-measurements, we will capture ¢
using a deep RNN, whose parameters will be estimated next.

0 - i 0._ 5
S;_1 =241 Sy ‘=74

S?_Q = Zt,Q
Fig. 3: An unfolded deep RNN with no outputs.

Deep RNNs are RNNs having multiple processing layers
designed to learn from correlated time series data with hierar-
chical nonlinear transformations. They are not only scalable
to sequence inputs with large r, but also capable of capturing
complex dependencies within time series. This characteristic
has allowed deep RNNs to improve upon state-of-the-art in
several applications, including machine translation and music
modeling [16].
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Fig. 1: Plain-vanilla feed-forward net whose number of hidden units per layer is the same as in our prox-linear net.
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Fig. 2: Prox-linear net with K = 3 blocks.

Given initial states {s!_,_;};>1, and the input time series
{ZT}T +_r»deep RNNs find for =t —r,..., ¢ [17]
f(WZ g1 L Wesdsl | 4 pl- 1) I1>1 (5
where [ is the layer index, {W"!, W**! b!} consist of un-
known weights, and slT is the ‘so-termed’ hidden state of the
I-th layer at time 7 with s := Z,. The computational graph
representing (5) for [ = 2 is depicted in the left panel of Fig. 3,
where the black filled squares indicate one-step delay units,
and the bias vectors b’ = 0 VI. The right panel of Fig. 3
shows the unfolded version of this graph with columns rep-
resenting time slots, and rows corresponding to layers. The
output of our deep RNN has the form

7, = WUl | 4 pout (©6)
where Weu! and b°“! collect unknown weights, and z; is the
predicted values of z;. Given historical measurement series
{z,}, weight coefficients {W°% beut Wl Wssl bl}
can be learned end-to-end via back-propagation through
time [16].

Prox-linear net

mad A A 2t
Deep RNN Vi
Zy
{ZT T= t—

Fig. 4: DNN-based real-time DSSE.

To summarize, our proposed real-time distribution grid
monitoring approach is made up of two modules: a real-time
DSSE scheme based on the prox-linear net, and a pseudo-
measurement generation scheme via deep RNNs. The overall
flow chart of the proposed approach is depicted in Fig. 4.
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3. NUMERICAL TESTS

Performance of our novel DSSE approach was tested using
the unbalanced IEEE 13-bus test feeder. To prepare the train-
ing and testing datasets, real load data from the National Re-
newable Energy Laboratory ! were used, where all loads were
first normalized to match the scale of active power demands
in the IEEE 13-bus system. The actual voltage profile v was
obtained by solving the AC power flow equations using the
forward-backward sweep algorithm [18].

The obtained measurements include: i) PMU measure-
ments at bus 6. All voltage and current phasors of the three
phases were measured, adding up to 14 complex measure-
ments, or 28 real measurements. ii) SCADA measurements
at branches 4, 5, and 13. In particular, magnitudes of current
flows on all phases were measured, yielding 8 real mea-
surements. iii) Load measurements at buses 3,5,7,9,10, 11
and 13. Specifically, we considered two setups. In the first
setup, all load measurements were obtained from metering
devices, whereas in the second one only a fraction of load
measurements were obtained using our RNN-based forecast-
ing scheme. All measurements were further corrupted with
zero-mean additive white Gaussian noise, where the stan-
dard deviations for PMU and SCADA measurements were
103 and 1072, respectively. In total, 8,760 measurement-
voltage (z,v) pairs were generated, among which the first
6,132 (70% of the total) pairs were used for training, and the
remaining 2, 628 (30%) pairs for testing.

The first experiment evaluates performance of our prox-
linear net based DSSE, in which all measurements come from
metering devices. Estimation performance was assessed via
the normalized root mean-square error (RMSE) ||V —v||2/N,
with ¥ being our estimate, and v the ground-truth. In particu-
lar, a 3-layer prox-linear net with I = 0 was implemented. A
3-layer feed-forward NN (cf. Fig. 1) having the same depth as
our prox-linear net was also simulated as a baseline. For com-
parison, all NNs used ReLU activation functions which are

Uhttps://openei.org/datasets/files/968/pub/.
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Fig. 5: Estimation errors in voltage magnitudes and angles of
phase a of bus 4 from instances 1,000 to 1, 050.

amenable to provably efficient algorithms (e.g., [19,20]), and
they were trained by the ‘Adam’ optimizer for 200 epochs,
with a starting step size of 1073, The training process was
performed using the TensorFlow interface on an NVIDIA Ti-
tan X GPU.

Estimation performance in terms of the RMSE averaged
over 2,628 testing examples, for the prox-linear net, and
3-layer NN are respectively 5.99 x 10~% and 7.08 x 1074,
which showcase competitive performance of our prox-linear
net. The actual system states along with the estimated ones
provided by the prox-linear net and a 3-layer NN, for phase
a of bus 4 and phase c of bus 7 in the test set, are depicted in
Figs. 5 and 6, respectively.

The second experiment tests the efficacy of our DSSE
scheme, where only a fraction of measurements are provided
via deep RNN forecasts. For a fixed number of pseudo mea-
surements, 20 independent trials were run. For each trial, lo-
cations of the pseudo measurements were sampled uniformly
at random. Fig. 7 presents the sample mean and standard
derivation of RMSE averaged over the 20 trials for different
numbers of pseudo measurements. Two pseudo-measurement
generation schemes were compared: i) pseudo-measurements
obtained using a 3-layer RNN; and, ii) pseudo measurements
set equal to their values at time ¢ — 1. It is observed that the
DSSE with RNN generated pseudo-measurements offers im-
proved performance in all cases.

4. CONCLUSIONS

This paper dealt with DSSE drawing from advances in con-
temporary deep learning. In particular, physics-aware prox-
linear nets that are obtained by unrolling the state-of-the-art
prox-linear optimization solver were developed for DSSE.
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Fig. 6: Estimation errors for voltage magnitudes and angles
of phase c of bus 7 from instances 1, 000 to 1, 050.
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Fig. 7: Average RMSE w.r.t. the number of predicted values.

To enhance DSSE performance, load and voltage pseudo-
measurements were obtained using RNNs. The proposed
DNN-based DSSE framework is computationally inexpen-
sive, and easy to implement. Preliminary tests on the unbal-
anced IEEE 13-bus test feeder showcase the merits of our
DNN-based DSSE scheme. Our agenda includes DNN-based
solvers for optimal power flow and generalized DSSE.
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