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Abstract

When the linear measurements of an instance of low-rank matrix recovery sat-
isfy a restricted isometry property (RIP)—i.e. they are approximately norm-
preserving—the problem is known to contain no spurious local minima, so exact
recovery is guaranteed. In this paper, we show that moderate RIP is not enough to
eliminate spurious local minima, so existing results can only hold for near-perfect
RIP. In fact, counterexamples are ubiquitous: we prove that every x is the spu-
rious local minimum of a rank-1 instance of matrix recovery that satisfies RIP.
One specific counterexample has RIP constant δ = 1/2, but causes randomly
initialized stochastic gradient descent (SGD) to fail 12% of the time. SGD is fre-
quently able to avoid and escape spurious local minima, but this empirical result
shows that it can occasionally be defeated by their existence. Hence, while exact
recovery guarantees will likely require a proof of no spurious local minima, argu-
ments based solely on norm preservation will only be applicable to a narrow set
of nearly-isotropic instances.

1 Introduction

Recently, several important nonconvex problems in machine learning have been shown to contain no
spurious local minima [19, 4, 21, 8, 20, 34, 30]. These problems are easily solved using local search
algorithms despite their nonconvexity, because every local minimum is also a global minimum, and
every saddle-point has sufficiently negative curvature to allow escape. Formally, the usual first- and
second-order necessary conditions for local optimality (i.e. zero gradient and a positive semidefinite
Hessian) are also sufficient for global optimality; satisfying them to ε-accuracy will yield a point
within an ε-neighborhood of a globally optimal solution.

Many of the best-understood nonconvex problems with no spurious local minima are variants of the
low-rank matrix recovery problem. The simplest version (known as matrix sensing) seeks to recover
an n×n positive semidefinite matrixZ of low rank r � n, given measurement matricesA1, . . . , Am
and noiseless data bi = 〈Ai, Z〉. The usual, nonconvex approach is to solve the following

minimize
x∈Rn×r

‖A(xxT )− b‖2 where A(X) = [〈A1, X〉 · · · 〈Am, X〉]T (1)

to second-order optimality, using a local search algorithm like (stochastic) gradient descent [19, 24]
and trust region Newton’s method [16, 7], starting from a random initial point.

Exact recovery of the ground truth Z is guaranteed under the assumption that A satisfies the re-
stricted isometry property [14, 13, 31, 11] with a sufficiently small constant. The original result is
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due to Bhojanapalli et al. [4], though we adapt the statement below from a later result by Ge et al. [20,
Theorem 8]. (Zhu et al. [43] give an equivalent statement for nonsymmetric matrices.)
Definition 1 (Restricted Isometry Property). The linear map A : Rn×n → Rm is said to satisfy
(r, δr)-RIP with constant 0 ≤ δr < 1 if there exists a fixed scaling γ > 0 such that for all rank-r
matrices X:

(1− δr)‖X‖2F ≤ γ · ‖A(X)‖2 ≤ (1 + δr)‖X‖2F . (2)
We say that A satisfies r-RIP if A satisfies (r, δr)-RIP with some δr < 1.
Theorem 2 (No spurious local minima). Let A satisfy (2r, δ2r)-RIP with δ2r < 1/5. Then, (1)
has no spurious local minima: every local minimum x satisfies xxT = Z, and every saddle point
has an escape (the Hessian has a negative eigenvalue). Hence, any algorithm that converges to a
second-order critical point is guaranteed to recover Z exactly.

Standard proofs of Theorem 2 use a norm-preserving argument: if A satisfies (2r, δ2r)-RIP with a
small constant δ2r, then we can view the least-squares residualA(xxT )− b as a dimension-reduced
embedding of the displacement vector xxT − Z, as in

‖A(xxT )− b‖2 = ‖A(xxT − Z)‖2 ≈ ‖xxT − Z‖2F up to scaling. (3)

The high-dimensional problem of minimizing ‖xxT − Z‖2F over x contains no spurious local min-
ima, so its dimension-reduced embedding (1) should satisfy a similar statement. Indeed, this same
argument can be repeated for noisy measurements and nonsymmetric matrices to result in similar
guarantees [4, 20].

The norm-preserving argument also extends to “harder” choices of A that do not satisfy RIP over
its entire domain. In the matrix completion problem, the RIP-like condition ‖A(X)‖2 ≈ ‖X‖2F
holds only when X is both low-rank and sufficiently dense [12]. Nevertheless, Ge et al. [21] proved
a similar result to Theorem 2 for this problem, by adding a regularizing term to the objective. For a
detailed introduction to the norm-preserving argument and its extension with regularizers, we refer
the interested reader to [21, 20].

1.1 How much restricted isometry?

The RIP threshold δ2r < 1/5 in Theorem 2 is highly conservative—it is only applicable to nearly-
isotropic measurements like Gaussian measurements. Let us put this point into perspective by mea-
suring distortion using the condition number1 κ2r ∈ [1,∞). Deterministic linear maps from real-life
applications usually have condition numbers κ2r between 102 and 104, and these translate to RIP
constants δ2r = (κ2r − 1)/(κ2r + 1) between 0.99 and 0.9999. By contrast, the RIP threshold
δ2r < 1/5 requires an equivalent condition number of κ2r = (1 + δ2r)/(1 − δ2r) < 3/2, which
would be considered near-perfect in linear algebra.

In practice, nonconvex matrix completion works for a much wider class of problems than those
suggested by Theorem 2 [6, 5, 32, 1]. Indeed, assuming only that A satisfies 2r-RIP, solving (1)
to global optimality is enough to guarantee exact recovery [31, Theorem 3.2]. In turn, stochastic
algorithms like stochastic gradient descent (SGD) are often able to attain global optimality. This
disconnect between theory and practice motivates the following question.

Can Theorem 2 be substantially improved—is it possible to guarantee the inexistence of spu-
rious local minima with (2r, δ2r)-RIP and any value of δ2r < 1?

At a basic level, the question gauges the generality and usefulness of RIP as a base assumption for
nonconvex recovery. Every family of measure operators A—even correlated and “bad” measure-
ment ensembles—will eventually come to satisfy 2r-RIP as the number of measurements m grows
large. Indeed, given m ≥ n(n+ 1)/2 linearly independent measurements, the operator A becomes
invertible, and hence trivially 2r-RIP. In this limit, recovering the ground truth Z from noiseless
measurements is as easy as solving a system of linear equations. Yet, it remains unclear whether
nonconvex recovery is guaranteed to succeed.

At a higher level, the question also gauges the wisdom of exact recovery guarantees through “no
spurious local minima”. It may be sufficient but not necessary; exact recovery may actually hinge

1Given a linear map, the condition number measures the ratio in size between the largest and smallest
images, given a unit-sized input. Within our specific context, the 2r-restricted condition number is the smallest
κ2r = L/` such that `‖X‖2F ≤ ‖A(X)‖2 ≤ L‖X‖2F holds for all rank-2r matrices X .
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Figure 1: Solving Example 3 using stochastic gradient descent randomly initialized with the standard
Gaussian. (Left) Histogram over 100,000 trials of final error ‖xxT − Z‖F after 103 steps with
learning rate α = 10−3 and momentum β = 0.9. (Right) Two typical stochastic gradient descent
trajectories, showing convergence to the spurious local minimum at (0, 1/

√
2), and to the ground

truth at (1, 0).

on SGD’s ability to avoid and escape spurious local minima when they do exist. Indeed, there is
growing empirical evidence that SGD outmaneuvers the “optimization landscape” of nonconvex
functions [6, 5, 27, 32, 1], and achieves some global properties [22, 40, 39]. It remains unclear
whether the success of SGD for matrix recovery should be attributed to the inexistence of spurious
local minima, or to some global property of SGD.

1.2 Our results

In this paper, we give a strong negative answer to the question above. Consider the counterexample
below, which satisfies (2r, δ2r)-RIP with δ2r = 1/2, but nevertheless contains a spurious local
minimum that causes SGD to fail in 12% of trials.

Example 3. Consider the following (2, 1/2)-RIP instance of (1) with matrices

Z =

[
1 0
0 0

]
, A1 =

[√
2 0
0 1/

√
2

]
, A2 =

[
0

√
3/2√

3/2 0

]
, A3 =

[
0 0

0
√
3/2

]
.

Note that the associated operator A is invertible and satisfies ‖X‖2F ≤ ‖A(X)‖2 ≤ 3‖X‖2F for all
X . Nevertheless, the point x = (0, 1/

√
2) satisfies second-order optimality,

f(x) ≡ ‖A(xxT − Z)‖2 =
3

2
, ∇f(x) =

[
0
0

]
, ∇2f(x) =

[
0 0
0 8

]
,

and randomly initialized SGD can indeed become stranded around this point, as shown in Figure 1.
Repeating these trials 100,000 times yields 87,947 successful trials, for a failure rate of 12.1±0.3%
to three standard deviations.

Accordingly, RIP-based exact recovery guarantees like Theorem 2 cannot be improved beyond
δ2r < 1/2. Otherwise, spurious local minima can exist, and SGD may become trapped. Using
a local search algorithm with a random initialization, “no spurious local minima” is not only suffi-
cient for exact recovery, but also necessary.

In fact, there exists an infinite number of counterexamples like Example 3. In Section 3, we prove
that, in the rank-1 case, almost every choice of x, Z generates an instance of (1) with a strict spurious
local minimum.

Theorem 4 (Informal). Let x, z ∈ Rn be nonzero and not colinear. Then, there exists an instance
of (1) satisfying (n, δn)-RIP with δn < 1 that has Z = zzT as the ground truth and x as a strict
spurious local minimum, i.e. with zero gradient and a positive definite Hessian. Moreover, δn is
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bounded in terms of the length ratio ρ = ‖x‖/‖z‖ and the incidence angle φ satisfying xT z =
‖x‖‖z‖ cosφ as

δn ≤
τ +

√
1− ζ2

τ + 1
where ζ =

sin2 φ√
(ρ2 − 1)2 + 2ρ2 sin2 φ

, τ =
2
√
ρ2 + ρ−2

ζ2

It is therefore impossible to establish “no spurious local minima” guarantees unless the RIP con-
stant δ is small. This is a strong negative result on the generality and usefulness of RIP as a base
assumption, and also on the wider norm-preserving argument described earlier in the introduction.
In Section 4, we provide strong empirical evidence for the following sharp version of Theorem 2.

Conjecture 5. Let A satisfy (2r, δ2r)-RIP with δ2r < 1/2. Then, (1) has no spurious local minima.
Moreover, the figure of 1/2 is sharp due to the existence of Example 3.

How is the practical performance of SGD affected by spurious local minima? In Section 5, we apply
randomly initialized SGD to instances of (1) engineered to contain spurious local minima. In one
case, SGD recovers the ground truth with a 100% success rate, as if the spurious local minima did not
exist. But in another case, SGD fails in 59 of 1,000 trials, for a positive failure rate of 5.90± 2.24%
to three standard deviations. Examining the failure cases, we observe that SGD indeed becomes
trapped around a spurious local minimum, similar to Figure 1 in Example 3.

1.3 Related work

There have been considerable recent interest in understanding the empirical “hardness” of non-
convex optimization, in view of its well-established theoretical difficulties. Nonconvex functions
contain saddle points and spurious local minima, and local search algorithms may become trapped
in them. Recent work have generally found the matrix sensing problem to be “easy”, particularly
under an RIP-like incoherence assumption. Our results in this paper counters this intuition, show-
ing—perhaps surprisingly—that the problem is generically “hard” even under RIP.

Comparison to convex recovery. Classical theory for the low-rank matrix recovery problem is
based on convex relaxation: replacing xxT in (1) by a convex term X � 0, and augmenting the
objective with a trace penalty λ · tr(X) to induce a low-rank solution [12, 31, 15, 11]. The con-
vex approach enjoys RIP-based exact recovery guarantees [11], but these are also fundamentally
restricted to small RIP constants [10, 38]—in direct analogy with our results for nonconvex recov-
ery. In practice, convex recovery is usually much more expensive than nonconvex recovery, because
it requires optimizing over an n× n matrix variable instead of an n× r vector-like variable. On the
other hand, it is statistically consistent [3], and guaranteed to succeed with m ≥ 1

2n(n + 1) noise-
less, linearly independent measurements. By comparison, our results show that nonconvex recovery
can still fail in this regime.

Convergence to spurious local minima. Recent results on “no spurious local minima” are often
established using a norm-preserving argument: the problem at hand is the low-dimension embedding
of a canonical problem known to contain no spurious local minima [19, 34, 35, 4, 21, 20, 30, 43].
While the approach is widely applicable in its scope, our results in this paper finds it to be restrictive
in the problem data. More specifically, the measurement matrices A1, . . . , Am must come from a
nearly-isotropic ensemble like the Gaussian and the sparse binary.

Special initialization schemes. An alternative way to guarantee exact recovery is to place the initial
point sufficiently close to the global optimum [25, 26, 23, 42, 41, 36]. This approach is more general
because it does not require a global “no spurious local minima” guarantee. On the other hand, good
initializations are highly problem-specific and difficult to generalize. Our results show that spurious
local minima can exist arbitrarily close to the solution. Hence, exact recovery guarantees must give
proof of local attraction, beyond simply starting close to the ground truth.

Ability of SGD to escape spurious local minima. Practitioners have long known that stochastic
gradient descent (SGD) enjoys properties inherently suitable for the sort of nonconvex optimization
problems that appear in machine learning [27, 6], and that it is well-suited for generalizing unseen
data [22, 40, 39]. Its specific behavior is yet not well understood, but it is commonly conjectured
that SGD outperforms classically “better” algorithms like BFGS because it is able to avoid and
escape spurious local minima. Our empirical findings in Section 5 partially confirms this suspicion,
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showing that randomly initialized SGD is sometimes able to avoid and escape spurious local minima
as if they did not exist. In other cases, however, SGD can indeed become stuck at a local minimum,
thereby resulting in a positive failure rate.

Notation

We use x to refer to any candidate point, and Z = zzT to refer to a rank-r factorization of the
ground truth Z. For clarity, we use lower-case x, z even when these are n× r matrices.

The sets Rn×n ⊃ Sn are the space of n×n real matrices and real symmetric matrices, and 〈X,Y 〉 ≡
tr(XTY ) and ‖X‖2F ≡ 〈X,X〉 are the Frobenius inner product and norm. We write X � 0 (resp.
X � 0) if X is positive semidefinite (resp. positive definite). Given a matrix M , its spectral norm
is ‖M‖, and its eigenvalues are λ1(M), . . . , λn(M). If M = MT , then λ1(M) ≥ · · · ≥ λn(M)
and λmax(M) ≡ λ1(M), λmin(M) ≡ λn(M). If M is invertible, then its condition number is
cond(M) = ‖M‖‖M−1‖; if not, then cond(M) =∞.

The vectorization operator vec : Rn×n → Rn2

preserves inner products 〈X,Y 〉 =
vec (X)Tvec (Y ) and Euclidean norms ‖X‖F = ‖vec (X)‖. In each case, the matricization op-
erator mat(·) is the inverse of vec (·).

2 Key idea: Spurious local minima via convex optimization

Given arbitrary x ∈ Rn×r and rank-r positive semidefinite matrix Z ∈ Sn, consider the problem
of finding an instance of (1) with Z as the ground truth and x as a spurious local minimum. While
not entirely obvious, this problem is actually convex, because the first- and second-order optimality
conditions associated with (1) are linear matrix inequality (LMI) constraints [9] with respect to the
kernel operatorH ≡ ATA. The problem of finding an instance of (1) that also satisfies RIP is indeed
nonconvex. However, we can use the condition number of H as a surrogate for the RIP constant δ
ofA: if the former is finite, then the latter is guaranteed to be less than 1. The resulting optimization
is convex, and can be numerically solved using an interior-point method, like those implemented in
SeDuMi [33], SDPT3 [37], and MOSEK [2], to high accuracy.

We begin by fixing some definitions. Given a choice of A : Sn → Rm and the ground truth
Z = zzT , we define the nonconvex objective

f : Rn×r → R such that f(x) = ‖A(xxT − zzT )‖2 (4)

whose value is always nonnegative by construction. If the point x attains f(x) = 0, then we call it
a global minimum; otherwise, we call it a spurious point. Under RIP, x is a global minimum if and
only if xxT = zzT [31, Theorem 3.2]. The point x is said to be a local minimum if f(x) ≤ f(x′)
holds for all x′ within a local neighborhood of x. If x is a local minimum, then it must satisfy the
first and second-order necessary optimality conditions (with some fixed µ ≥ 0):

〈∇f(x), u〉 = 2〈A(xxT − zzT ),A(xuT + uxT )〉 = 0 ∀u ∈ Rn×r, (5)

〈∇2f(x)u, u〉 = 2〈A(xxT − zzT ), uuT 〉+ ‖A(xuT + uxT )‖2 ≥ µ‖u‖2F ∀u ∈ Rn×r. (6)

Conversely, if x satisfies the second-order sufficient optimality conditions, that is (5)-(6) with µ > 0,
then it is a local minimum. Local search algorithms are only guaranteed to converge to a first-order
critical point x satisfying (5), or a second-order critical point x satisfying (5)-(6) with µ ≥ 0. The
latter class of algorithms include stochastic gradient descent [19], randomized and noisy gradient
descent [19, 28, 24, 18], and various trust-region methods [17, 29, 16, 7].

Given arbitrary choices of x, z ∈ Rn×r, we formulate the problem of picking anA satisfying (5) and
(6) as an LMI feasibility. First, we define A = [vec (A1), . . . , vec (Am)]T satisfying A · vec (X) =
A(X) for all X as the matrix representation of the operator A. Then, we rewrite (5) and (6) as
2 ·L (ATA) = 0 and 2 ·M (ATA) � µI , where the linear operators L and M are defined

L : Sn
2

→ Rn×r such that L (H) ≡ 2 ·XTHe, (7)

M : Sn
2

→ Snr×nr such that M (H) ≡ 2 · [Ir ⊗mat(He)T ] +XTHX, (8)

with respect to the error vector e = vec (xxT − zzT ) and the n2×nr matrix X that implements the
symmetric product operator X · vec (u) = vec (xuT + uxT ). To compute a choice of A satisfying
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L (ATA) = 0 and M (ATA) � 0, we solve the following LMI feasibility problem

maximize
H

0 subject to L (H) = 0, M (H) � µI, H � 0, (9)

and factor a feasible H back into ATA, e.g. using Cholesky factorization or an eigendecomposition.
Once a matrix representation A is found, we recover the matrices A1, . . . , Am implementing the
operator A by matricizing each row of A.

Now, the problem of picking A with the smallest condition number may be formulated as the fol-
lowing LMI optimization

maximize
H,η

η subject to ηI � H � I, L (H) = 0, M (H) � µI, H � 0, (10)

with solution H?, η?. Then, 1/η? is the best condition number achievable, and any A recovered
from H? will satisfy(

1− 1− η?

1 + η?

)
‖X‖2 ≤ 2

1 + η?
‖A(X)‖2F ≤

(
1 +

1− η?

1 + η?

)
‖X‖2

for all X , that is, with any rank. As such, A is (n, δn)-RIP with δn = (1− η?)/(1+ η?), and hence
also (p, δp)-RIP with δp ≤ δn for all p ∈ {1, . . . , n}; see e.g. [31, 11]. If the optimal value η? is
strictly positive, then the recoveredA yields an RIP instance of (1) with zzT as the ground truth and
x as a spurious local minimum, as desired.

It is worth emphasizing that a small condition number—a large η? in (10)—will always yield a small
RIP constant δn, which then bounds all other RIP constants via δn ≥ δp for all p ∈ {1, . . . , n}.
However, the converse direction is far less useful, as the value of δn = 1 does not preclude δp with
p < n from being small.

3 Closed-form solutions

It turns out that the LMI problem (10) in the rank-1 case is sufficiently simple that it can be solved
in closed-form. (All proofs are given in the Appendix.) Let x, z ∈ Rn be arbitrary nonzero vectors,
and define

ρ ≡ ‖x‖
‖z‖

, φ ≡ arccos

(
xT z

‖x‖‖z‖

)
, (11)

as their associated length ratio and incidence angle. We begin by examining the prevalence of
spurious critical points.
Theorem 6 (First-order optimality). The best-conditioned H? � 0 such that L (H?) = 0 satisfies

cond(H?) =
1 +

√
1− ζ2

1−
√
1− ζ2

where ζ ≡ sinφ√
(ρ2 − 1)2 + 2ρ2 sin2 φ

. (12)

Hence, if φ 6= 0, then x is a first-order critical point for an instance of (1) satisfying (2, δ)-RIP with
δ =

√
1− ζ2 < 1 given in (12).

The point x = 0 is always a local maximum for f , and hence a spurious first-order critical point.
With a perfect RIP constant δ = 0, Theorem 6 says that x = 0 is also the only spurious first-order
critical point. Otherwise, spurious first-order critical points may exist elsewhere, even when the
RIP constant δ is arbitrarily close to zero. This result highlights the importance of converging to
second-order optimality, in order to avoid getting stuck at a spurious first-order critical point.

Next, we examine the prevalence of spurious local minima.
Theorem 7 (Second-order optimality). There exists H satisfying L (H) = 0, M (H) � µI, and
ηI � H � I where

η ≥ 1

1 + τ
·

(
1 +

√
1− ζ2

1−
√
1− ζ2

)
, µ =

‖z‖2

1 + τ
, τ ≡ 2

√
ρ2 + ρ−2

ζ2

and ζ is defined in (12). Hence, if φ 6= 0 and ρ > 0 is finite, then x is a strict local minimum for an
instance of (1) satisfying (2, δ)-RIP with δ = (τ +

√
1− ζ2)/(1 + τ) < 1.
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If φ 6= 0 and ρ > 0, then x is guaranteed to be a strict local minimum for a problem instance sat-
isfying 2-RIP. Hence, we must conclude that spurious local minima are ubiquitous. The associated
RIP constant δ < 1 is not too much worse than than the figure quoted in Theorem 6. On the other
hand, spurious local minima must cease to exist once δ < 1/5 according to Theorem 2.

4 Experiment 1: Minimum δ with spurious local minima

What is smallest RIP constant δ2r that still admits an instance of (1) with spurious local minima?
Let us define the threshold value as the following

δ? = min
x,Z,A

{δ : ∇f(x) = 0, ∇2f(x) � 0, A satisfies (2r, δ)-RIP}. (13)

Here, we write f(x) = ‖A(xxT −Z)‖2, and optimize over the spurious local minimum x ∈ Rn×r,
the rank-r ground truth Z � 0, and the linear operator A : Rn×n → Rm. Note that δ? gives a “no
spurious local minima” guarantee, due to the inexistence of counterexamples.
Proposition 8. Let A satisfy (2r, δ2r)-RIP. If δ2r < δ?, then (1) has no spurious local minimum.

Proof. Suppose that (1) contained a spurious local minimum x for ground truth Z. Then, substitut-
ing this choice of x, Z,A into (13) would contradict the definition of δ? as the minimum.

Our convex formulation in Section 2 bounds δ? from above. Specifically, our LMI problem (10)
with optimal value η? is equivalent to the following variant of (13)

δub(x, Z) = min
A
{δ : ∇f(x) = 0, ∇2f(x) � 0, A satisfies (n, δ)-RIP}, (14)

with optimal value δub(x, Z) = (1−η?)/(1+η?). Now, (14) gives an upper-bound on (13) because
(n, δ)-RIP is a sufficient condition for (2r, δ)-RIP. Hence, we have δub(x, Z) ≥ δ? for every valid
choice of x and Z.

The same convex formulation can be modified to bound δ? from below2. Specifically, a necessary
condition for A to satisfy (2r, δ2r)-RIP is the following

(1− δ2r)‖UY UT ‖2F ≤ ‖A(UY UT )‖2 ≤ (1 + δ2r)‖UY UT ‖2F ∀Y ∈ R2r×2r (15)

where U is a fixed n × 2r matrix. This is a convex linear matrix inequality; substituting (15) into
(13) in lieu of of (2r, δ)-RIP yields a convex optimization problem

δlb(x, Z,U) = min
A
{δ : ∇f(x) = 0, ∇2f(x) � 0, (15)}, (16)

that generates lower-bounds δ? ≥ δlb(x, Z, U).

Our best upper-bound is likely δ? ≤ 1/2. The existence of Example 3 gives the upper-bound of
δ? ≤ 1/2. To improve upon this bound, we randomly sample x, z ∈ Rn×r i.i.d. from the standard
Gaussian, and evaluate δub(x, zzT ) using MOSEK [2]. We perform the experiment for 3 hours
on each tuple (n, r) ∈ {1, 2, . . . , 10} × {1, 2} but obtain δub(x, zzT ) ≥ 1/2 for every x and z
considered.

The threshold is likely δ? = 1/2. Now, we randomly sample x, z ∈ Rn×r i.i.d. from the standard
Gaussian. For each fixed {x, z}, we set U = [x, z] and evaluate δlb(x, Z, U) using MOSEK [2].
We perform the same experiment as the above, but find that δlb(x, zzT , U) ≥ 1/2 for every x and z
considered. Combined with the existence of the upper-bound δ? = 1/2, these experiments strongly
suggest that δ? = 1/2.

5 Experiment 2: SGD escapes spurious local minima

How is the performance of SGD affected by the presence of spurious local minima? Given that
spurious local minima cease to exist with δ < 1/5, we might conjecture that the performance of
SGD is a decreasing function of δ. Indeed, this conjecture is generally supported by evidence from

2We thank an anonymous reviewer for this key insight.
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Figure 2: “Bad” instance (n = 12, r = 2) with RIP constant δ = 0.973 and spurious local min at
xloc satisfying ‖xxT ‖F /‖zzT ‖F ≈ 4. Here, γ controls initial SGD x = γw+(1− γ)xloc where w
is random Gaussian. (Left) Error distribution after 10,000 SGD steps (rate 10−4, momentum 0.9)
over 1,000 trials. Line: median. Inner bands: 5%-95% quantile. Outer bands: min/max. (Right
top) Random initialization with γ = 1; (Right bottom) Initialization at local min with γ = 0.
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Figure 3: “Good” instance (n = 12, r = 1) with RIP constant δ = 1/2 and spurious local min at
xloc satisfying ‖xxT ‖F /‖zzT ‖F = 1/2 and xT z = 0. Here, γ controls initial SGD x = γw +
(1 − γ)xloc where w is random Gaussian. (Left) Error distribution after 10,000 SGD steps (rate
10−3, momentum 0.9) over 1,000 trials. Line: median. Inner bands: 5%-95% quantile. Outer
bands: min/max. (Right top) Random initialization γ = 1 with success; (Right bottom) Random
initialization γ = 1 with failure.

the nearly-isotropic measurement ensembles [6, 5, 32, 1], all of which show improving performance
with increasing number of measurements m.

This section empirically measures SGD (with momentum, fixed learning rates, and batchsizes of
one) on two instances of (1) with different values of δ, both engineered to contain spurious local
minima by numerically solving (10). We consider a “bad” instance, with δ = 0.975 and rank r = 2,
and a “good” instance, with δ = 1/2 and rank r = 1. The condition number of the “bad” instance
is 25 times higher than the “good” instance, so classical theory suggests the former to be a factor of
5-25 times harder to solve than the former. Moreover, the “good” instance is locally strongly convex
at its isolated global minima while the “bad” instance is only locally weakly convex, so first-order
methods like SGD should locally converge at a linear rate for the former, and sublinearly for the
latter.

SGD consistently succeeds on “bad” instance with δ = 0.975 and r = 2. We generate the “bad”
instance by fixing n = 12, r = 2, selecting x, z ∈ Rn×r i.i.d. from the standard Gaussian, rescale z
so that ‖zzT ‖F = 1 and rescale x so that ‖xxT ‖F /‖zzT ‖F ≈ 4, and solving (10); the results are
shown in Figure 2. The results at γ ≈ 0 validate xloc as a true local minimum: if initialized here,
then SGD remains stuck here with > 100% error. The results at γ ≈ 1 shows randomly initialized
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SGD either escaping our engineered spurious local minimum, or avoiding it altogether. All 1,000
trials at γ = 1 recover the ground truth to < 1% accuracy, with 95% quantile at ≈ 0.6%.

SGD consistently fails on “good” instance with δ = 1/2 and r = 1. We generate the “good”
instance with n = 12 and r = 1 using the procedure in the previous Section; the results are shown
in Figure 3. As expected, the results at γ ≈ 0 validate xloc as a true local minimum. However, even
with γ = 1 yielding a random initialization, 59 of the 1,000 trials still result in an error of > 50%,
thereby yielding a failure rate of 5.90 ± 2.24% up to three standard deviations. Examine the failed
trials closer, we do indeed find SGD hovering around our engineered spurious local minimum.

Repeating the experiment over other instances of (1) obtained by solving (10) with randomly se-
lected x, z, we generally obtain graphs that look like Figure 2. In other words, SGD usually escapes
spurious local minima even when they are engineered to exist. These observations continue to hold
true with even massive condition numbers on the order of 104, with corresponding RIP constant
δ = 1 − 10−4. On the other hand, we do occasionally sample well-conditioned instances that
behave closer to the “good” instance describe above, causing SGD to consistently fail.

6 Conclusions

The nonconvex formulation of low-rank matrix recovery is highly effective, despite the apparent
risk of getting stuck at a spurious local minimum. Recent results have shown that if the linear
measurements of the low-rank matrix satisfy a restricted isometry property (RIP), then the problem
contains no spurious local minima, so exact recovery is guaranteed. Most of these existing results
are based on a norm-preserving argument: relating ‖A(xxT −Z)‖ ≈ ‖xxT −Z‖F and arguing that
a lack of spurious local minima in the latter implies a similar statement in the former.

Our key message in this paper is that moderate RIP is not enough to eliminate spurious local min-
ima. To prove this, we formulate a convex optimization problem in Section 2 that generates coun-
terexamples that satisfy RIP but contain spurious local minima. Solving this convex formulation
in closed-form in Section 3 shows that counterexamples are ubiquitous: almost any rank-1 Z � 0
and any x ∈ Rn can respectively be the ground truth and spurious local minimum to an instance of
matrix recovery satisfying RIP. We gave one specific counterexample with RIP constant δ = 1/2 in
the introduction that causes randomly initialized stochastic gradient descent (SGD) to fail 12% of
the time.

Moreover, stochastic gradient descent (SGD) is often but not always able to avoid and escape spuri-
ous local minima. In Section 5, randomly initialized SGD solved one example with a 100% success
rate over 1,000 trials, despite the presence of spurious local minima. However, it failed with a con-
sistent rate of ≈ 6% on another other example with an RIP constant of just 1/2. Hence, as long
as spurious local minima exist, we cannot expect to guarantee exact recovery with SGD (without a
much deeper understanding of the algorithm).

Overall, exact recovery guarantees will generally require a proof of no spurious local minima. How-
ever, arguments based solely on norm preservation are conservative, because most measurements
are not isotropic enough to eliminate spurious local minima.
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A Proofs of Main Results

Recall that we have defined

L : Sn
2

→ Rn×r L (H) = 2 ·XTHe,

L T : Rn×r → Sn
2

L T (y) = eyTXT +XyeT

and also

M : Sn
2

→ Snr M (H) = 2 · [Ir ⊗mat(He)] +XTHX,

M T : Snr → Sn
2

M T (U) = vec (U)eT + evec (U)T +XUXT .

Moreover, we use ρ = ‖x‖/‖z‖ and φ = arccos(xT z/‖x‖‖z‖).

A.1 Technical lemmas

We begin by solving an eigenvalue LMI in closed-form.
Lemma 9. Given M ∈ Sn with tr(M) ≥ 0, we split the matrix into a positive part M+ and a
negative part M− satisfying

M =M+ −M− where M+,M− � 0, M+M− = 0.

Then the following problem has solution

tr(M−)/tr(M+) = min
α∈R
U,V�0

{tr(V ) : tr(U) = 1, αM = U − V }

Proof. Write p? as the optimal value. Then,

p? =max
β

min
α∈R
U,V�0

{tr(V ) + β · [tr(U)− 1] : αM = U − V }

=max
β≥0

min
α∈R
{−β + min

U,V�0
{tr(V ) + β · tr(U) : αM = U − V }}

=max
β≥0

min
α∈R
{−β + α · [tr(M−) + β · tr(M+)]}

=max
β≥0
{−β : tr(M−) + β · tr(M+) = 0}

=tr(M−)/tr(M+).

The first line converts an equality constraint into a Lagrangian. The second line isolates the op-
timization over U, V � 0 with β ≥ 0, noting that β < 0 would yield tr(U) → ∞. The third
line solves the minimization over U, V � 0 in closed-form. The fourth line views α as a Lagrange
multiplier.

The matrix L T (y) is rank-2 with the following eigenvalues.
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Lemma 10. The matrix L T (y) is rank-2, and its two nonzero eigenvalues are

‖Xy‖‖e‖(cos θy ± 1), where cos θy =
eTXy

‖e‖‖Xy‖
. (17)

Proof. We project Xy onto e and define q as the residual, as in Xy = αe + q with α =
(eTXy)/‖e‖2. Then we have the similarity relation

L T (y) = [e q]

[
2α 1
1 0

]
[e q]

T ∼ ‖e‖ ·
[
2α‖e‖ ‖q‖
‖q‖ 0

]
,

and the 2×2 matrix has eigenvalues ‖αe‖2±
√
‖αe‖2 + ‖q‖2. Substituting ‖Xy‖2 = ‖αe‖2+‖q‖2

completes the proof.

Also, the angle between e and range(X) is closely associated with the angle between x and z.

Lemma 11. Define the incidence angle θ between e and range(X) as

θ = arccos

(
max
y

eTXy

‖e‖‖Xy‖

)
. (18)

Then, the angle has value

sin θ =
(‖z‖ sinφ)2

‖e‖
=

sin2 φ√
(ρ2 − 1)2 + 2ρ2 sin2 φ

.

Proof. We project z onto range(x) and define w as the residual, as in z = xα + w where α =
(xT z)/‖x‖2. Then, we have the similarity relation

xxT − zzT = [x w]

[
(1− α2)Ir −αIr
−αIr −Ir

]
[x w]

T ∼
[
(1− α2)‖x‖2 −α‖x‖‖w‖
−α‖x‖‖w‖ −‖w‖2

]
,

and may solve the problem of projecting e onto range(X) after a change of basis

‖e‖ sin θ =min
y
‖Xy − e‖

=min
y
‖xyT + yxT − (xxT − zzT )‖F ,

= min
ỹ1,ỹ2

∥∥∥∥[ỹ1 ỹ2
ỹ2 0

]
−
[
(1− α2)‖x‖2 −α‖x‖‖w‖
−α‖x‖‖w‖ −‖w‖2

]∥∥∥∥
F

,

=‖w‖2 = ‖z‖2 sin2 φ.

This proves the first equality. On the other hand, we have

‖e‖ = ‖xxT − zz‖F =
√
‖x‖4 + ‖z‖4 − 2(xT z)2 = ‖z‖2

√
ρ4 + 1− 2ρ2 cosφ. (19)

Completing the square and substituting yields the second equality.

Lemma 12. Let Ĥ be the optimal choice in Theorem 6. Then

‖mat(Ĥe)‖ ≤
√
1 + ρ4‖z‖2, λmin(X

TPe⊥X) ≥ 2‖x‖2ζ2

where ζ was defined in (12).

Proof. For the first bound, we have

uTmat(Ĥe)u = (u⊗ u)T Ĥe ≤ ‖u⊗ u‖‖Ĥ‖‖e‖ = ‖u‖2‖e‖,
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and ‖e‖2 = ‖z‖4(1− ρ2 cosφ+ ρ4) ≤ ‖z‖4(1 + ρ4) from (19). For the second bound, define θ as
the angle between e and range(X) in (11), and note that ζ in (12) satisfies ζ = sin θ by construction
via Lemma 11. Then,

vT (XTPe⊥X)v = ‖Pe⊥Xv‖2 because projections are idempotent: Pe⊥ = P 2
e⊥

= min
α∈R
‖Xv − eα‖2 = min

α∈R
{‖Xv‖2 − 2αeTXv + α2‖e‖2}

≥ min
α∈R
{‖Xv‖2 − 2α‖e‖‖Xv‖ cos θ + α2‖e‖2}

whose minimum is attained at α = ‖Xv‖ cos θ
= ‖Xv‖2(1− cos2 θ) = ‖Xv‖2 sin2 θ,

and
‖Xv‖2 = ‖xvT + vxT ‖2F = 2‖x‖2‖v‖2 + 2(xT v)2 ≥ 2‖x‖2‖v‖2.

Finally, dividing by ‖v‖2 yields the desired bound.

A.2 Proof of Theorem 6

The problem of finding the best-conditioned H satisfying L (H) = 0 is the following primal-dual
LMI pair

maximize
H,η

η minimize
y,U1,U2

tr(U2) (20)

subject to L (H) = 0, subject to L T (y) = U1 − U2,

ηI � H � I. tr(U1) = 1, U1, U2 � 0,

where L T is the adjoint operator to L in (7). Slater’s condition is trivially satisfied by the dual:
y = 0 and U1 = U2 = ν−1I with ν = 1

2n(n+ 1) is a strictly feasible point. Hence, strong duality
holds, meaning that the two objectives coincide with tr(U?2 ) = η? at optimality, so we implicitly
solve the primal by solving the dual.

The mechanics of the dual problem become more obvious if we first optimize over U1 and U2 and
the length of y. Applying Lemma 9 yields

minimize
y

∑n
i=1(−λi(L T (y))+∑n
i=1(+λi(L

T (y))+
where (α)+ ≡

{
α α ≥ 0

0 α < 0
. (21)

The goal of this latter problem is to find a vector y that maximizes the sum of the positive eigenvalues
of L T (y), while minimizing the (absolute) sum of the negative eigenvalues. In Lemma 10, we prove
that L T (y) has exactly one positive eigenvalue and one negative eigenvalue, and their values in the
rank-1 case are closely related to the angle φ between x and z. Substituting this into (21) yields an
unconstrained minimization

minimize
y

1− cos θy
1 + cos θy

where cos θy =
eTXy

‖e‖‖Xy‖
.

In turn, Lemma 11 yields maxy cos θy = cos θ =
√
1− sin2 θ where sin θ ≡ ζ in the statement of

Theorem 6.

A.3 Proof of Theorem 7

We show that Hτ ≡ τPe⊥ +H0 with some τ ≥ 0 is a feasible point for (10) with a small condition
number. Here, Pe⊥ = I − eeT /‖e‖2 is the projection onto the kernel of e, and H0 � I is the
best-conditioned H � 0 satisfying L (H) = 0 from Theorem 6. Observe that cond(Hτ ) = (1 +
τ) · cond(H0).

Let us find the smallest τ ≥ 0 to guarantee that L (Hτ ) = 0 and M (Hτ ) � µI , for some choice
of µ > 0. Note that L (Hτ ) = 0 is satisfied by construction, because L (Hτ ) = τL (Pe⊥) + (1−
τ)L (H0), and L (H0) = 0 by hypothesis while L (Pe⊥) = 2XT (Pe⊥)e = 0. Hence, our only
difficulty is finding the smallest 0 ≤ τ < 1 such that

M (Hτ ) = 2mat(H0e) + τXTPe⊥X
T +XTH0X

T � 0.
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In Lemma 12, we prove the following two inequalities

‖mat(H0e)‖ ≤
√

1 + ρ4‖z‖2, λmin(X
TPe⊥X) ≥ 2‖x‖2ζ2

Hence, M (Hτ ) � µI with µ =
√
1 + ρ4‖z‖2 ≥ ‖z‖2 is guaranteed if we set

4‖mat(H0e)‖
λmin(XTPe⊥X)

≤ 4
√
1 + ρ4‖z‖2

2‖x‖2ζ2
=

2
√
ρ2 + ρ−2

ζ2
= τ.

Rescaling Hτ by 1/(1 + τ) completes the proof for the feasibility statement.

Finally, to derive the RIP constant bound δ2r ≤ (τ +
√

1− ζ2)/(τ + 1), write δ ≡
√
1− ζ2 and

note that we have

η?2 ≥
1− δ
1 + τ

· 1

1 + δ
=

(
1− τ + δ

1 + τ

)
· 1

1 + δ
≥ 1− (τ + δ)/(τ + 1)

1 + (τ + δ)/(τ + 1)
,

where the last bound is due to the fact that (τ + δ)/(τ + 1) ≥ δ holds for all τ, δ ≥ 0. Multiplying
through by 1 + (τ + δ)/(τ + 1) yields(

1− τ + δ

τ + 1

)
‖X‖2F ≤

(
1 +

τ + δ

τ + 1

)
‖A(X)‖2F ≤

(
1 +

τ + δ

τ + 1

)
‖X‖2F

for all X .
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