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ABSTRACT

Massive integration of renewables and electric vehicles

comes with unknown dynamics — what exemplifies the need

for fast, accurate, and robust distribution system state esti-

mation (DSSE). Due to limited real-time measurements how-

ever, optimization-oriented DSSE faces major challenges re-

lated to convergence, as well as multiple global/local minima.

To address these challenges, this paper puts forth a novel deep

neural network (DNN)-based computational framework for

DSSE that consists of two modules: a deep recurrent neu-

ral network (RNN) based pseudo-measurement postulating

module, and a prox-linear net-based real-time state estima-

tion module. Both RNN and prox-linear nets learn complex

nonlinear functions, and can afford efficient training by lever-

aging existing deep learning platforms. Numerical tests with

semi-real load data demonstrate the merits of the DNN-based

DSSE approach.

Index Terms— Distribution system state estimation,

pseudo measurement, recurrent neural network, deep neural

network.

1. INTRODUCTION

Fast and accurate estimation of power system states is crucial,

not only for situational awareness and system protection, but

also for energy management [1,2]. Given limited power mea-

surements acquired by supervisory control and data acquisi-

tion (SCADA) and distribution automation systems, state es-

timation (SE) aims to recover the unknown system state, that

is, the complex voltages across the network [1].

Different from transmission systems where metering de-

vices are placed at almost all buses, distribution grids only

have a limited number of meters [1], which causes partial

observability and also challenges conventional SE schemes.

To enhance observability, distribution system state estimation

(DSSE) has to rely on the so-called pseudo measurements that

can be generated via load, generation, and voltage forecasting

tools [1,3]. Typical pseudo-measurement generation schemes
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leverage feed-forward neural networks (FNNs) [4], and clus-

tering approaches [5].

Exploiting both actual and pseudo measurements, several

DSSE solvers have been proposed. DSSE was posed as a

weighted least-squares (WLS) problem, and it is often solved

via Gauss-Newton iterations in [6, 7]. Bayesian DSSE using

FNNs was suggested in [8]. To improve convergence, single-

layer FNNs were employed to obtain a suitable initialization

for Gauss-Newton iterations [9]. Successive WLS account-

ing for forecasted load values has been investigated in [10].

Nonetheless, all these optimization-oriented approaches are

computationally demanding, discouraging their implementa-

tion in real time. In addition, the role of pseudo measurements

on DSSE has not been investigated.

Along with our recent proposal on efficient SE of trans-

mission networks [11,12], we advocate here a real-time DSSE

framework leveraging data- and physics-driven DNNs. The

contribution is two-fold. First, we develop physics-specific

prox-linear nets for SE of unbalanced distribution grids. The

prox-linear net, constructed by unrolling the prox-linear SE

solver in [13], requires minimal tuning effort, and features

‘skip-connections,’ that enable efficient training of DNNs (see

e.g., [14]). Second, pseudo measurements such as forecasted

loads and voltages are postulated via deep RNNs, that are ca-

pable of capturing complex nonlinear dependencies present

in time series data. Subsequently, our overall DSSE scheme

comprising RNN-based measurement forecasting and prox-

linear net based state estimation modules is specified, and

tested. Simulated tests using semi-real load data showcase

the merits of the proposed DSSE framework.

2. NOVEL DSSE APPROACH

Consider an unbalanced distribution network comprising N+
1 buses indexed by n ∈ N := {0, 1, . . . , N}, and phases in-

dicated by φ ∈ {a, b, c}. Suppose that the distribution grid

is functionally radial with the substation bus numbered by

n = 0. Per phase φ of bus n, let vn,φ := vrn,φ + jvrn,φ denote

its associated complex voltages, and Sn,φ := Pn,φ+jQn,φ its

complex power injections, with Pn,φ (Qn,φ) denoting respec-

tively the active (reactive) injections. For each line (nn′, φ)
that connects phase φ of bus n with phase φ of bus n′, let
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f
nn′,φ := P

f
nn′,φ + jQ

f
nn′,φ be the complex power flow at

the ‘forwarding’ end with P
f
nn′,φ (Q

f
nn′,φ) denoting the ac-

tive (reactive) flow. Likewise, let Se
nn′,φ, P e

nn′,φ, and Qe
nn′,φ

represent the complex, active, and reactive flows at the ‘termi-

nal’ end of line (nn′, φ). To perform DSSE, we measure M

system variables collected in the vector z := [z1, . . . , zM ]>.

DSSE aims to retrieve the state vector v := [vr
1
, vi

1
, . . . ,

vrN , viN ]> ∈ R
2N from the generally noisy vector z. Con-

cretely, DSSE can be stated as follows. Given z and the asso-

ciated linear or quadratic functions {hm(·)}Mm=1
obeying

zm = hm(v) + εm, ∀m = 1, . . . ,M (1)

where εm accounts for the measurement noise and modeling

errors, our goal is to find v ∈ R
2N . To endow our estimate

with resilience to bad data due to e.g. cyber attacks, the fol-

lowing least-absolute-value estimate is sought (see e.g., [13])

arg min
v∈R2N

1

M

M∑

m=1

|zm − hm(v)| . (2)

Existing solvers for (2) are often computationally heavy,

and several encounter even convergence issues especially

when the number of measurements M is small. With growing

network sizes as well as unpredictable dynamics of renewable

generation, real-time DSSE schemes are highly desirable. To

this end, the ensuing section develops learning-based DSSE.

2.1. Prox-linear net for power system state estimation

Learning-based DSSE seeks the function mapping from the

measurement vector z to v based on historical/simulated data.

As the relationship between z and v is complex, the function

mapping from z to v is arguably nonlinear; see e.g. [9, 11].

To render nonlinear estimators computationally tractable,

DNN [12] or kernel-based [15] approaches provide viable

solutions. Specifically, our physics-aware prox-linear neural

networks have been demonstrated empirically to be success-

ful in estimating the states of transmission networks [11].

The prox-linear net is devised by unrolling a recently

proposed prox-linear solver for (2) [13]. Here we will design

related prox-linear nets, but for DSSE. The architecture of

our 3(I +1)-layer prox-linear net is depicted in Fig. 2, where

z denotes the input measurement vector, f in all the green-

ish boxes is the pre-selected nonlinear activation function

(understood entry-wise when applied to vector inputs), such

as ‘tanh’, soft-thresholding operator, or rectified linear unit

(ReLU). The vector {bk
i }

0<=k<=2

0<=i<=I , and matrices {Ai}0≤i≤1,

{Wk
i }

1≤l≤3

0≤i≤I , Bu
I , and B

z
I contain weights learned from data

in the training phase. The number of hidden units per-layer

is set equal to the dimension of the input vector z. Relative

to the conventional feed-forward NN illustrated in Fig. 1,

the prox-linear net features ‘skip-connections’ through the

bluish lines in Fig. 2, connecting input z directly to interme-

diate/output layers. Empirical tests have demonstrated that

skip connections help avoid the so-termed ‘vanishing/explod-

ing’ gradient problems, thus facilitating the training process

of DNNs [14].

Upon learning the weight coefficients during the off-line

training stage, the prox-linear net can be employed for infer-

ring the distribution system states in real time. Unlike trans-

mission networks where metering devices are adequate, dis-

tribution grids suffer from partial observability due to limited

instrumentation. To enhance observability, data vector z have

to be augmented with pseudo measurements. In the ensuing

subsection, deep recurrent neural networks will be advocated

for predicting pseudo measurements.

2.2. RNNs for state predictions as pseudo-measurements

Besides the actual measurements acquired by smart meters,

load, generation, and voltage forecasting approaches can be

employed to generate pseudo-measurements. The forecasted

measurements z̃t at time t, obey the model

z̃t = h̃(v) + ξt (3)

where ξt accounts for the foresting error, and h̃(·) as in

(1) represents linear or quadratic functions dictated by the

physics. Clearly, z̃t provides additional equations that aug-

ment (1), thus enhancing system observability. Given time

series {z̃τ}
t−1

τ=0
, the following model is typically adopted

z̃t = φ(z̃t−1, z̃t−2, . . . , z̃t−r) + ηt (4)

where r is the number of past measurements used for predict-

ing z̃t, ηt captures the modeling inaccuracies, and φ repre-

sents the unknown function representing the load/state tran-

sitions. To obtain pseudo-measurements, we will capture φ

using a deep RNN, whose parameters will be estimated next.

Fig. 3: An unfolded deep RNN with no outputs.

Deep RNNs are RNNs having multiple processing layers

designed to learn from correlated time series data with hierar-

chical nonlinear transformations. They are not only scalable

to sequence inputs with large r, but also capable of capturing

complex dependencies within time series. This characteristic

has allowed deep RNNs to improve upon state-of-the-art in

several applications, including machine translation and music

modeling [16].
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