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Abstract

We present Variational Aspect-based Latent Topic
Allocation (VALTA), a family of autoencoding
topic models that learn aspect-based representa-
tions of reviews. VALTA defines a user-item en-
coder that maps bag-of-words vectors for com-
bined reviews associated with each paired user
and item onto structured embeddings, which in
turn define per-aspect topic weights. We model
individual reviews in a structured manner by infer-
ring an aspect assignment for each sentence in a
given review, where the per-aspect topic weights
obtained by the user-item encoder serve to define
a mixture over topics, conditioned on the aspect.
The result is an autoencoding neural topic model
for reviews, which can be trained in a fully unsu-
pervised manner to learn topics that are structured
into aspects. Experimental evaluation on large
number of datasets demonstrates that aspects are
interpretable, yield higher coherence scores than
non-structured autoencoding topic model variants,
and can be utilized to perform aspect-based com-
parison and genre discovery.

1 Introduction

In recent years, the field of natural language processing
(NLP) has decisively shifted away from bag-of-words repre-
sentations towards neural models. These models represent
text using embeddings that are learned from data in an end-
to end manner. A potential drawback to such embeddings
is that learned representations tend to be entangled, in the
sense that an embedding is a monolithic vector that encodes
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some unknown set of characteristics of the input data. When
one is interested in training a model solely for a particular
task, entanglement is not necessarily a problem, so long
as the trained model achieves sufficiently robust predictive
performance. However, there are cases where it is desirable
to learn a representation that factors into distinct, comple-
mentary sets of features, i.e., is disentangled.

One reason we may want a disentangled representation is
interpretability. Separating representations into distinct fac-
tors that correspond to identifiable subsets of features, such
as the topic and political leaning of an opinion piece, allows
one to more easily reason about which features informed a
prediction. A second reason to induce disentangled repre-
sentations is data efficiency. Suppose that were to train a
model on images that contain K categories of shapes which
assume L categories of colors. If a model can separate shape
from color, then it should generalize to shape and color com-
binations not observed in the training data. This means that
we can hope to train such a model on O(K + L) examples,
rather than a dataset in which all combinations of features
are present, which would require O(KL) examples. Learn-
ing disentangled representations thus provides a strategy for
factorizing a problem in a high-dimensional feature space
into problems in lower-dimensional feature spaces.

In computer vision, there has been considerable effort to
develop methods for inducing disentangled representations
in semi- and un-supervised settings [1–9]. Many of these ap-
proaches define deep generative models such as variational
autoencoders (VAE) [10, 11], or Generative Adversarial
Networks (GANs) [12, 13]. In NLP, work on learning dis-
entangled representations has been more limited [14–17]. A
large body of pre-neural work exists on aspect-based topic
models that derive from Latent Dirichlet Allocation (LDA)
[18]. This includes approaches for sentiment analysis [19–
24], and models in the factorial LDA family [25–27].

There has been relatively little work in NLP on learning
disentangled representations with neural architectures. One
reason for this is that work on deep generative models for
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text is not as well-established as work for images. Early
approaches in this space, such as the Neural Variational
Document Model (NVDM) [28] and autoencoding LDA
[29] developed neural topic models in which the generative
model is either an LDA-style mixture, or a SAGE-style [30]
log-linear combination over topics. More recently there
have been some efforts to develop deep generative models
with interpretable aspects, chiefly the work by Hu et al. [31],
which combines a recurrent VAE architecture with a set of
aspect discriminators to induce a structured representation.

In this paper we explore the effectiveness of neural topic
models for learning disentangled representations. We treat
review datasets as a particular case study, where we consider
the task of learning structured representations for both the
reviewer and the reviewed item. Reviews comprise several
variables of interest, such as the aspect(s) of the item being
discussed, user sentiment regarding each aspect, and charac-
teristics of the item for each aspect (i.e., sub-aspects). More
concretely, in any review corpus, items will very likely share
certain aspects, each affecting the rating separately. For ex-
ample, in the case of restaurant reviews, all establishments
will serve food and have a location. Similarly, every beer
will have an aroma and appearance. More generally, each
aspect may contain nested sub-aspects: A restaurant can
serve Italian, Chinese, or fast food; and a beer can be dark
or light in appearance.

In this paper we develop autoencoding models that induce
representations of review texts that capture this structure.
Such representations can perform aspect-based item com-
parisons, and also provide one sort of interpretability. To
realize these goals, VALTA combines topic modelling and
recommender systems into a structured VAE framework.
We model reviews in a structured manner by associating
an aspect with each sentence in a review, and use aspect-
specific topics to define a log-linear likelihood, similar to
the one used in SAGE [30], the NVDM [28], and ProdLDA
[29]. Topic and aspect weights are predicted based on a user
and item embedding. The result is a highly structured model,
in which both aspects and sub-aspects are interpretable, and
topics have a high predictive power in terms of perplex-
ity and coherence scores. These learned representations
can be used for downstream tasks such as genre discovery,
representation quality, and aspect-retrieval.

2 Background and Preliminaries

Review datasets have been widely studied in the context of
recommender systems [32]. Matrix factorization techniques
[33–35] are widely used to predict ratings by represent-
ing each user and item by a K dimensional vector, which
we sometimes refer to as an embedding. Since these ap-
proaches consider the ratings alone, they ignore the text of
the review, which is a key source of information. McAuley
and Leskovec [36] proposed combining topic models and

Symbol Description
V vocabulary size
A number of aspects
K number of sub-aspects
H number of hidden units
u user index
i item index
θ parameters of generative model
φ parameters of inference model
xi,u review written by user u about item i
xi,u,s sentence s of xi,u
ωi,u,s aspect log probabilities of xi,u,s
zi,u,s aspect assignment of xi,u,s
ρi hidden representation of item i
ρu hidden representation of user u
ρi,u hidden representation of xi,u
ψi,u aspect-specific topic distributions of xi,u
λi aspect-importance of item i
λu aspect-preference of user u
β0 global rating bias
βi item rating bias
βu user rating bias
ru,i true rating by user u for item i
r̂u,i prediction of rating by user u for item i

Table 1: Summary of notation used throughout.

matrix factorization techniques for learning ratings to learn
topics and ratings simultaneously. Subsequent approaches
aimed to exploit review text in addition to rating [36–40].
These efforts have shown that topic models indeed can act
as a good regularizer for rating prediction, particularly for
users or items with few reviews [36, 40]. In the last few
years, both recommender systems and topic modelling ap-
proaches have shifted towards deep learning methods [28,
29, 37], many of which also exploit text to predict ratings.

While neural recommender systems can achieve good pre-
dictive performance, it is unclear how they do so, because
learned feature vectors are optimized only to code indiscrim-
inately for (unknown) predictive combinations of attributes.
Such entangled representations thus do not reveal any in-
formation about the structure of the data, which in turn
hinders model interpretability and generalizability. By im-
buing representations with probabilistic semantics, we can
design models to explicitly tease out structured embeddings,
components of which may then be re-used.

In prior work, deep generative models have been proposed
to learn representations of text via variational autoencoders
[10, 11]. VAEs jointly optimize a generative network and an
inference network. The former, pθ(x, z), specifies a distri-
bution over set of hidden variables z and observed variables
x. The latter is a conditional distribution qφ(z|x). Defin-
ing q(x) as the empirical distribution, these two models are
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ψi,u: A ⨉ K

xi,u,s: V zi,u,s: A ρi: A ⨉	Kx i: V

xu: V

hi: H

hu: H

*

ωi,u,s: A

ρu: A ⨉	K

hi,u,s: H ψi,u,s: A ⨉ K xi,u,s: V

Item Encoder Sentence Encoder Sentence Decoder

* Broadcast Product

User Encoder

ρi,u: A ⨉	K c Concrete Dist

c

c ⨉ Element-wise Product⨉

Figure 1: VALTA learns representations for reviews using a structured autoencoder that consists of a sentence-level encoder
qφ(zi,u,s | xi,u,s), which infers assignments to aspects, and a document-level user-item encoder qφ(ψi,u | xi,xu), which
infers per-aspect topic weights, and a sentence-level decoder pθ(xi,u,s | zi,u,s,ψi,u).

trained by optimizing the evidence lower bound (ELBO),

L(θ, φ) : = Eq(x)
[
Eqφ(z|x)

[
log

pθ(x, z)

qφ(z | x)

]]
. (1)

Variants of VAEs have been used to develop autoencoding
topic models [28, 29]. These models achieve predictive
performance (in terms of the perplexity score) that is com-
petitive with other bag-of-word models, but lack the explicit
structure that we aim to capture here. More specifically: the
prior in existing VAE-based approaches takes the form of a
Gaussian with diagonal covariance matrix, where each di-
mension of the Gaussian corresponds to a topic. By contrast,
we here aim to characterize groups of topics that correspond
to specific aspects of interest. One means of realizing this
would be to posit A Gaussians, one per aspect, and each of
these might comprise its own set of K topics. Motivated by
this idea, we propose a structured prior for VAEs to capture
this information from a collection of reviews.

Table 1 presents the notation we use throughout this paper.

3 Methodology

To learn structured representations of reviews, we begin by
identifying key axes of variation in review datasets. We
define three variable categories: items, users, and review
texts. We assume A aspects of interest for all items. For
example, in the case of beer reviews, these aspects corre-
spond to properties such as appearance and aroma. We
further decompose these aspects into K topics. A topic
within appearance might be, e.g., dark versus pale beer.
Reflecting these structural assumptions, our model defines
aspect-specific embeddings that in turn yield distributions
over topics. Thus, a representation of a sweet, dark beer

should place a relatively large mass on the dark topic of
appearance, and a large mass on the sweet topic of taste.

The relative importance of aspects may vary for both items
and users. A restaurant, for example, may be located on the
water or on a famous city street, in which case the location
is likely to be its most salient aspect. Similarly, lagers are
not typically renowned for their smell. Users will also have
their own weightings of aspect importance. A particular
user may be concerned primarily with food quality over
price, and might prefer Chinese food. Others, meanwhile,
may emphasize location or ambience.

The words contained in a review are a function of aspects
and topics, and their relative importance for particular user-
item pairs. To accurately learn topics and predict ratings,
we now introduce variables that are defined at the review
level. A naive approach would be to encode the review
text xi,u and then train the generative model to learn both
topics and ratings for item i and user u. We propose an ap-
proach that is directly motivated by the observation that the
aspects and topics discussed in review xi,u will depend on a
combination of the aspect preferences of u, and the relative
salience of the respective aspects for i. Therefore, rather
than encoding xi,u directly, we encode information about i
and u separately, and then combine these representations to
yield a joint embedding for xi,u and predict the rating ri,u.

It is likely that most reviews will contain at least some
words about all aspects (although the prevalence of individ-
ual aspects will vary across reviews). Thus it is intuitive to
attempt to infer which parts of a review talk about which
aspect. In our model we make the simplifying assumption
that every sentence within a review discusses only a single
aspect. One could alternatively assign aspects at the word-
or paragraph-level. However, sentence-level assignment
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constitutes an intuitive compromise, and is also consistent
with prior work [41, 42]. Note that while the aspect assign-
ment varies between sentences within a review, the topic
distributions should be fixed for that particular review.

Following prior work [36, 37, 40], we assume the input
representation for item i is a bag-of-words vector encoding
the words used across all reviews written about this item.
Similarly, we define the input vector for user u as a bag-
of-words induced over all reviews that they have written.
This representation has been shown to perform well in terms
of capturing characteristics of items and users [36, 38, 39],
but it does not take into account the relative importance of
different aspects with respect to both i and u. Nor have such
models explicitly accounted for the intuitive observation
that different parts of reviews (probably) discuss different
aspects, which we achieve via sentence-wise aspect assign-
ments {zi,u,s} based on encoded sentences {xi,u,s} (one
per each sentence in the review written by u for i).

We provide a schematic of our model in Figure 1. The infer-
ence and generative models are defined to codify the struc-
ture discussed above. Specifically, given the topic distribu-
tion ψi,u for i and u, sentence aspect assignments {zi,u,s},
and the review xi,u, we define the inference model

qφ(ψi,u, zi,u | xi,xu,xi,u)

= qφ(ψi,u | xi,xu)
∏
s

qφ(zi,u,s|xi,u,s). (2)

An obvious choice for the likelihood model is to define
a decoder for review xi,u. However, this will entangle
the different aspects discussed in said review. To ensure
that the generative model associates different dimensions
with specific aspects, we define our generative network at a
sentence level

pθ(xi,u, zi,u,ψi,u)

=
∏
s

pθ(xi,u,s|zi,u,s,ψi,u)p(zi,u,s)
∏
a

p(ψi,u,a).
(3)

We note that the K-dimensional topic distribution ψi,u is
fixed at the review level. This reflects the assumption that
given the item and user, the specific topics of interest will
not change, as the opinion of the user and the character-
istics of the item are fixed. The only axis of variation is
the user’s decision regarding which aspect to write about
in any given sentence. However, we must ensure that the
generative model focuses only on the assigned aspect, rather
than topics of all aspects. We enforce this by multiplying
the columns of ψi,u with the (nearly) one-hot topic assign-
ment vector zi,u,s: ψsi,u = zi,u,s * ψi,u where * is the
broadcasting operation. Because zi,u,s resembles a one-hot
vector, this effectively masks the topic distributions per-
taining to other (unassigned) topics. Thus, only the topic
distribution corresponding to a single (selected) aspect is
responsible for reconstructing xi,u,s.

We use the generative model for text introduced in prior
work [29]. This model induces log probabilities for each
word via feeding the ψsi,u through a single layer neural
network followed by applying a log softmax

log pθ(xi,u,s|ψsi,u) = xi,u,s log

(
exp(ŵv)∑V
v=1 exp(ŵv)

)
.

Where the log word probabilities ŵ = gθ(ψ
s
i,u) are com-

puted using a single-layer perceptron gθ with weights θ.

3.1 Concrete Distribution

An important factor in our model is the choice of p(z) and
p(ψ). The appropriate choice for p(z) and p(ψ) are dis-
crete and Dirichlet distributions respectively, as they rep-
resent aspect assignment and topic proportions. This is
problematic in practice because discrete variables are not
amenable to the reparameterization trick, thus precluding
use of estimation via standard backpropagation algorithms.
In the case of Dirichlet distributions, several methods have
been proposed to allow for sampling via reparameterization
[43, 44]. However, in practice these methods dramatically
increase training time in our implementation because the
base system, PyTorch, does not provide GPU implemen-
tations for these distributions at the time of writing. In
this work, we choose to model both variables zi,u,s and
ψi,u,a using the Concrete distribution, a relaxation of dis-
crete distributions implemented via a Gumbel softmax [45,
46]. The Gumbel distribution can be sampled in a reparame-
terized way by drawing u ∼ Uniform(0, 1) and then com-
puting g = log( log(u)). If z has aspect log-probabilities
ω1, ω2, . . . , ωA, then we can sample from a continuous ap-
proximation of the discrete distribution by sampling a set of
ga ∼ Gumbel(0, 1) i.i.d. and applying the transformation

za =
exp((ωa + ga)/τ)∑
a exp((ωa + ga)/τ)

.

where τ is a temperature parameter controlling relaxation.
The sample z is a continuous approximation of the desired
one-hot representation. The role of τ is critical in our model,
as it dictates the peakiness of the samples. In the case of
zi,u,s, we keep the temperature low to enforce the assump-
tion that each sentence is only talking about a single aspect.
However, we do not wish for the topic proportions to be
close to a one-hot vector, as this would restrict items to con-
tain a single topic within each aspect. To encourage qφ(ψ)
to mimic a Dirichlet distribution, we set the temperature to
higher values (greater than 1.0), thereby encouraging all K
dimensions within each aspect to contribute. In our exper-
iments, we have observed that sampling ψi,u with a low
temperature results in only a few dimensions within each
aspect learning something meaningful (having non-zero mu-
tual information) about the review which is not desired.
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Dataset Aspects #users #items #reviews #sentences
Beer (Beeradvocate) Aroma, Taste, Mouthfeel, Look 4,923 2,017 127,346 1,515,517
Restaurant (Yelp) Price, Ambiance, Food, Service 13,847 6,588 140,139 1,416,317
Clothing (Amazon) Formality, Appearance, Type 12,203 73,903 80,285 447,920
Movie (Amazon) Genre, Awards, Screen Play 7,590 2,288 100,489 1,446,690

Table 2: Review dataset statistics.

3.2 Rating Prediction

A good representation of a review should not contain only
informative topics, but should also assist in accurately pre-
dicting the rating linked to the review. In this subsection,
we extend VALTA to predict ratings in combination with
learning aspects and topics. We take several factors into
account when predicting the rating. As discussed above,
we assume that users have different aspect preferences and
that items exhibit different aspect-importance. To extract
aspect-importance vectors λi and λu for item i and user
u respectively, we use the weights of the sentence encoder
f aspect
φ (h) that is responsible for predicting the aspect

λi = f aspect
φ (hi), λu = f aspect

φ (hu).

As f aspect
φ (·) is trained at the sentence level (and so com-

pelled to extract words associated with aspects), we can
re-use its weights to extract an aspect-importance vector
from a collection of reviews. We then average these two
embeddings to obtain aspect-importance for a particular pair

λi,u =
1

2
(λi + λu)

One could consider learning different embeddings for items
and users that are different from the one in topic models.
However, as discussed in [36], coupling the embeddings for
items and users with their topic models representation helps
to learn topics that explain the diversities in ratings. Thus,
in our model we re-use the input to the concrete distribution
ρi,u to predict the rating associated with each aspect as

r̂i,u,a =
K∑
k=1

ρi,u,a,k.

Based on this structure we predict the overall ratings as

r̂i,u = β0 + βi + βu +
1

A

A∑
a=1

λi,u,a︸ ︷︷ ︸
aspect importance

aspect rating︷ ︸︸ ︷
r̂i,u,a (4)

where β0 is the global rating bias, and βi and βu are item
i and user u bias respectively. This approach is similar to
the family of aspect-aware latent factor models (ALFM)
proposed in [40]. Following prior work, we use the mean
squared error (MSE) loss for the recommender model com-
ponent. This may also be interpreted in a probabilis-
tic way where we model r̂u,i as a Gaussian distribution:
p(r̂u,i; ru,i) := N (r̂i,u; ri,u, 1).

3.3 VALTA

In this subsection, we put everything together to define a
unified objective for VALTA. For clarity, we decompose our
objective into the four terms, which together define a lower
bound on the log marginal likelihood, analogous to the VAE
objective defined in equation 1

LVALTA(θ, φ) = Lxgen + Lrmse + L
ψ
KL + L

z
KL. (5)

where the terms are responsible for reconstructing the review
text, predicting the rating, matching the aspect distribution
in the encoder to prior, and matching the topic distributions
in the encoder to the prior respectively.

The first term is the expected log likelihood of the review

Lxgen(θ, φ) = E

[
log
∏
s

pθ(xi,u,s|ψi,u, zi,u,s)

]
.

Note that this expectation is are defined w.r.t to the inference
model qφ(·), which we omit for simplicity.

The second term is the likelihood of the rating ri,u

Lrmse(θ) = log pθ(ri,u|xi,xu).

Finally, as with a normal VAE we incorporate two regular-
ization terms in the form of KL divergences between the
encoder distribution and the prior

LzKL(θ, φ) = −E

[
log
∏
s

qφ(zi,u,s|xi,u,s)
pθ(zi,u,s)

]
,

LψKL(θ, φ) = −E
[
log

qφ(ψi,u|xi,xu)
pθ(ψi,u)

]
.

4 Related Work

A comprehensive literature review of recommender systems
is beyond the scope of this work. Here, we discuss models
that exploit both rating and reviews to jointly learn topics
and predict ratings. We divide these models to three classes:
1) probabilistic topic models; 2) deep learning-based ap-
proaches; 3) VAEs. VALTA belongs to the last category.

In the first class, the most closely related approach to our
work is the aspect-aware topic model (ATM) [40], which
considers a similar decomposition of reviews to aspects and
sub-aspects. In the same paper, the authors also propose an
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CitySearch BeerAdvocate
ACC F1-Score ACC F1-Score

LDA 0.477 0.597 0.447 0.468
Local-LDA 0.803 0.861 0.758 0.761

SVM 0.830 0.887 0.647 0.604
VALTA 0.885 0.931 0.769 0.794

Table 3: Multi-aspect sentence labelling results.

aspect-aware latent factor model (ALFM) which exploits the
parameters learned from the ATM to predict ratings. While
VALTA shares the idea of further decomposition of aspects
with ATM, it is trained to learn topics and predict ratings
jointly rather than sequentially.

Another related model is factorial-LDA [47] which learns
a facorized topic structure. Their approach to learn struc-
tured topics is different to VALTA in that factorial-LDA
learns topics as tuples while VALTA learns topics as hier-
archies. Other approaches similar to ours are [36, 37, 48,
49]. However, they are all purely probabilistic models and
furthermore, they do not consider hierarchical topics.

VAEs have also been used for collaborative filtering [50,
51]. However, as pointed out by [52], these approaches
tend to under-fit the data. In the vision domain, the idea of
capitalizing on more complex priors in VAEs has become
a popular idea and has been strongly associated with dis-
entanglement [4, 53, 54]. However, this idea has not been
emphasized as much in natural language processing. Two
recent, closely related deep learning-based methods are [38,
39]. Both exploit the review texts for a pairs (i, u) to pre-
dict ratings. While these models perform well in terms of
predicted ratings, they are not designed to learn topics.

Aspect classification has also been separately studied in
the context of semantic analysis [41, 42, 55, 56]. To our
knowledge, VALTA is the only VAE-based approach that
considers hierarchical topics. Furthermore, our encoder
architecture is unique in that it couples a sentence-level
decoder with an item and user encoder.

5 Experiments

To assess the structured representation learned by VALTA,
we evaluate a number of tasks and datasets. The experiments
are designed to evaluate the quality of aspects and topics,
structure of the representations, and rating-prediction. We
implement all VAE-based models in Probabilistic Torch [3],
a library for deep probabilistic models. In all experiments,
we set the temperature for zi,u,s and ψi,u,a to 0.66 and 5.0
respectively, which were we choose based on the quality
of the learned topics. The default temperature for Gumbel
softmax is 0.66, and we found it to be sufficiently low to
capture sentence’s aspect-assignments. For ψi,u,a, we had
to increase the temperature to encourage learning a diverse
set of topics for each aspect. The number of hidden units

H for all models is 256, followed by a tanh function. We
ran all experiments for 200 epochs with batch-size 100 (at
the review level). The optimizer we used was ADAM with
default hyperparameters. We use (A = 5,K = 2) for the
beer review and (A = 10,K = 3) for all other datasets. In
order to be able to visualize all topics, we choose K here
to be relatively small (e.g. 2 or 3). A on the other hand
was chosen based on the dataset. In the beer example, we
know that there are 5 aspects, so we set A to 5. For all other
datasets we choose A = 10 and let the KL regularizer prune
out the unnecessary aspects.

The main findings in our experiments are as follows.

1. VALTA can disentangle aspects of a review in a fully
unsupervised manner. We demonstrate this on the City-
Search and BeerAdvocate datasets, which have been
annotated with aspect-specific ratings [41, 57].

2. VALTA learns word distributions for every aspect and
topic that have a higher coherence score [58] than base-
line methods at both the sentence and review level.
This indicates interpretability.

3. VALTA learns a representation that can be used to
make aspect-based comparisons of items and users.

4. In all but one dataset, VALTA produces the most accu-
rate rating predictions of all models considered.

5.1 Datasets and Preprocessing

A summary of the data we use in this paper is shown in
Table 2. We focus on datasets that exhibit clear structure.
We chose the BeerAdvocate dataset1 and restaurant data
from Yelp Dataset Challenge2 from as they both contain
explicit aspects. For the other two datasets, we selected
Clothing and Movie reviews from Amazon [59, 60].

We preprocessed the datasets as follows. We used the Spacy
library [61] (version 2.0.12) to remove all English standard
stop words, and we removed all words that occurred fewer
than five times overall. We also used Spacy for sentence

1http://snap.stanford.edu/data/
2https://www.yelp.com/dataset_challenge/

BeerAdvocate
Sentence Review

LDA 0.5756
Local-LDA 1.5196

NVDM 0.2338
ProdLDA 0.2208
VALTA 1.817 0.655

Table 4: Average Topic Coherence (NPMI). We compare
either the sentence-level or review-level coherence score,
depending on the input-level employed in the baseline.

http://snap.stanford.edu/data/
https://www.yelp.com/dataset_challenge/
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Appearance Aroma-Taste Palate Semantic
golden black roasted citrus mouthfeel mouthfeel lagers try
yellow tans coffee grapefruit bodied watery heineken hype
white glass vanilla pine smooth rjt macro recommend
orange pour chocolate hops carbonation bodied import overall
hazy head bourbon lemon medium refreshing euro founders
color pitch oak floral drinkability carbonation lager favorite
gold lacing malts clove drinkable crisp bmc stouts

copper color sweet malt alcohol dry worse stout
straw brown aroma aroma finish finish bad ipa
amber ginger malt grass mouth thirst skunky cheers

Food Service Ambiance Payment
rice pepperoni bagel service friendly walls card minutes

chicken provolone eggs friendly service love debit card
sauce mozzarella hash staff staff restaurant stamp seated

shrimp bagel scrambled attentive baristas located minutes table
pork onions brown food helpful wall receipt debit
fried mushrooms ham helpful employees decor cash waited
beef arugula lox server customer hidden register asked

noodles knots benedict atmosphere barista ceiling cards wait
spicy artichoke poached great clean gem order gratuity

salmon cheese capers knowledgeable rude lighting cashier told

Table 5: Top 10 words learned by VALTA: beer (top) and restaurants (bottom).

segmentation with default configuration. The resultant vo-
cabulary size for these datasets varies from 20000 to 30000.
We also filtered reviews such that we include only items and
users for which we have at least five reviews.

5.2 Baselines

We compare our model to a diverse set of baseline models,
including probabilistic and VAE-based models. We also
include a simple version of our own model that we call Vari-
ational Sentence Latent Topic Allocation (VSLTA) which
follows the implementation of VALTA except for modelling
the aspects. In other words, the representation learned by
VSLTA is only a flat K dimensional vector rather than ma-
trix of size (A × K). The full list of baselines are: LDA
[18], Local-LDA [19], HFT [36], MF [33], NVDM [28],
ProdLDA [29], and VSLTA.

5.3 Interpretablity

In Table 5, we show the top 10 words in topics for the
BeerAdvocate and the Yelp data. Top words are decided
based on the decoder weights with the strongest connection
with each topic. Words associated in sub-aspects are clearly
related to each other. For example, in the beer dataset, the
topic “dark” contains words such as “black”, “tans”, and
“brown”. Furthermore, we can see that the topics within
every aspect are also correlated with one another. In the
beer example, if we look at the topic neighbours of “dark”,

we can see the topic “yellow”. Note that the “dark” and
“yellow” topics are learned within the same aspect in our
model. The same pattern can be observed in the Yelp data
where we can recover topics corresponding to food types,
such as “Chinese”, “Pizza”, and “Breakfast”.

5.4 Quantitative Assessment

We perform several quantitative evaluations of our model.
We first demonstrate that we can successfully disentangle
different aspects at the sentence level. We evaluate this on
the two available sentence-annotated datasets: CitySearch
[57] and BeerAdvocate [41], each containing 652 and 450
reviews respectively, in which sentences are labeled with
an aspect by an annotator. We then compare the labels to
inferred aspect assignments. Prior work on sentence aspect
classification shows that Local-LDA is one of the most
successful at capturing aspects in an unsupervised way [42].
Therefore, we compare against both LDA and Local-LDA.
We also train fully supervised SVM classifier3 on the labeled
data. As presented in Table 3, VALTA outperforms other
approaches in terms of both accuracy and F1-score.

Next, we quantitatively evaluate the top-words learned in
topics. According to Lau et al. [58], NPMI is a good metric
for qualitative evaluation of topics in terms of matching
human judgment. Details of how we compute NPMI scores
can be found in Appendix Section A. We measure NPMI

3We use the SVM implementation in scikit-learn 0.19.2 [62].
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Model ACC
LDA 0.13

NVDM 0.48
ProdLDA 0.45
VALTA 0.53

Dark Pale Sweet Bitter

Figure 2: Left: table of category classification results on beer data. Right: normalized density of latent values ψi,u,a of the
encoded reviews of three different style of beer.

both at the sentence and the review level to take both as-
pects and topics into account. For every baseline, we only
compared at the input-level that it was trained on. For ex-
ample, LDA is trained at the review level while Local-LDA
is trained at the sentence level. We report results in Table 4.
We can see that VALTA performs significantly better than
baselines, both at the sentence and review levels. Note that
we keep the overall number topics for all other baselines to
be the same as VALTA (A×K).

5.5 Genre Discovery and Aspect-Based Analysis

In Table 5, we show that we can successfully learn a struc-
tured representation of aspects and topics. An interesting
question is whether based on this representation, we have
managed to cluster the items in a reasonable way. Further-
more, can we now perform an aspect-based comparison of
different items? In this section, we investigate this question
both qualitatively and quantitatively. We hypothesize that if
the learned representation of the item is sufficiently rich in
capturing the structure of the data, then even a simple clas-
sifier should be able to accurately distinguish between the
categories. After training VALTA and other baselines, we fit
a multi-class SVM to classify the items.4 Results are shown
in Figure 2 (left). VALTA outperforms other approaches
with respect to clustering items in an unsupervised manner
due to is structured nature.

To inspect VALTA’s ability to enable aspect-based compar-
ison, we perform the following experiments: for both the
BeerAdvocate and Yelp restaurant data, we manually select
three categories of items that are different with respect to
every aspect. We encode all the reviews associated with
these items and we plot the histogram of parameters ρi,u, as
well as their kernel density estimation in different aspects.

Figure 2 shows that item representations cluster appropri-
ately within topics. For example, American Porter is a sweet
dark beer, thus the histogram of ρi,u for American Porter is
on the side of ”dark” in the appearance aspect and on the
side of ”sweet” in the taste aspect. American IPA on the

4We use the SVC implementation in sklearn 0.19.2.

Dataset MF LDA HFT VSLTA VALTA
Beer 1.32 0.714 0.552 0.611 0.437
Yelp 2.32 1.894 1.225 1.540 1.236
Clothing 0.568 0.444 0.316 0.400 0.315
Movies 0.242 0.217 0.197 0.201 0.154

Table 6: MSE comparison with baselines on the test data.

other hand is bitter pale beer, thus it has very little overlap
with American Porter in either aspects. Note that in the beer
example, we trained with K = 2. Since ρi,u are parameters
of the Concrete distribution, we only need to see value for 1
as the other one provides no addition information.

5.6 Recommendation Performance

As noted in the methodology section, VALTA’s generative
model is also trained to predict rating for pairs of users and
items, based on their aspect and topic representation. Re-
sults on MSE are shown in Table 6. It can be observed that
VALTA outperforms baselines in two of the datasets by tak-
ing both the rating and our structured review representation
into account, and perform reasonably close to state-of-art
(HFT) in other cases.

6 Conclusion

We have proposed VALTA, a novel VAE-based model that
instantiates structured probabilistic topic models in combina-
tion with an inference neural network to learn aspect-based
representations of reviews. VALTA uncovers interpretable
aspects, and additional structure (sub-aspects) beneath these.
These representations enable one to measure similarity with
respect to individual aspects, and thus perform aspect-wise
clustering. Furthermore, we demonstrated the these repre-
sentations afford improved generalization, as assessed in
zero-shot settings.

Our hope is that structured (disentangled) representations
will see increased development and use in natural language
processing (NLP) applications, as these may allow greater
generalizability and transparency.
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