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A Fog Robotic System for Dynamic Visual Servoing

Nan Tian,1,2 Jinfa Chen2, Mas Ma2, Robert Zhang2, Bill Huang2

Ken Goldberg1 and Somayeh Sojoudi1,3,4

Abstract— Cloud Robotics is a paradigm where distributed
robots are connected to cloud services via networks to ac-
cess “unlimited” computation power, at the cost of network
communication. However, due to limitations such as network
latency and variability, it is difficult to control dynamic, human
compliant service robots directly from the cloud. In this work,
by leveraging asynchronous protocol with a “heartbeat” signal,
we combine cloud robotics with a smart edge device to build
a Fog Robotic system. We use the system to enable robust
teleoperation of a dynamic self-balancing robot from the cloud.
We first use the system to pick up boxes from static locations,
a task commonly performed in warehouse logistics. To make
cloud teleoperation more efficient, we deploy image based
visual servoing (IBVS) to perform box pickups automatically.
Visual feedbacks, including apriltag recognition and tracking,
are performed in the cloud to emulate a Fog Robotic object
recognition system for IBVS. We demonstrate the feasibility
of real-time dynamic automation system using this cloud-edge
hybrid, which opens up possibilities of deploying dynamic
robotic control with deep-learning recognition systems in Fog
Robotics. Finally, we show that Fog Robotics enables the self-
balancing service robot to pick up a box automatically from a
person under unstructured environments.

I. INTRODUCTION
Service robots are robots that operate semi- or fully

autonomously to perform services useful to the well-being
of humans and equipments [1]. International Federation of
Robotics (IFR) predicts that 32 million service robots are
to be deployed between 2018-2022 [2]. Some popular ser-
vice robot applications include elderly care, house cleaning,
cooking, patrol robots, robot receptionists, entertainment,
and education. A few famous examples of service robots
are Roomba by iRobot, Pepper by Softbank Robotics, “the
robotic chef” by Moley Robotics, and Spotmini and Atlas
by Boston Dynamics.

Different from industrial robots, service robots need to
interact and cooperate with people safely under dynamic
unstructured environments. Therefore, two key requirements
for service robot operations are (1) accurate, general visual
perceptions and (2) intelligent, dynamic, human compliant
robot controls.

With recent breakthroughs in deep neural networks and
robotic learning, robot visual perceptions [3] [4] [5] [6] and
intelligent controls [7] [8] [9] [10] [11] under unstructured
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Fig. 1. The Fog Robotic system for dyanmic visual servoing: (Left)
Architecture diagram and information flow–visual perceptions (black ar-
rows), control signals (green arrows), human-robot interactions (red arrows).
(Right) Illustrations of three major contributions of this work, teleoperation,
visual servoing, and auto box-pickups from a human. They are positioned
to their related functional blocks in the Fog Robotic system

environments have become readily available . However, these
learning-based technologies come with a high computation
cost, and it is hard to deploy them directly on native robot
controllers that have limited computation power. In our
previous work on gesture based semaphore mirroring using a
humanoid robot [12], we addressed this problem by moving
deep-learning-based gesture inferencing into the cloud.

However, scalable cloud robotics systems are associated
with high network communication costs, in the form of
privacy, security, bandwidth, latency, and variability. Specifi-
cally, network latencies and variabilities, bounded by speed-
of-light and inconsistent network routings, prevent cloud-
based robotic controller from controlling dynamic robots
directly for interactive, human-compliant robot tasks, espe-
cially those requiring visual feedbacks.

In this work, we combine both powerful cloud services
and agile edge devices to build an intelligent Fog Robotic
control system. Our Fog Robotic system is implemented
under Human Augmented Robotic Intelligence Platform, or
HARI [12], provided by Cloudminds Inc. We integrate this
system with a dynamic, dual arm, dual leg, self-balancing



Fig. 2. Intelligence vs. Reflexes: Fog Robotics Balances Cloud and Edge Computation for Different Robotic Applications. (Left) Cloud Services
provide high-level intelligence, such as deep-learning based perception systems and cloud based human teleoperation. (Right) Edge controller fastest
control loops, control highly dynamic robotic tasks, but often lacks high performance computer. (Middle) Fog Robotics combine the intelligence of
the cloud and the responsiveness of the edge, covers 80% of the robotic applications. (Top and Bottom) Move the computing to the cloud for more
intelligence, and move the control to the edge for highly dynamic, closed-loop control. Together, Fog Robotic system can handle most service
applications that require both intelligence and fast reflexes.

robot, named Igor, made by HEBI robotics.
Leveraging a “heartbeat” communication protocol between

cloud and edge, we are able to teleoperate Igor robustly using
HARI. We choose to perform a robotic task that is commonly
performed in warehouse logistics, namely box pickups from
a human carrier.

While it is intuitive to teleoperate Igor during navigation,
we found that it was extremely difficult and inefficient to
teleoperate Igor to pick up objects as simple as a box.
To make the cloud-based teleoperation more intuitive, we
program a dynamic automatic box-pickup module based on
visual detection of an apriltag [13], [14]. Apriltage detec-
tions are performed in the cloud to emulate how a cloud-
based deep learning object recognition system would affect
the performance of this Fog Robotic visual feedback loop.
Furthermore, to avoid performing time-consuming camera
calibration and registration whenever the robot performs a
box pickup, we choose to implement the module using 2D
Image Based Visual Servoing (IBVS). With the Fog Robotic
IBVS, we demonstrate that Igor can perform reliable, auto-
matic box pickups from a human carrier under unstructured
environments.

II. CONTRIBUTION

The main contributions of this work are as follows:

1) A “heartbeat” protocol that enables robust teleoper-
ation of a dynamic robot in Fog Robotics.

2) A Fog Robotic visual servoing module that enables
automatic box-pickups to assist cloud teleoperators

3) Automatic box-pickups from a human to demon-
strate dynamic human robot interaction (HRI) under
unstructured service environments.

III. RELATED WORK
Cloud Robotics encompasses any robot or automation

system that relies on either data or code from a network
to support its operation [15]. The term was introduced by
James Kuffner in 2010. It was evolved from Networked
Robotics [16]. Well-known Cloud Robotic Systems includes:
RoboEarth’s Rapyuta [17], motion planning for services
at both cloud [18] and edge [19], Berkeley robotics and
automation as a service (Brass) [20], and Dex-Net as a
Service (DNaaS) [21], just to name a few. However, network
costs in the form of privacy, security latency, bandwidth, and
reliability present a challenge in Cloud Robotics [22].

Fog Robotics was recently introduced by Goldberg et
al, and is defined as an extension of Cloud Robotics that
balances storage, compute and networking resources between
the Cloud and the Edge [22]. It is inspired by Fog Comput-
ing, originally introduced by Cisco Systems in 2012 [23]. In
Fog Robotics, cloud computing resources is brought closer to
the robot so that learning can be done close to where data is
created. It has found its applications in service robots where
robot can learn surface grasps from nearby unstructured
environments [22]. In this work, we use Fog Robotics for
(1) cloud-based teleoperation of a dynamic robot; (2) host
vision servoing server to provide robot object recognition
and localization feedbacks under unstructured environments.

Robotic Vision for service robots to operate under un-
structured environment is challenging if traditional industrial
robotic approaches were used, because these methods were
developed for precision under highly structured manufac-
turing environments. Registrations [24] and calibration [25]
are often done before a robotic task, and they can be time
consuming and do require additional expertise for system
maintaining.



Image Based Visual Servoings (IBVS) [26], [27] uses
camera 2D image space to measure relative distances be-
tween the robot and the target. The measurements are in-
dependent of the exact 3D locations of the robot and the
target. Therefore, camera registrations and calibrations are
not required before each robotic task, desirable for service
robots deployments under unstructured environments for
human robot interactions.

Furthermore, recent development in deep-learning-based
vision systems allow recognition [4], object detection [3],
segmentation [5], and human gesture recognition [6] to be
performed for unstructured environments in semi-real-time
(5 - 10Hz) on a GPU server. Previously, we successfully
implemented a cloud-based gesture perception system for a
humanoid robot gesture mirroring task [12]. More advanced
robotic learning systems based on visual feedbacks has been
developed for grasping [28], [7], visual servoing [11], guided
policy search [8], [9], visual foresight [10], and domain
randomization for transfer learning from simulation to reality
[29], [30]. All of these can be deployed in Fog Robotics
to provide visual feed-backs for large scale service robot
deployments.

IV. SELF-BALANCING ROBOT IGOR
We use a 14 degrees of freedom (DoF), dual-arm, dual-leg,

dynamic self-balancing robot named Igor (shown in Fig. 3).
It is designed and made by HEBI robotics. Each DoF is built
with a self-contained, series elastic X-series servo modules.
These servos can be controlled with position, velocity, and
torque commands simultaneously, and can provide accurate
measurements of these three quantities to a central computer
at high speed ( >1KHz) with minimum latency. These
modules are connected with Ethernet to an on-board Intel
Nuc computer in the metal control box for self-balancing
control.

The self-balancing is achieved by modeling the system as
an inverted pendulum (see Fig. 3 bottom). To estimate the
center of mass (CoM) of the robot, the CoM of the two
arms and two legs are first measured through HEBI’s API in
real-time using forward kinematics. The position of the total
CoM is then estimated as the average of the CoMs of the
four extremities plus the CoM of the control box weighted
by the mass distribution:

xCoM =

∑
imixi∑
imi

i = arms, legs, box (1)

Igor also uses accelerometer measurements from the four
servo modules attached to the control box to estimate the
direction of gravity (G) at all times. With CoM of Igor, center
of wheels (ow), and direction of gravity, we can calculate the
length and direction of the inverted pendulum:

L = xCoM − ow (2)

The lean angle (ψ), which is the angle between gravity and
the inverted pendulum can then be estimated in real-time:

ψ = cos−1
( L ·G
|L||G|

)
(3)

Fig. 3. Self-Balancing Robot Igor: (Top)14 Dof, dual-arm, dual-leg robot
built with series elastic servo modules. (Bottom) free body diagram of the
inverted pendulum balancing control (see supplemental video for details)

To keep the robot balancing, assuming that the lean angle
(ψ) is small so that we can linearize the system:

ψ u sin(ψ) (4)

a torque (T ) in the direction of falling is applied to the wheel
with radius (R) and angular velocity (ω) to counteract the
effects of gravity on the robot’s center of mass:

T = Rω = v − ψ̇L (5)

where v is the velocity of the robot’s CoM. Furthermore,
the derivative of the lean angle (ψ̇) can be controlled by a
proportional controller with coefficient (Kv), and is related
to the velocity of the robot as follows:

ψ̇ = Kvv (6)

The real-time measurements of both robot CoM and
direction of gravity are important, because the Igor controller
needs to compensate for dynamic movements of the four
extremities for robust self-balance control. We can also rotate
the robot by varying velocity applied to the two wheels, and
control the angle of rotation based on inertia measurement
unit (IMU) readings in real-time.

V. AN INTELLIGENT FOG ROBOTIC
CONTROLLER

A. Edge Controllers

There are two edge controllers in our system. The first one
is an Intel Nuc computer in the Igor control box. It collects
all sensor information from the 14 modular servos, and it
controls all servos in real-time. It hosts high-speed feedback
control loops (200Hz or above) to maintain robot posture



Fig. 4. “Heartbeat” Protocol with Asynchronous Communication to Send a Forward Command: (Top) Teleoperator with a Joystick sending a
series of forward command signals. (Middle) Cloud High-Level Controller receiving most of the packages with a little latency. It then forwards received
commands to the edge device. (Bottom) Edge device receives the commands with a lot of lost packages and some delays. A “heartbeat” signal for forward
motion is turned on upon receiving the first command, and will stay on the duration of the sliding window (250 ms, purple arrow). The ”heartbeat” will
turn off when there is no command received during the sliding window (red arrow). The green arrow marks the network delay from the joystick to the
edge device. Finally, at the low-level controller, a ramp-up and ramp-down function is used to smooth out the start and stop forward velocity perturbation
to the balancing system so that the robot can move forward without jitters or instability.

and self-balancing. We refer to it as the low-level controller
in Fig. 1.

The other edge device is the robot command unit (RCU). It
is a smart android phone with a private LTE connection and
a 2D camera (Fig. 1). RCU serves as the gateway between
the high-level cloud robotic platform and the low-level self-
balancing controller. It uses the private LTE connection to
stream live videos to the cloud, and it receives and forwards
high-level intelligent controls from the cloud to the low-level
controller with minimum delay. RCU works both indoors and
outdoors with a good LTE reception.

Furthermore, we are in the process of integrating HEBI’s
self-balancing controller into the smart phone. It can replace
the native Intel Nuc computer so that it will serve as both
RCU and low-level controller. By making the edge controller
more compact, we gain more battery room in the control box
for a longer robot operation time.

B. Cloud Controller

A high-level intelligent robot controller is placed in the
cloud to work with the edge controller (see Fig. 1). It operates
at a lower speed (3-5Hz), yet it commands the robot based on
HARI’s Artificial Intelligence (AI) and Human Intelligence
(HI) services, which is critical for robots to operate under
unstructured environments. Depending on the situation, it
can either extract commands based on the object recognition
server or forward commands sent from a cloud teleopera-
tor. These high-level commands are sent to RCU and are
executed in a different form on the low-level controller.

C. Hybrid Control with “Heartbeat”

When controlling Igor, commands sent from the high-
level cloud controller act as perturbations to a time-invariant,
stable system maintained by the low-level self-balancing
controller at the edge. This is a form of hybrid control
where discrete signals are sent from the cloud to control
a dynamical system at the edge.

Minimum delays in the cloud to edge robot command
delivery are desirable for intuitive teleoperation. We choose
to use the asynchronous network protocol UDP to implement
the cloud-edge communication. However, since deliveries
are not guaranteed in UDP, packages can be lost during
communication. Further, the packages can arrive at the desig-
nation in different orders from their original sequence. Both
problems can create variable controls at the edge controller,
which can cause instability in self-balancing. This would
affect user experiences during teleoperation as well, and can
be dangerous to people around the robot.

We implement a “heartbeat” signal at the edge controller
to solve these problems (shown in Fig. 4). The “heartbeat”
is a switch signal that is turned on when the first signal
arrives at the edge. It will remain on for a period of time
(t) and will only turn off if there is no package received
for the selected command during this time. We can view
the “heartbeat” design as performing a “convolution” with
a moving window on the signal received. Finally, we turn
the “heartbeat” signal into an edge control signal with a
ramping function at the beginning and the end of the control
to ensure a smooth start and end action when the controlled
perturbation hits the stable self-balancing system.

VI. DYNAMIC VISUAL SERVOING

To assist teleoperation with automation, we focus on using
Fog Robotics to control a dynamic robot with Image Based
Visual Servoing (IBVS) to automatically pick up a box.
We choose IBVS because it eliminates extensive camera
calibration that is hard to maintain on a dynamic robotic
system. The goal of our IBVS is to navigate the robot to an
optimal box pickup location where the apriltag lay within
the green target box, which has the same size as the apriltag
(Fig. 5)

The aim of visual-servoing-based control is to minimize
the relative error between the measured target position and



desired target position e(t):

e(t) = s(m(t),a)− s∗ (7)

where m(t) is a set of image measurements and a is a
set of parameters, such as camera intrinsics, that represents
additional knowledge about the system. s is the measured
values of image features/object locations, such as pixel
coordinates in the picture frame, and s∗ is the desired values
of image features/object locations.

The change of feature error ė and camera velocity vc is
related by interactive matrix L:

ė = Lvc (8)

For IBVS, which is done in 2D image space, 3D points
X = (X,Y, Z) are projected onto 2-D images with coordi-
nates x = (x, y):

x = X/Z (9)
y = Y/Z (10)

which creates an interactive matrix for 2D image based
servoing:

L =

−1/Z 0 x/Z xy −(1 + x2) y

0 −1/Z y/Z 1 + y2 −xy −x


With the interactive matrix, camera velocity can be estimated
by:

vc = −λL+e = −λL+(s− s∗) (11)

where L+ is the Moore-Penrose pseudo-inverse of L:

L+ = (LTL)−1LT (12)

The final control law is set as a robot velocity effort vs
opposite to the camera velocity vc because the target moves
in the opposite direction of the camera in the image frame:

vs = −vc (13)

Notice that the interactive matrix depends only on x and
y, that is the 2D pixel coordinate of the target, and Z
which is the depth of the target. In our system, Z is
measured as the size of the apriltag. Therefore, the IBVS
measurement is independent of the exact 3D position of the
target measurement, which is attractive to our system because
the exact 3D camera registration is not required.

A. IBVS Implementations for Automatic Box Pickup

The automatic visual servoing controller executes a box
pickup in three phases. Phase 1 uses IBVS to move the robot
to a position where the aprialtag has the same size as the
green box shown in left side of Fig 5. The robot also need
to position apriltag on the center purple line of the video
frame after phase one, but not at the center. In phase 2, the
robot adjusts its own height by changing the joint angles of
the two “knee” joints so that the apriltag would lay at the
center of the video frame where the green box is. After the
robot reaches the optimal picking position when apriltag is at

Fig. 5. Image Based Visual Servoing using Fog Robotics: (Left) Igor
Picking Up a Static Box; (Right) Image Based Visual Servoing (IBVS)
the purple central line and the size of the green box are used in the phase 1 of
the IBVS. Phase 1 controls how to navigate the robot an optimal position.
Phase 2 controls the optimal height of the robot. The robot changes its
height by the two “knee” joints of the two legs so that the apriltag would fit
directly into the green box in the center of the 2D image frame. Videos:
(1) Pickup a box from a table: https://youtu.be/b0mr5GHHjBg
(2) Pickup a box from a human: https://youtu.be/K9R4y2w1uPw

the center of the video, phase 3 begins. The robot controller
commits to perform a box-pickup with a pre-defined, hard-
coded, dual arm, grasping motion.

The size of the target green box encodes depth information
(Z) of the target. We find this optimal size by teleoperating
the robot to different positions that is close to the box. From
locations, we select the position that has the highest box-
pickup successful rate using the hard-coded grasping motion.

B. Fog Robotic IBVS

Although we use simple apriltags for object recognition,
we aim to anticipate the design of a deep-learning-based
Fog Robotic visual system for robotic pickups. Therefore,
to emulate the latency effects under such system, we deploy
apriltag recognition in the cloud and use “heartbeat” pro-
tocol to stream apriltag’s geometric locations to low-level
controller via RCU. Together, we build a robust Fog Robotic
IBVS controller for box pickups.

VII. EXPERIMENTS AND RESULTS

With the “heartbeat” design, we are able to navigate the
self-balancing robot reliably (see video) from the cloud-
based teleoperation interface. We also pre-program arm
actions such as clapping, and “disco” for human robot com-
munications and entertainment (video: https://youtu.
be/1H1VEpkbG_E).

We further hardcode a box pickup motion for the two
arms, and attempt to pick up a box via the cloud-based
teleoperation. However, even with a reliable teleoperation
module and with pre-programmed pick up motions, we find
it extremely difficult and inefficient to pick up a box using
cloud teleoperation. We suspect that it is caused by the

https://youtu.be/b0mr5GHHjBg
https://youtu.be/K9R4y2w1uPw
https://youtu.be/1H1VEpkbG_E
https://youtu.be/1H1VEpkbG_E


lack of natural, immersive 3D visual perception for the
teleoperator,

To quantify the observation, we perform two different
teleoperation experiments with 10 trials each: 1) control
Igor locally so that the operator can see the robot and the
box; 2) control Igor from the cloud to pick up the box. In
both cases, the box is positioned on the table in a stable
location. The robot is about 2 meters from the object and
faces the front of the box (see video https://youtu.
be/b0mr5GHHjBg). We observe that local teleoperator
(at least 2 meters away from the target) can perform box
pickups much faster with a higher success rate than the cloud
teleoperator (see table I)

After implementing the automatic IBVS module, we per-
form the same experiments and benchmark the automatic
module with human in the loop. We allow the cloud operator
to first teleoperate the robot as fast as possible to a location
where apriltag is recognizable, which can be up to 20 degrees
from the surface normal direction of the apriltag. Then, the
human triggers the Fog Robotic IBVS module, allowing the
robot to pick up the box automatically. We observe that
the speed of this third case is on-par with human local
teleoperation, but the reliability is even higher at 100% (see
table I)

TABLE I
TELEOPERATION VS. AUTOMATIC BOX PICKUPS

Average Duration (s) Success Rate

Local Teleop 43 9/10

Cloud Teleop 340 4/10

Auto Pickups 46 10/10

Finally, we leverage the flexibility of visual servoing to
perform a proximate human robot interaction (HRI) task.
During the task, the human carries the box with an apriltag.
They can show Igor the apriltag while moving around. Igor
can recognize and localize the tag with a distance as far as
6 meters. As soon as the robot recognizes the apriltag, the
teleoperator can release the robot so that it enters automatic
mode. We observe that as long as the robot can recognize the
apriltag and the box is in a reachable height for the robot,
the robot will follow the human around, and eventually pick
up the box from the person with a high successful rate (see
video: https://youtu.be/K9R4y2w1uPw)

VIII. DISCUSSION AND FUTURE WORK
In this work, we take advantage of both intelligent cloud

robotic platform and edge controller to build an intelligent
Fog Robotic system that can perform human-compliant,
automatic box pickups using visual servoing.

A “heartbeat” protocol with asynchronous communication
is introduced to mitigate network latencies and variabilities
effects on the dynamic hybrid self-balancing controller in
Fog Robotics. However, the current “heartbeat” protocol
is not perfect. There is an increased delay at the end of
command signal that would cause a delayed reaction after

the last command signal is received (see red arrow in Fig.
4). This imposes a significant safety concern, because even
if the “heartbeat” time window is short, i.e. 250 ms in our
case, the robot will not stop completely until after 250 ms
plus the ramping down period. To compensate, we implement
a sharper ramp function at the stop compared to the ramp
function at the start, but 250 ms is the hard limit for the
delay on the current system (shown as red arrow in Fig. 4).

Our future work includes a better modeling of package
drops in asynchronous communication, so that we can build
a probability model to measure variabilities of time intervals
between packages. This way, we can further reduce this
delayed reaction by adjusting the “heartbeat” window size
based on the predicted time of last package.

Like other service robots, Igor needs to interact and coop-
erate with human beings. We demonstrate the advantages
of visual servoing: (1) it requires no calibrations before
each robotic task; (2) it can handle dynamic human robot
interaction, such as following a human to pick up a box
from that person. Our automatic system works even in un-
structured environments when obstacles are present between
the human and the robot. The self-balancing control and
the compliant servos can correct themselves when small
obstacles are encountered. The human box carrier or the
cloud teleoperator can also help the robot avoid obstacles
by guiding it to a path with more clearance.

One failure case is when the human carrier tricks the robot.
It happens if the target is moved after the robot commits to
the final phase of box picking, which is hard-coded.

In the future, we can program a more dynamic automatic
object pickup so that the robot can pick up a moving object
with a continuous motion, without hard-codings. We also
plan to deploy deep-learning recognition pipelines such as
mask-RCNN (cite) together with intelligent grasping systems
such as dex-net [28] [7] [21] using Fog Robotic systems,
so that it can guide both dynamic robots such as Igor
and static robots such as YuMi [20] and HSR [31] to
perform generalized, human compliant object pickups and
manipulations.
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