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Abstract

We study the set of continuous functions that admit no spurious local optima
(i.e. local minima that are not global minima) which we term global functions.
They satisfy various powerful properties for analyzing nonconvex and nonsmooth
optimization problems. For instance, they satisfy a theorem akin to the fundamental
uniform limit theorem in the analysis regarding continuous functions. Global
functions are also endowed with useful properties regarding the composition of
functions and change of variables. Using these new results, we show that a class of
nonconvex and nonsmooth optimization problems arising in tensor decomposition
applications are global functions. This is the first result concerning nonconvex
methods for nonsmooth objective functions. Our result provides a theoretical
guarantee for the widely-used ¢; norm to avoid outliers in nonconvex optimization.

1 Introduction

A recent branch of research in optimization and machine learning consists in proving that simple
and practical algorithms can solve nonconvex optimization problems. Applications include, but are
not limited to, neural networks [40, 44], dictionary learning [1, 2], deep learning [39, 50], mixed
linear regression [49, 43], and phase retrieval [46, 21]. In this paper, we focus our attention on
matrix completion/sensing [30, 24, 38] and tensor recovery/decomposition [5, 4, 31, 35]. Matrix
completion/sensing aims to recover an unknown positive semidefinite matrix M of known size n
and rank r from a finite number of linear measurements modeled by the expression (A;, M) :=
trace(A; M), i = 1,...,m, where the symmetric matrices Ay, ..., A, of size n are known. It is
assumed that the measurements contain noise which can modeled as b; := (A;, M) + ¢; where €; is
a realization of a random variable. When the noise is Gaussian, the maximum likelihood estimate of
M can be recast as the nonconvex optimization problem
m

inf Z ((A;, M) —b;)*  subjectto rank(M) =r (1)

Mo
where M = 0 stands for positive semidefinite. One can remove the rank constraint and obtain a
convex relaxation. It can then be solved via semidefinite programming after the reformulation of the
objective function in a linear way. However, the computational complexity of the resulting problem
is high, which makes it impractical for large-scale problems. A popular alternative is due to Burer
and Monteiro [18, 12]:
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This nonlinear Least-Squares (LS) problem can be solved efficiently and on a large-scale with the
Gauss-Newton method for instance. It has received a lot of attention recently due to the discovery
in [30, 10] stating that the problem admits no spurious local minima (i.e. local minima that are
not global minima) under certain conditions. These require adding a regularizer and satisfying the
restricted isometry property (RIP) [20]. We raise the question of whether this also holds in the case of
Laplacian noise, which is a better model to account for outliers in the data. The maximum likelihood
estimate of M can be converted to the Least-Absolute Value (LAV) optimization problem
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The nonlinear problem can be solved efficiently using nonconvex methods (for some recent work,
see [36]). For example, one may adopt the famous reformulation technique for converting ¢; norms
to linear functions subject to linear inequalities to cast the above problem as a smooth nonconvex
quadratically-constrained quadratic program [13]. However, the analysis of this result has not been
addressed in the literature - all ensuing papers (e.g. [29, 52, 8]) on matrix completion since the
aforementioned discovery deal with smooth objective functions.

Consider y € R™ and assume 7 = 1. On the one hand, in the fully observable case! with M = yyT,
the above nonconvex LS problem (2) consists in solving
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for which there are no spurious local minima with high probability when ¢; ; are i.i.d. Gaussian
variables [30]. On the other hand, in the full observable case, the LAV problem (3) aims to solve
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Although the LS problem has nice properties with Gaussian noise, we observe that stochastic gradient
descent (SGD) fails to recover the matrix M = yy” in the presence of large but sparse noise. In
contrast, SGD can perfectly recover the matrix by solving the LAV problem even when the sparse
noise ¢; ; has a large amplitude. Figures 1a and 1b show our experiments for n = 20 and n = 50 with
the number of noisy elements ranging from 0 to n2. See Appendix 5.1 for our experiment settings.
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Figure 1: Experiments with sparse noise

Upon this LAV formulation hinges the potential of nonconvex methods to cope with sparse noise
and with Laplacian noise. There is no result on the analysis of the local solutions of this nons-
mooth problem in the literature even for the noiseless case. This could be due to the fact that the
optimality conditions for the smooth reformulated version of this problem in the form of quadratically-
constrained quadratic program are highly nonlinear and lead to an exponential number of scenarios.

!This corresponds to the case where the sensing matrices A, . .., A, have all zeros terms apart from one
element which is equal to 1.



As such, the goal of this paper is to prove the following proposition, which as the reader will see, is a
significant hurdle. It addresses the matrix noiseless case and more generally the case of a tensor of
order d € N.

Proposition 1.1. The function f1 : R™ — R defined as

n

fi(x) = Z [Ty o iy — Yiy - Yiy| (6)

01,.000q=1

has no spurious local minima.

A direct consequence of Proposition 1.1 is that one can perform the rank-one tensor decomposition
by minimizing the function in Proposition 1.1 using a local search algorithm (e.g. [19]). Whenever
the algorithm reaches a local minimum, it is a globally optimal solution leading to the desired
decomposition. Existing proof techniques, e.g. [29, 30, 24, 38, 5, 4, 31, 35], are not directly useful
for the analysis of the nonconvex and nonsmooth optimization problem stated above. In particular,
results on the absence of spurious local minima neural networks with a Rectified Linear Unit (ReLU)
activation function pertain to smooth objective functions (e.g. [48, 14]). The Clarke derivative [22, 23]
provides valuable insight (see Lemma 3.1) but it is not conclusive. In order to pursue the proof
(see Lemma 3.2), we propose the new notion of global function. Unlike the previous approaches, it
does not require one to exhibit a direction of descent. After some successive transformations, we
reduce the problem to a linear program. It is then obvious that there are no spurious local minima.
Incidentally, global functions provide a far simpler and shorter proof to a slightly weaker result, that
is to say, the absence of spurious strict local minima. It eschews the Clarke derivative all together
and instead considers a sequence of converging differentiable functions that have no spurious local
minima (see Proposition 3.1). In fact, this technique also applies if we substitute the ¢; norm with the
£+, norm (see Proposition 3.2).

The paper is organized as follows. Global functions are examined in Section 2 and their application
to tensor decomposition is discussed in Section 3. Section 4 concludes our work. The proofs may be
found in the supplementary material (Section 5 of the supplementary material).

2 Notion of global function

n
Given an integer n, consider the Euclidian space R™ with norm ||z || := x? along with a subset
\/ i=1

S C R™. The next two definitions are classical.

Definition 2.1. We say that x € S is a global minimum of f : S — Rifforally € S\ {z}, it
holds that f(x) < f(y).

Definition 2.2. We say that x € S is a local minimum (respectively, strict local minimum) of
f S — Rifthere exists ¢ > 0 such that for all y € S\ {x} satisfying ||z — y||2 < ¢ it holds that

f(@) < f(y) (respectively, f(x) < f(y))-

We introduce the notion of global functions below.

Definition 2.3. We say that f : S — R is a global function if it is continuous and its local minima
are all global minima. Define G(S) as the set of all global functions on S.

In the following, we compare global functions with other classes of functions in the literature,
particularly those that seek to generalize convex functions.

When the domain S is convex, two important proper subsets of G(.5) are the sets of convex and strict
quasiconvex functions. Convex functions (respectively, strict quasiconvex [27, 26]) are such that
FO+ (1= A)y) < Af(2)+ (1 - ) f(y) (respectively, f(Az -+ (1 — A)y) < max{f(x), f(y)}) for
all z,y € S (withz # y) and 0 < A < 1. To see why these are proper subsets, notice that the cosine
function on [0, 47] is a global function that is neither convex nor strict quasiconvex. In dimension
one, global and strict quasiconvex functions are very closely related. Indeed, when the domain is
convex and compact (i.e. an interval [a, b] where a, b € R), it can be shown that a function is strict
quasiconvex if and only if it is global and has a unique global minimum. However, this is not true in
higher dimensions, as can be seen in Figure 4b in Appendix 5.2, or in the existing literature, i.e. in



[25] or in [9, Figure 1.1.10]. It is also not true in dimension one if we remove the assumption that the
domain is compact (consider f(z) := (22 + 2*)/(1 + z*) defined on R and illustrated in Figure 4a
in Appendix 5.2).

When the domain S is not necessarily convex, a proper subset of G(.5) is the set of star-convex
functions. For a star-convex function f, there exists € S such that f(Az+(1—-X)y) < A f(z)+(1—
A)f(y)forally € S\ {z} and 0 < X < 1. Again, the cosinus function on [0, 47] is a global function
that is not star-convex. Another interesting proper subset of G(.5) is the set of functions for which,
informally, given any point, there exists a strictly decreasing path from that point to a global minimum.
This property is discussed in [47, P.1] (see also [28]) to study the landscape of loss functions of
neural networks. Formally, the property is that for all z € S such that f(z) > inf,cg f(y), there
exists a continuous function g : [0, 1] — S such that g(0) = z, g(1) € argmin{f(y) | y € S}, and
t € [0,1] — f(g(t)) is strictly decreasing (i.e. f(g(t1)) > f(g(t2))if 0 < t; < t2 < 1). Not all
global functions satisfy this property, as illustrated by the function in Figure 4a. For instance, there
exists no strictly decreasing path from x = —3 to the global minimizer 0. However, in the funtion in
Figure 4b in Appendix 5.2, there exists a strictly decreasing path from any point to the unique global
minimizer. One could thus think that if S is compact, or if f is coercive, then one should always
be able to find a strictly decreasing path. However, there need not exist a strictly decreasing path in
general. Consider for example the function defined on ([—1,1] \ {0}) x [—1, 1] as follows

a1~ ) (sin () +1) if 0<a<1,
{12|x1|3 (sin (—ﬁ) + 1) - 2} 3 +
B B O O e s
tlrP (sn (=) + 1) a2 = trP (sn (~r2) +1)

The function and its differential can readily be extended continuously to [—1,1] x [—1, 1]. This
is illustrated in Figure 6a in Appendix 5.2. This yields a smooth? global function for which there
exists no strictly decreasing path from the point z = (0, 1/2) to a global minimizer (i.e. any point
in [-1,1] x {—1}). We find this to be rather counter-intuitive. To the best of our knowledge, no
such function has been presented in past literature. Hestenes [32] considered the function defined on
[—1,1] x [=1,1] by f(z1,22) := (w3 — 273) (29 — 427) (see also [9, Figure 1.1.18]). It is a global
function for which the point z = (0,0) (which is not a global minimizer) admits no direction of
descent, i.e. d € R? such thatt € [0,1] — f(z + td) is strictly decreasing. However, it does
admit a strictly decreasing path to a global minimizer, i.e. ¢ € [0,1] — (@t, t2), along which
the objective equals —%t‘l. This is unlike the function exhibited in Figure 6a. As a byproduct, our
function shows that the generalization of quasiconvexity to non-convex domains described in [6,
Chapter 9] is a proper subset of global functions. This generalization was proposed in [41] and further
investigated in [7, 33, 34, 15, 16, 17]. It consists in replacing the segment used to define convexity
and quasiconvexity by a continuous path.

Finally, we note that there exists a characterization of functions whose local minima are global,
without requiring continuity as in global functions. It is based on a certain notion of continuity
of sublevel sets, namely lower-semicontinuity of point-to-set mappings [51, Theorem 3.3]. We
will see below that continuity is a key ingredient for obtaining our results. We do not require
more regularity precisely because one of our goals is to study nonsmooth functions. Speaking of
which, observe that global functions can be nowhere differentiable, contrary to convex functions [11,
Theorems 2.1.2 and 2.5.1]. Consider for example the global function defined on |0, 1] x ]0, 1] by
flx1,x2) :=|229 — 1] Z::f) s(2"x1)/2™ where s(z) := min, ey | — n/ is the distance to nearest
integer. For any fixed x5 # 0, the function 1 € [0,1] — f(z1,22)/|z2| is the Takagi curve
[45, 3, 37] which is nowhere differentiable. It can easily be deduced that the bivariate function is
nowhere differentiable. This is illustrated in Figure 6b.

In the following, we review some of the properties of global functions. Their proofs can be found in
the appendix. We begin by investigating the composition operation.

*In fact, one could make it infinitely differentiable by using the exponential function in the construction, but
it is more cumbersome.



Proposition 2.1 (Composition of functions). Consider f : S — R. Let ¢ : f(S) — R denote
a strictly increasing function where f(S) is the range of f. It holds that f € G(S) if and only if

pofeg(9)

However, the set of global functions is not closed under composition of functions in general. For
instance, f(x) := |z| and g(z) := max(—1, |z| — 2) are global functions on R, but f o g is not global
function on R.

Proposition 2.2 (Change of variables). Consider f : S — R, a subset S’ C R", and a homeomor-
phism ¢ : S — S’ (i.e. continuous bijection with continuous inverse). It holds that f € G(S) if and
onlyif f o~ € G(S).

Next, we consider what happens if we have a sequence of global functions. Figure 2a shows that the
sequence of global functions (red dotted curves) pointwise converges to a function with a spurious
local minimum (blue curve). Figure 2b shows that uniform convergence also does not preserve the
property of being a global function: all points on the middle part of the limit function (blue curve) are
spurious local minima. However, it suggests that uniform convergence preserves a slightly weaker
property than being a global function. Intuitively, the limit should behave like a global function
except that it may have “flat” parts. We next formalize this intuition. To do so, we consider the
notions of global minimum, local minimum, and strict local minimum (Definition 2.1 and Definition
2.2), which apply to points in R", and generalize them to subsets of R™. We will borrow the notion
of neighborhood of a set (uniform neighborhood to be precise, see Definition 2.5).

+1/8:3 - 2x® 3i2x + 7

1/4xt

(a) Pointwise convergence (b) Uniform convergence

Figure 2: Convergence of a sequence of global functions

Definition 2.4. We say that a subset X C S is a global minimum of f : S — Rifinfx f <
infs\x f

We note in passing the following two propositions. We will use them repeatedly in the next section.
The proofs are omitted as they follow directly from the definitions.

Proposition 2.3. Assume that the following statements are true:
1. X C Sis a global minimum of f;
2. feg(X);
3. f does not have any local minima on S \ X.

Then, f € G(S).

Note that the first assumption is needed; otherwise the function may not be global because it could
take a smaller value at a non local min outside X (possible when S is unbounded).

Proposition 2.4. If f : S — Ris a global function on global minima (X, )ac A for some index set
A, then it is a global function on ¢ 4 Xa-

We proceed to generalize the definition of local minimum.



Definition 2.5. We say that a compact subset X C S is local minimum (respectively, strict local
minimum) of f : S — R if there exists € > 0 such that for all v € X and forally € S\ X

satisfying ||x — y||2 < € it holds that f(z) < f(y) (respectively, f(z) < f(y)).>

The above definitions are distinct from the notion of valley proposed in [47, Definition 1]. The latter
is defined as a connected component* of a sublevel set (i.e. {z € S| f(z) < a} for some a € R).
Local minima and strict local minima need not be valleys, and vice-versa. One may easily check
that when the set is a point, i.e. X = {z} with z € S, the two definitions above are the same as the
previous definitions of minimum (Definition 2.1 and Definition 2.2). They are therefore consistent. It
turns out that the notion of global function (Definition 2.3) does not change when we interpret it in
the sense of sets. We next verify this claim.

Proposition 2.5 (Consistency of Definition 2.3). Let f : S — R denote a continuous function. All
local minima are global minima in the sense of points if only if all local minima are global minima in
the sense of sets.

We are ready to define a slightly weaker notion than being a global function.

Definition 2.6. We say that f : S — R is a weakly global function if it is continuous and if all strict
local minima are global minima in the sense of sets.

The generalization from points to sets in the definition of a minimum is justified here, as can be seen
in Figure 3. All strict local minima are global minima in the sense of points. However, X = [a, b]
with ¢ ~# —2.6 and b = —1 is a strict local minimum that is not a global minimum. Indeed,
infx f =6 > 1 = infg\ x f. Hence, the function is not weakly global.

Figure 3: All strict local minima are global minima in the sense of points but not in the sense of sets.

We next make the link with the intuition regarding the flat part in Figure 2b.

Proposition 2.6. If f : S — R is a weakly global function, then it is constant on all local minima
that are not global minima.

We are interested in functions that are potentially defined on all of R™ (i.e. unconstrained optimization)
or on subsets S C R that are not necessarily compact (i.e. general constrained optimization). We
therefore need to borrow a slightly more general notion than uniform convergence [42, page 95,
Section 3].

Definition 2.7. We say that a sequence of continuous functions fr, : S — Rk = 1,2,...,
converges compactly towards f : S — R if for all compact subsets K C S, the restrictions of [ to
K converge uniformly towards the restriction of f to K.

We are now ready to state a result regarding the convergence of a sequence of global functions and an
important property that is preserved in the process.

3Note that the neighborhood of a compact set is always uniform.
A subset C' C S is connected if it is not equal to the union of two disjoint nonempty closed subsets of S. A
maximal connected subset (ordered by inclusion) of S is called a connected component.



Proposition 2.7 (Compact convergence). Consider a sequence of functions (fi.)ren and a function
f,all from'S C R™ to R. If
fx — [ compactly @)

and if fi. are global functions on S, then f is a weakly global function on S.

Note that the proofs in this section are not valid if we replace the Euclidian space by an infinite-
dimensional metric space. Indeed, we have implicitely used the fact that the unit ball is compact in
order for the uniform neighborhood of a minimum to be compact.

3 Application to tensor decomposition

Global functions can be used to prove the following two significant results on nonlinear functions
involving ¢; norm and /., norm, as explained below.

Proposition 3.1. The function f1 : R™ — R defined as

n

fl(x) = Z |xi1-~-wid_yi1---yid| (8)
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is a weakly global function; in particular, it has no spurious strict local minima.

Proof. The functions
n

folz) = Z |Tiy iy — Yiy iy P 9

i1,0058d=1

for p — 1 with p > 1 form a set of global functions that converge compactly towards the function
f1. This is illustrated in Figure 5 in Appendix 5.2 forn = d = 2 and y = (1, —3/4). The desired
result then follows from Proposition 2.7. To see why each f,, is a global function, observe that f, is
differentiable with the first-order optimality condition as follows:

n
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forall i € {1,...,n}. Note that each term in the sum converges towards zero if the expression inside
the absolute value converges towards zero, so that the equation is well-defined. Consider a local
minimum x € R"”; then, x must satisfy the above first-order optimality condition. If y; = 0, then the
above equation readily yields z; = 0. This reduces the problem dimension from n variables ton — 1
variables, so without loss of generality we may assume that y; £ 0, ¢ = 1,...,m. After a division,
observe that the following equation is satisfied

n T T T T T T p—2
Z |yi1"'yid—1|p ll ,ld1< ll .ldlt_:l) “ %dilt—l =0
a1 =1 Yiv o Yigr \Yir -+ Yig Yiy - Yig
forall t € {z1/y1,...,%n/yn}. Bach term with ;, ...z;,_, # 0 in the above sum is a strictly
increasing function of ¢ € R since it is the derivative of the strictly convex function
gt) =\ziy .o iyt —Yiy - Yiy_, | (10)

The point 2 = 0 is not a local minimum (y is a direction of descent of f, at 0), and thus z # 0. As a
result, the above sum is a strictly increasing function of ¢ € R. Hence, it has at most one root, that is
tosay t = x1/y; = - - - = T, /yn. Plugging in, we find that t¢ = 1. If d is odd, then z = y and if d
is even, then x = +£y. To conclude, any local minimum z is a global minimum of f,. O

Proposition 3.2. f., : R" — R defined as
foolz) = 1<Z_1ma)i<d<n |y o iy — Yy - Yiy| (11)

is a weakly global function; in particular, it has no spurious strict local minima.



n
Proof. The functions h,(x) := < > xiy - e®iy, — Yiy - -yiy|P | for p — 400 form a set
i1yeenria=1
of global functions that converge compactly towards the function f.,. We know that each h,, is a

global function by applying Proposition 2.1 to (9) with the fact that ()% is increasing for nonnegative
arguments. O

Note that the functions in Proposition 3.1 and Proposition 3.2 are a priori utterly different, yet both
proofs are essentially the same. This highlights the usefulness of the new notion of global functions.

Remark 3.1. The notion of weakly global functions explains that one can perform tensor decomposi-
tion by minimizing the nonconvex and nonsmooth functions in Proposition 3.1 and Proposition 3.2
with a local search algorithm. Whenever the algorithm reports a strict local minimum, it is a globally
optimal solution.

In order to strengthen the conclusion in Proposition 3.1 and to establish the absence of spurious local
minima, we propose the following two lemmas. Using Proposition 2.3 and these two lemmas, we
arrive at the stronger result stated in Proposition 1.1.

Lemma 3.1. If x € R" is a first-order stationary point of f1 in the sense of the Clarke derivative,
then the following statements hold:

1. Ify; =0forsomei € {1,...,n}, thenx; = 0;

2. Foralliy,...,iqg € {1,...,n}, it holds that% < 1.
BT
Proof. Similar in spirit to the proof of Proposition 3.1, the ratios t € {x1/y1,...,%n/yn} for a

first-order stationary point must all be the roots of an increasing (set-valued) “staircase function". We
then obtain the results by analyzing the relation between the roots and the jump points of the staircase
function. See Appendix 5.8 for the complete proof. O

Note that the above lemma only uses the first-order optimality condition (in the sense of Clarke
derivative) without any direction of decent.

Remark 3.2. One cannot show that there are no spurious local minima with only the first-order

Ty —

n
optimality condition (in the Clarke derivative sense). In fact, any x € R"™ satisfying >_ |y;
i=1

Yi
and % < 1ljoralliy,...,iq € {1,...,n}, is afirst-order stationary point, but is not a local
ip-Yig
minimum.
Lemma 3.2. Ify; ...y, # 0, define the set
S::{xeR” Li o B g Vil,...,ide{l,...,n}}. (12)
yil A yld

Then, f1 € G(S).
Proof. We provide a sketch here, and the complete proof is deferred to Appendix 5.9. The

n d n
objective function on S is equal to fi(z) = (Z |y7> - (Z ly:

d
Zi | Define the set

i=1 =1 ¥

S i={zeR" |zy...0;, <1, Yiy,...,iqg € {1,...,n} }. When d is an odd number, the

composition and change of variables properties of global functions (Propositions 2.1 and 2.2) imply

that f; is a global function on S if and only if foaa(z) = — >\, |yi|x; € G(S'). Similarly, when d

is an even number, f is a global function if and only if feven(z) = — (31 |yi\a:i)2 € G(95’). For the
case when d is odd, we apply the Karush-Kuhn-Tucker conditions to restrict attention to the positive
orthant and conclude by showing its association with a linear program. For the case when d is even,
we divide the set S’ into two subsets: S N {z| >, |y;|z; > 0} and 8" N {z| >, |yilz; < 0F.
Observe that feyen(2) is a global function on each of the subset by associating each subset with a
linear program. Then, Proposition 2.3 establishes the result. O

The two previous lemmas prove Proposition 1.1; the notion of global function is used to the prove the
latter.



4 Conclusion

Nonconvex optimization appears in many applications, such as matrix completion/sensing, tensor
recovery/decomposition, and training of neural networks. For a general nonconvex function, a
local search algorithm may become stuck at a local minimum that is arbitrarily worse than a global
minimum. We develop a new notion of global functions for which all local minima are global
minima. Using certain properties of global functions, we show that the set of these functions include
a class of nonconvex and nonsmooth functions that arise in matrix completion/sensing and tensor
recovery/decomposition with Laplacian noise. This paper offers a new mathematical technique for
the analysis of nonconvex and nonsmooth functions such as those involving ¢; norm and ¢, norm.
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5 Appendix

5.1 Experiment settings

We use SGD to solve the problems (4) and (5) for randomly generated rank-one matrices. In the
experiments, each y is generated according to the n-dimensional i.i.d. standard Gaussian distribution.
The positions of the sparse noise are uniformly selected from all the n? elements, and each noisy
element is replaced by a Gaussian random variable with standard deviation 10. With regard to SGD,
we set the learning rate to 0.001 and momentum to 0.9. The initial point is a Gaussian random vector.

In our experiments, a successful recovery means that the solution z has a relative error less than 0.1
compared with the optimal solution y. We consider n = 20 and n = 50 and vary the number of noisy
elements from 0 to n2. For each case, we run 100 experiments and report the successful recovery
rate. As shown in Figures (1a) and (1b), the LS problem (4) fails to recover the matrix except for the
noiseless case. On the other hand, the LAV problem (4) provides perfect recovery in the presence of
sparse noise.

5.2 Illustrations

This section is composed of Figure 4, Figure 5, and Figure 6.

(a) Global function on R

(b) Global function on R?

Figure 4: Examples of global functions

Concerning Figure 6b, first note that the path along ; = 0 is not a strictly decreasing path. Any
other path from (0, 0.5) must include a segment of (0,0.5) to (e1,0.5 + €2) for some small €7, €5
with €1 # 0. Then this segment is not strictly decreasing due to the alternating behavior of sin(— |m—11|)

when z1 = ¢; # 0.

5.3 Proof of Proposition 2.1

(=) Let z € S denote a local minimum of ¢ o f. There exists € > 0 such that ¢(f(x)) < ¢(f(y))
forally € S\ {z} with || — y||2 < e. Since ¢ is increasing, it holds that f(z) < f(y). Since f is
global, we deduce that x is a global minimum of f, that is to say f(x) < f(y) forally € S\ {z}.
Since ¢ is increasing, it holds that ¢(f(z)) < ¢(f(y)) forally € S\ {z}. We conclude that z is a
global minimum of ¢ o f.

(<=) Simply apply the previous argument to ¢~* o (¢ o f), where ¢~! denotes the inverse of
¢: f(S) — ¢o f(9).
5.4 Proof of Proposition 2.2

(=) Let 2’ € S’ denote a local minimum of f o o=, There exists ¢ > 0 such that f(o =1 (2))
fle (")) forall y' € S"\ {2} with ||z’ — /||2 < €. Since ¢ is continuous, there exists € >
such that f(o~ (")) < f(y) forally € S\ {¢~(2)} with ||~ (2") — y|l2 < e. Hence, p~1 (')

<
0

13



(©) fi.2s @) f1

Figure 5: Compact convergence of global functions implies that strict local minima are global

is a local minimum of f. Since f is global, it holds that f(p~1(2')) < f(y) forall y € S. Since ¢
is a bijection, f(p~1(2')) < f(p~1(y)) forall y € S’, implying that 2’ is a global minimum of
foe .

(<=) Simply apply the previous argument to (f o p~1) o ¢.

5.5 Proof of Proposition 2.5

One direction is obvious. For the other direction, we propose a proof by contrapositive. Let X C .S
denote a local minimum that is not a global minimum. There exists ¢ > 0 such that the uniform
neighborhood V := {y € S |Jz € X : ||z — y|l2 < €} satisfies f(z) < f(y) forall z € X and
forally € V '\ X. Also, there exists z € S\ V such that f(z) < f(x) forallz € V. Since f is
continuous on the compact set V, it attains a minimum =’ € V such that f(z) < f(2'). If 2’ € X,
then for all y € S such that ||z’ — y||2 < ¢, it holds that f(z) < f(z') < f(y). Thus, 2’ is local
minimum that is not a global minimum. If 2’ € V' \ X, then f(2’) < f(x) < f(2/) forall z € X.
Consider a point x € X. For all y € S such that ||z — y||2 < ¢, it holds that f(x) = f(y)ify € X
and f(z) < f(y) if y ¢ X. Together with the fact that f(z) < f(z') = f(z), we deduce that x is a
local minimum that is not a global minimum.
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Figure 6: Notable examples (with x;-axis on the right and x5-axis on the left)

5.6 Proof of Proposition 2.6

We propose a proof by contrapositive. Assume that f is not constant on a local minimum X C S that
is not a global minimum. The minimum X admits a uniform neighborhood V" such that f(z) < f(y)
forallz € X and forally € V' \ X. Since f is continuous on the compact set V, there exists ' € V'
such that f(2') < f(z) forallz € V. If 2/ € V \ int(X) where “int” stands for interior, then f
is constant on X because X is a local minimum. Therefore, ' € int(X) and f(2') < f(x) for all
x € 0X := X \ int(X). Consider the compact set defined by X’ := {x € X | f(2') = f(x)}. The
set V satisfies f(z) < f(y) forallz € X’ andy € V' \ X’. Since X’ C X, there exists a uniform
neighborhood V"’ of X' satisfying f () < f(y) forall z € X’ and forally € V' \ X’. Hence, X' is
a strict local minimum that is not global. To conclude, f is not a weakly global function.

5.7 Proof of Proposition 2.7

Consider a sequence of global functions fj that converge compactly towards f. Since S C R™ and
R™ is a compactly generated space, it follows that f is continuous. We proceed to prove that f is
a weakly global function by contradiction. Suppose X C S is a strict local minimum that is not
global minimum. There exists € > 0 such that the uniform neighborhood V := {y € S | Iz € X :
|z — y|l2 < €} satisfies f(x) < f(y) forall z € X and forall y € V' \ X. Since f is continuous on
the compact set X, it attains a minimal value on it, say inf x f := a+infg f where @ > 0 since X is
not a global minimum. Consider a compact set V' C K C S such thatinf i f < /2 +infg f. Since
f is continuous on the compact set OV, it attains a minimal value on it, say infgy f := S+ infx f
where 8 > 0 by strict optimality. Let v := min{«/2, 5}. For a sufficiently large value of k, compact
convergence implies that | fx(y) — f(y)| < /3 forall y € K. Since the function f}, is compact on
V, it attains a minimum, say z € V. Therefore,

fi(z) < y/3+inff < B/3+inff < 26/3+inf f (13)

SO inf f < — inf f < inf fy. 14
v/3+ﬂ+lrvlf 7/3+16r%/f g%lfk (14)

Thus, z € int(V'). We now proceed to show by contradiction that z is a local minimum of f5. Assume
that for all ¢ > 0, there exists ¢’ € S\ {z} satisfying ||z — ¢/||2 < €’ such that fi(z) > fx(y'). We
can choose ¢’ small enough to guarantee that i’ belongs to V' since z € int(V'). The point 3’ then
contradicts the minimality of z on V. This means that z € V is a local minimum of f,. Now, observe
that

i%ffk < 7/3+i%ff < 7/3+a/2+igff < 2a/3+igff < 5a/6+igff (15)
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< ozf’)//3+i151¥ff = 77/3+i£1(ff = 77/3+ir‘}ff < iI‘}ffk < fr(2). (16)

Thus, z is not a global minimum of f. This contradicts the fact that fj, is a global function.

5.8 Proof of Lemma 3.1

Based on the Clarke derivative [22, 23] for locally Lipschitz functions, the first-order optimality
condition reads
0€ Z Tiy oo Ty SIEN(TG, o Tiy T — Yy - Yig 1Y), L=1,...,n (17)

i1,eytd—1=1

where
-1 ifz <0,
sign(zx) : [—1,1] ifz=0, (18)
1 ifz > 0.
If y; = 0 for some i € {1,...,n}, then the above equations readily yield
0e Z Tiy Ty, Sign(xy, ... mi, x;) = sign(z;) Z [Ty - iy, | (19)
i1, ytd—1=1 i1,eytd—1=1

which implies x; = 0. This reduces the dimension of the problem from n to n — 1, so without loss

of generality we may assume that y; # 0 for all i = 1,...,n. After a division, observe that the
following inclusion is satisfied:
n
0€ Y Wi Ui, | ————"sign (“"“t— 1) (20)
i1eeia_1=1 Yig - Yig_4 Yiy - - Yig_q
forallt € {x1/y1,...,%n/yn}. Each term with x;, ...2;,_, # 0 in the above sum is an increasing
step (set-valued) function of £ € R since it is the Clarke derivative of the convex function
gt) = |Tiy - Tiy_t— Yiy - Yiy_4 |- 21
The above sum is thus a increasing step function of ¢ € R. Hence, the roots x1/y1, . .., Zn/yn all

along belong to the same step. Jumps between the steps occur exactly at the following set of points:

{ Yir -+ Yias
JL‘il IR 74 d_1
This set is empty when = = 0; otherwise, none of its elements are equal to zero because y # 0. Given
a jump point o # 0 in the above set, the roots must therefore be all before or all after, that is to say:

i17...,id,16{1,...,n} and (Eil...(Eid_l#O} (22)

x T T x
22 <a or a2 (23)
n Yn Y1 Yn

We next prove that
x x x x

a>02—1,...,—n<a and a<0:>a<—1,...,—n. 24)

Y1 Yn Y1 Yn

Let us prove the first implication by contradiction. Assume that there exists k € {1, ...,n} such that

a < xy/yk. Since one root is after the jump point «, all other roots are after the jump point c. In
particular, for all ¢ € {1,...,n}, we have

<2 (25)

- X
Ty ...J)i‘Fl Yi

>For a locally Lipschitz function f : R™ — R, the directional derivative evaluated at x in the direction v is

defined b
e 4+ 20) - £()

f°(z;v) := limsup S

Yy —x
Al0

and the Clarke derivative is defined by 0f (z) := {d € R" : f°(z;v) > (v,d), Vv € R"}.
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Therefore, all the roots are positive. By multiplying the above equation by the positive number %,
i1 T

we obtain
YiYis - - - Yig_y T4y
.’EZ'SL'iQ .. .l'id_l yil
Note that the left-hand side is a jump point, and the right-hand side is a root. Therefore, all the roots
are after, and in particular:

(26)

Yilfis - - Yiar _ Ti 27
TiTijy oo Liy_4 = Yi
Again, since the roots are positive, by multiplying by ZQ;/ , we get
ig i
Yilis Yia _ Tiy (28)

Ty Ty Yiy
Similarly, the left-hand side is a jump point, and the right-hand side is a root. Thus, all the roots are
after, and in particular:

2
S < = (29)
T Ly v Ty Y
Continuing this process, we ultimately obtain that
d—1

Y; T
— < — (30)
it Ty

that is to say 1 < x;/y;. If the inequality is an equality for alli € {1,...,n}, thena = 1 = 1 /yx,
which is impossible since o < xy, /y. Thus, there exists one root ¢ of (20) that is strictly greater than
one. But this implies that every term in the sum in (20) is strictly positive, which is impossible. As a
result, the first implication in (24) is true.

We next prove the second implication in (24) by contradiction. Assume that there exists k €

{1,...,n} such that 1 /y;, < c. Since one root is before the jump point «, all other roots are before
the jump point «. In particular, for all ¢ € {1,...,n}, we have
e ) (31)

Yi .Z'il ....I]id71
Therefore, all the roots are nelgatiye. Since o < 0 is the product of d — 1 negative terms, it must be
that d is even. Observe that —1%* > () because it is a ratio of two roots. Now, similar to the case

. Yiy Ti
« > 0, we obtain

Tiy Yilis - - - Yig_o

Yiy = TiTijy oo Lijy_4
The right-hand side is a jump point, and the left-hand side is a root. Thus, all the roots are before, and
in particular:

(32)

Ti o YilYiz - Yian

< . (33)
Y LiTjy oo Lijy_y
Continuing this process (as in the case where o > 0), we ultimately obtain that
d—1
T; Y;
— < . (34)
yi a7t

7

Since d is even and x; /y; < 0, this implies that x; /y; < —1. If the inequality is an equality for all
i €{l,...,n}, then « = —1 = x,/yy, which is impossible since zj,/y; < a. Thus, there exists
one root ¢ of (20) that is strictly less than —1. But this implies that every term in the sum in (20) is
strictly negative, which is impossible. Consequently, the second implication in (24) holds.

Let us apply (24) to a root z;, /y;, for some iy € {1,...,n}:
Yir o Yias _ Ty

Yiy - - Yig_ T Yiy -+ Yig_ Yig - - Yig_
Ll S () = and e < .
Lijqg oo Tjg_y Yig Liq oo o Tjg_q Ljg oo Tjg_y Liy oo o Tjy_q Yig

In both cases we find that

iy o Ty <1 (35)
Yiy - Yig

This inequality holds for all jump points (i.e. for all indices 41,...,%4—1 € {1,...,n} such that

Ziy ... Zi,_, # 0)and it is trivially true for all indices such that z;, ...z;,_, = 0. Therefore, (35) is

true for all 41, ...,iq € {1,...,n}, which completes the proof of this lemma.
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5.9 Proof of Lemma 3.2

When z € S, notice that

Ji(x) Ty = Yiy - Yig]

I
M
5

= e _ 1‘
il, X,i:d:l |y11 yld| y11 yzd
n (36)
= ; | — ey Tiq . T
- i, ;dzl |y11 ce y1d| |y11 e yi1~~-yij

(g ()

Given a > 0, consider the function ¢, : f1(S) — R defined by

n dq o
%(t)[t(ij) ] : 37)

If d is odd, then ¢,, is increasing when taking a = 1/d. If d is even, then ¢,, is increasing when
—t — (37 lyi])4 is positive and o = 2/d. Next, define the set
S i={zeR" |z ..., <1, Viy,...,iqg€{l,...,n} } (38)
and consider the homeomorphism ¢ : S — S’ defined by
x T,
olx) = (1,...,> : (39)
n Yn

According to Proposition 2.1 and Proposition 2.2, f is a global function on S, i.e. f; € G(9), if
and only if ¢, o f1 o ¢! is a global function on S’. Thus, when d is odd, f; € G(9) if and only if
Joaa(®) == ¢1/q0 frop ™ (x) = =37 |ys|lzi € G(S’). When dis even, f1 € G(S) if and only if

Joven(T) i= daa 0 fro oM (z) = — (0, lyilz:)? € G().

Consider the case when d is odd. For all iy,...,i4 € {1,...,n}, define the constraint function
Gir,ig(@) =iy .25, — L. Ifxy ...y # 0, then for any iq,...,4q € {1,...,n}, it satisfies
N(l,il, .. .id)/l'l
Vgil,_nid(:z:) = 551'1 ...SCid (40)
N(n,il, .. Zd)/l‘n
where V g;, i, () denotes the gradient of g;, . ;, at z and N (4,41, .. .,44) denotes the number of
indices among i1, . . ., ig that are equal to 7. If the constraint g;, . ;,(x) < 0 is active, then
n
—2" Vg, iy(@) ==Y N(k,ir,...iq) <0. 41

The Mangasarian-Fromovitz constraint qualification thus holds. A local minimum x € R" for the
problem inf,cg/ foaa(x) must therefore satisfy the Karush-Kuhn-Tucker conditions:

> MivoooigN (iyin, i) e =y, Vi€ {l,...,n},
Nat D o
iy ooy <1, Vig,...,ig€{l,...,n}, (42)
Aiyoig 20,
Ny ,oonvig @iy ooy, —1) =10
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Here A, ..., > 0,41,...,iq € {1,...,n}, are the Lagrange multipliers. If z; # 0 for some
1 € {1,...,n}, then, by complementarity slackness, the first line yields
1 . .
0 < |y1| = ;,L . Z )‘il,~~~,idN(Z7217"'aZd) (43)
iqeees ig >0
N(i 111 AAAAA ig) #0 >0

which implies that z; > 0. As aresult, x > 0. Together with feasibility, it results that 0 < xf <1,

leading to the inequalities 0 < x; < 1 foralli € {1,...,n}. Following Proposition 2.3, foq44 is thus
global on S’ if fo4q € G(S”) where
S"={zeR"|0<z; <1, Vie{l,...,n} } (44)

which contains the global minimizer 0. From the notion of global functions, f,q € G(S”) if the
problem

inf  — |2 bject t <z <1, e {1,..., 45
nf Zl|y\x subjectto  0< =z Vie n} (45)

has no spurious local minima, which is obvious because the problem is a linear program.

Consider the case when d is even. Since a feasible point z € S’ satisfies xf < 1, it must be that
—1 < x; < 1. Conversely, any point such that —1 < z; < 1 belongs to S”. This implies that

S'i={zeR"| —1<z;<1, Vie{l,...,n} }. (46)

According to Proposition 2.4, feven() € G(S’) if feven(2) is a global function on both sets S’ N {z €
R™[ >0 | |yile; > 0} and S" N {z € R™| Y37 | |yilz; < 0}, and feven(z) takes the same optimal
value on both sets (the latter is obvious using symmetry). Using Proposition 2.1 again, we find that
feven(2) is a global function on these two sets if and only if

—Z lys|lz; € G (S” N {x € R"| Z lys|@; > 0}) 47)

i=1 i=1
and
Z lyilz; € G (S’ N {x € R"| Z lyil@; < O}) , (48)
i=1 i=1
which are true because they are associated with the following linear programs:
. 1<z <1, vie{l,...,n}
inf — Z lyilz;  subject to n (49)
veR i1 > |yilxi = 0.
i=1
and
. —-1<x; <1, Vie{l,...,n}
inf lyilz;  subject to n (50)
= $ ke <0
i=1
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