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Abstract— This work presents a simple procedure for de-
signing fractional PD* controllers for a type of implicit oper-
ators, which have recently been studied to describe large-scale
systems. The methodology developed proposes a geometrical
approach that allows characterizing the parameter-space of
the PD* controller into stable and unstable regions. Several
numerical examples illustrate the effectiveness of the proposed
results.

I. INTRODUCTION

Implicit operators are integro-differential operators that in-
stead of being explicilty defined are solutions of an operator
equation [1], [2]. Fractional derivatives of rational order are
special cases for this type of operator [1]. In [2], the total
operator describing the potential-driven flow dynamics in a
large-scale self-similar tree network is implicitly defined. A
problem with this definition is the lack of obvious meaning
in the time-domain, but in the Laplace-domain we may study
its significance. In [3] a self-similar infinite tree network of
springs and dampers is studied in the Laplace domain to
obtain an expression relating the position of the last elements
with the first element in the tree. We call this type of model
an implicitly defined transfer function (IDTF). In the same
manner, an infinite ladder of mass-springs and dampers is
studied in [4] presenting again this type of relationship.
In addition, similar transfer functions can be found when
solving partial differential equations (for further details, see
[5], [6]). Hence, infinite dimensional order systems can be
modeled by using these kind of expressions (for instance,
see [5], [7], [8D.

PID control is one of the most popular control strategies,
especially for industrial purposes [9]. It is said that the study
of classical PID controllers is already mature. Nonetheless,
in recent years due to the explosion of fractional calculus
applications the use of PID controllers using a fractional
derivative D* and integral * have been studied extensively
in different applications (see [10]-[13]). These type of con-
trollers are proven to provide better results when applied to
fractional-order systems (see [12]-[16]). Its advantage relies
on the use of more degrees of freedom, which is helpful
to obtain results that otherwise would be difficult or even
impossible to derive [17]. Fractional-PD* controller design
has been studied for linear time invariant systems of integer
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and for fractional-order systems with time delay (for some
examples, see [12], [13]).

In this context, we aim to study the stability of fractional
PD* controllers when applied to IDTF. The analysis will
require the use of the D-composition method studied in [18],
[19] to obtain the (k,,k;) parameters regions that stabilizes
the IDTF. Additionally, we develop a fragility analysis to
obtain a robustness measure of the controller and present
some numerical examples.

Throughout the paper the following standard notation is
adopted: C is the set of complex numbers, i := /—1, all
points in the complex plane whose real part is positive,
will be called the right half-plane (RHP), whereas all points
whose real part is negative will be called the left half-plane
(LHP). Also, for z € C, z, argz, R(z) and 3(z) define the
complex conjugate, main argument (i.e., argz € (—, x]), and
the real and imaginary parts of z respectively. R (R} and
R_) denotes the set of real numbers (strictly positive, strictly
negative) and N and Q denote the set of natural and rational
numbers respectively. For x,y € C", the scalar product is
denoted by (x,y) = y"x, where y is the complex conjugate
transpose of y.

II. PRELIMINARY RESULTS

First we review some fundamental definitions and prelim-
inary results that will be useful in the work.

Definition 1 (Branch Point (BP), Branch Cut [20], [21]):
A BP is a point such that the function is discontinuous when
going around an arbitrarily small circuit around this point.
Meanwhile a BC is the union of two BPs by an arbitrary
arc. This BC allows access to the (k-+1)" sheet from the
k' sheet of a Riemann-surface.

Theorem 1 (from [22]): A given multi-valued transfer
function is stable if and only if it has no pole in C; and
no BP in C_. Here, C; and C_ stand for the closed right
half-plane (RHP) and the open RHP of the first Riemann
sheet, respectively.

In order to illustrate the importance of Theorem 1, let us
consider the following simple IDTF

1
G(s) = ——, 1
()= —— n
where k € R. It can be proven that the impulse response of
(1) is given by

i) =2"" { ¢S1Tk] = ";% )

Thus, according to the previous result, the behavior of (2)
depends on the location of the BP of (1), which can be found
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Fig. 1.

System to be stabilized.

by solving s+k = 0. Hence, as Theorem 1 states, when k < 0
the system is unstable, which is clear from (2).

A. Problem Formulation

Consider the multi-valued transfer function of the form

G(S) _ N(Y) + BZSZ +Bis+Bo : 3)
D(s) + v/ 052+ a5+ o

where @;,B; € R, j € {0,1,2}, N(s) = X1"obxs*, D(s)
Yio as®, a;, b, a, = ( are arbitrary real numbers, and n
m.

Assumption 1: Polynomials N(s) and D(s) satisfy the
following conditions:

(i) degD(s) > degN(s).

(ii) N(s) and D(s) are coprime polynomials.
(iii) |[N(iw)| >0, Vo € R.
(iv) D(iw*) =0, then |Q’'(iw*)| > 0 with ®* € R.

Assumption 2: The functions P(s) := +/Bas?+ Bis+ Bo
and Q(s) := v/ as? + 0ys + o satisfy the following condi-
tions:

(i) degQ*(s) > degP(s).

(i) on #ay if n=2.
(iii)) Q%(s;) =0 and P*(s;) =0 <= s1,s, ¢ RHP.
(iv) if deg(D(s)) =0, deg Q*(s) > deg P*(s).

Problem 1: Derive analytical conditions on the parame-
ters (k,, kg, ) such that the fractional PD* controller:

>

C(s) = kp + kqs*, “)

BIBO-stabilizes the closed-loop plant in Fig. 1 described by
the transfer function in Eq. (3).

Problem 2: For a given PD* —controller k* = [k;,ktﬂ Te
R? determine the maximal positive value d, such that the
controller (4) stabilizes system (3) for any k, and kg,
satisfying

VK2 + (kg — k)2 <d. 5)

III. MAIN RESULTS

In this section we outline the fractional PD* controller
restrictions that we will consider in our work. In addition,
we give explicit details in the development of the the stability
root boundaries of system (3).

A. Controller restrictions
Remark 1: The fractional-order u is taken as a
real number, such that, u € (0,2). Furthermore,

2
u < max(deg(D(s)),M), such that, we avoid to
increase the system’s degree.

Proposition 1: System (3) would be stabilizable by means
of the fractional PD* controller if and only if 8; >0, j €
{0,1,2}.

Remark 2: Proposition 1 claims that our PD* controller
will not be sufficient to stabilize a system whose BPs are
located in RHP. In such a case, a different type of controller
must be defined.

B. Stability root boundaries

The closed-loop characteristic equation of system (3) is
defined as:

A(s):=D(s) + Q(s) + (kp +kas*)(N(s) +P(s)).  (6)

As mentioned earlier, we are interested in finding the stability
regions in the (k,,k;)-parameters space when p is fixed.
Hence, the locations of the roots of A(s) will be our main
interest. In this vein, the following result and definitions will
be useful:

Proposition 2: The poles of the open-loop system are
given by the roots of the characteristic equation

A(s) = D*(s) — Q*(s). 7

Definition 2 (Frequency crossing set): The frequency

crossing set Q C R is the set of all @, such that, there exists
at least a pair (k,,k;) for which

0(t0)=D(i0)+Q(i0)+(k,+ks(iw)*) (N (iw)+P(iw))=O0.

®)

Definition 3 (Stability root boundaries): The stability

root boundaries 7 is the set of all parameters (kj,k;) € R?

for which there exists at least one @ € Q, such that,

A(i®w) = 0. Additionally, any point k € .7 is known as a
crossing point.

C. Stability root boundaries characterization

1) Complex root boundaries (CRB):
Proposition 3: Let @ € R, then  is a crossing fre-
quency if and only if k(®) := [k,(®),ks(®)]", where

ko) == RIS | +3 [ Refegiftrat | cos ()
ka(w)=-3 {%} o Hese (5. (10)

2) Real root boundaries (RRB):
Proposition 4: The crossing through the origin of the
complex plane is given by ko which is defined as

_ Go+V/0%
k() =

bo++/Po | (11)
kq

with k; € R.

3) Imaginary root boundaries (IRB):

Proposition 5: Consider the characteristic function A(s),
and let n,m,p,g be defined as deg(D(s)), deg(N(s)),
deg(P?(s)) and deg(Q?(s)) respectively. Then, an imaginary
root boundary exists if k = k., where k.. is given according
to the following cases:



(i) n>1
o |
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ko={ |__a |kp€R if p+E=n ’
L VB
kp )
L but+/Bp
7 (12)
(i) 4>n
kp
ke = | _ V3 |k €R, (13)
VB

where f8; and o; are the main coefficients of the polynomials
P? and Q7 respectively.

D. Crossing directions

Past results allow us to determine the values of k, and
kg at which there exists a solution on the stability boundary.
Thus, in order to determine the stability regions according
to the number of unstable roots, we must make a distinction
between switches (crossing towards instability) and reversals
(crossing towards stability), meanwhile carry out a careful
accounting of the unstable roots in each region. For such a
purpose, the following result will be extremely useful.

Proposition 6: A simple root, or a pair of simple roots of
the characteristic equation (6), moves from the LHP to RHP
as k crosses a stability root boundary with @ # 0, in the
increasing direction of k, with y € {p,d}, if:

sTXHE(5
S, =% [Tfo)“’)} >0, (14)
where:
E(1w)=N(io)+P(io), (15)

2(i0) =D'(10)+Q (i0)+(k, + ks (i0)") &’ (iw)

+hau (i)t & (i), (16)
and where the indicative function 1, is defined as:
0 i =
mei=qo AP (17)
1 if x=d

The crossing is from the RHP to LHP, if the inequality (14)
is reversed

Remark 3: As can be seen from (16), when @ = 0, the
crossing direction is not defined unless u > 1. Therefore, we
cannot generally determine the stability crossing direction
for the RRB.

E. Fragility Analysis

In the remaining part of this section, we will consider the
fragility problem, which consists of computing the maximum
controller parameters’ deviation without loosing the closed-
loop stability given by some known values k* = (kj, k),
such that the roots of the equation A(s) =0 are located in C_.
This is analogous to find the maximum parameter deviation

d € Ry, such that the roots of stay located in C_ for all
controllers k satisfying:

\/(k,, — k)2 + (kg — k)2 < d.

Let us announce some notation: for a fixed k* = (k;,kj;)T €
R? and k(®) = (k,(®),ks(®))T as in Proposition 3, intro-
duce the function & : R, — R, as:

E(0) =/ (kpl(@) —kp)2 + (ka(@) — k)

We have the following:

Proposition 7: Let k* = (k;‘],k:})T be a stabilizing con-
troller. Then, the maximum parameter deviation d of k*
without loosing the property of stability can be computed
by:

(18)

19)

d = min{dy,dy,d-}, (20)

with dy,dp and d.. given by:

dy = mi do = OTVD |
¢ aggglf{é(w)}» 0 b0+\/[70+ P’

dew=1L0+k) (21)

where Q. denote the set of all roots of f(w) defined as:

dk(w)

fl@) = ((Kk(w) ~ k), T2,

(-,-) refers to the inner product and ¢ is a value that depends
on the following cases

(22)

i) n>1%
Z—’r; if u+m=n
(=35 1 ptr=n . @3)
bmf:/ﬁ? if u+m=p+5=n
(i) n<%
_ V%
0= (24)

\/ Bp
IV. NUMERICAL EXAMPLES
In this section, we introduce some special cases of IDTFs
that illustrate the use of our results. All the closed-loop

system responses presented here where computed by means
of a numerical inverse Laplace transform described in [23].

A. Bessel function

The Laplace transform of the Bessel function of order zero

is given by |

VAT
where the Bessel function of zero order Jy(x) is the solution
of a second order differential equation given by x(y" +y) +
y' = 0. We attempt to study system (25) behavior when using
a fractional PD* controller. Then, the closed-loop system
characteristic equation is described by

Apessel (S) =V s2+1 +kp +de“

From Remark 1 we have u < 1. Propositions 4, 3 and 5
allow us to determine the crossing root boundaries as shown

H(s) = (25)

(26)
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Fig. 2. The (k,,kq) stability region analysis (Propositions 3, 4 and 5) and
the sign crossing behavior (Proposition 6).
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Fig. 3. Time step response of the closed-loop system with distinct controller
gains. Controller gain locations are illustrated in Fig. 2.

in Fig. 2, in this case we had chosen u = 0.6. Fig. 2 shows
the use of Proposition 6 by plotting (14) in the k, and k4
direction. The value of (14) for every @ # 0 give us a point of
departure to determine the stability region which is shaded in
gray. Finally, by choosing any (k,,k,) parameters inside one
of the three regions enclosed by the stability root boundaries,
we determined the step responses shown in Fig. 3 which
show the expected responses according to the belonging
region for each of the chosen (k,,ky).

B. First order IDTF
Consider the IDTF given by

H(s) = V3s+1
N s+v2s+1°

Now, we want to implement a PD* controller to the system.
We start with Propositions 5 and 4 to construct the stability

27)
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Fig. 4. The (k,,kq) stability region analysis (Propositions 3, 4 and 5) and
the sign crossing behavior (Proposition 6).

TABLE I
Fragility Analysis
k* dy doo dy 2] d
ki 02531 04829 - - 0.2531
ky 02045 04517 0.1809 0.0686  0.1809
TABLE II

GAIN AND FRAGILITY VALUES FOR IDTF GIVEN BY EQ. 27.

root boundaries depicted in Fig. 4. A fixed u = 0.3 has been
used. In this numerical example, we make use of Proposition
7 to determine the maximum parameter deviation from some
arbitrarily chosen stabilizing controller gains in the stability
regions shown in Fig. 4. The selected gains are k; and k;
whose values and fragility are shown in Table I. Finally, to
proof the behavior of the closed-loop system, we illustrate
the step response in Fig. 5 for various arbitrarily chosen
controller gains.

C. An infinite tree of springs and dampers

Consider the following IDTF which is used to describe a
infinite tree of springs and dampers (for further details, see

(31, [24D).

Go(s)= p+os++/(p+0s)2+gs
! ms2+p+os++/(p+0s)?+¢s

where p = (p— 1)k, c =(¢—1)b, ¢ =4(p+q— 1)kb and
m = 2my,s. Here, p > 1 is the number of springs with spring
constant k, g > 1 is the number of dampers with damping
constant b and my,y; is the mass of the last element in the
infinite tree [3].

The stability charts for system (28) subject to a fractional
PD" controller are depicted in Fig. 6. The region are simi-
larly found by means of Propositions 3, 4 and 5, considering
the case when the parameters are: 4 =0.7, p =2, g =2,
k=0.2, b=0.4 and my,, = 1.

(28)
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Fig. 5. Time impulse response of the closed-loop system with distinct

controller gains. Controller gain locations are illustrated in Fig. 4.
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Fig. 6. The (k,,ky) stability region analysis (Propositions 3, 4 and 5) and
the sign crossing behavior (Proposition 6). Red arrows in S, plots detail @
increase direction.

The stability region is detected by studying the sign of
Sy as described in Proposition 6. This enable us to find the
shaded region in Fig. 6 which corresponds to the stability
region. Finally, to proof the behavior of the closed-loop
system, we illustrate the step response in Fig. 7 for various
arbitrarily chosen controller gains.

D. Higher order IDTF
As a last example, consider the third order IDTF given by

Hs) s +25+1+2543
5)= .
34352445 —2++/s+1
By analyzing the closed-loop characteristic polynomial of
system (29) subject to the fractional order PD* controller, we

are able to find its stability region as illustrated in Fig. 8. The
regions in the illustration are found by means of Propositions

(29)

key = (ky, ka) = (2.70,-1.91)

y(?)

_2 1 1 1 1
0 10 20 30 40 50
5 %101 ky = (ky, ka) = (-0.06,-1.70)
=0 /\
=
_2 1 1 1 1

0 10 20 30 40 50
<101 ks = (ky, kq) = (-1.63,0.40)

y(?)

1 . . . .
0 10 20 30 40 50

Time (sec.)

Fig. 7. Time impulse response of the closed-loop system with distinct
controller gains. Controller gain locations are illustrated in Fig. 6.
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Fig. 8. The (k,,ky) stability region analysis (Propositions 3, 4 and 5) and
the sign crossing behavior (Proposition 6).

3, 4 and 5. Here, we are considering the case when u = 0.8
to obtain such stability crossing curves.

To deterine the stability region, we have used Proposition
6. This region is depicted in Fig. 8 as the gray shaded region.
As in the previous examples we have used red arrows in the
Sy plots of Fig. 8 to show the increasing direction of @ in
order to study the roots crossing behavior of the closed-loop
characteristic equation.

Finally, the performance of the closed-loop system is
illustrated by means of its step response when using different
arbitrarily chosen controller gains. We show the results of the
step responses in Fig. 9.
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Fig. 9. Time step response of the closed-loop system with distinct controller gains. Controller gain locations are illustrated in Fig. 8.

V. CONCLUSIONS

In this work, we presented an easy methodology for
finding the closed-loop stability regions on a type of IDTF
being controlled by means of a fractional PD* controller.
IDTFs can be found when modeling certain type of infinite
order systems. Therefore, our results imply advances in
controlling complex systems. The propositions we have pre-
sented were accompanied with several numerical examples.
Our results can be extended to other type of multi-valued
complex functions by considering the BPs stability criterion.
Further research may imply the introduction of a new type
of controllers which could enable us to modify the BPs’
location of IDTFs.
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