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Abstract

With an eye toward understanding complexity
control in deep learning, we study how infinites-
imal regularization or gradient descent optimiza-
tion lead to margin maximizing solutions in both
homogeneous and non homogeneous models, ex-
tending previous work that focused on infinitesi-
mal regularization only in homogeneous models.
To this end we study the limit of loss minimiza-
tion with a diverging norm constraint (the “con-
strained path”), relate it to the limit of a “mar-
gin path” and characterize the resulting solution.
For non-homogeneous ensemble models, which
output is a sum of homogeneous sub-models, we
show that this solution discards the shallowest
sub-models if they are unnecessary. For homoge-
neous models, we show convergence to a “lexico-
graphic max-margin solution”, and provide con-
ditions under which max-margin solutions are
also attained as the limit of unconstrained gra-
dient descent.

1. Introduction

Inductive bias introduced through the learning pro-
cess plays a crucial role in training deep neural net-
works and in the generalization properties of the learned
models (Neyshabur et al., 2015b;a; Zhangetal., 2017,
Keskar et al., 2017; Neyshabur et al., 2017; Wilson et al.,
2017; Hofferetal., 2017). Deep neural networks used
in practice are typically highly overparameterized, i.e.,
have far more trainable parameters than training examples.
Thus, using these models, it is usually possible to fit the
data perfectly and obtain zero training error (Zhang et al.,
2017). However, simply minimizing the training loss does
not guarantee good generalization to unseen data — many
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global minima of the training loss indeed have very high
test error (Wu et al., 2017). The inductive bias introduced
in our learning process affects which specific global mini-
mizer is chosen as the predictor. Therefore, it is essential
to understand the nature of this inductive bias to understand
why overparameterized models, and particularly deep neu-
ral networks, exhibit good generalization abilities.

A common way to introduce an additional inductive bias
in overparameterized models is via small amounts of regu-
larization, or loose constraints . For example, Rosset et al.
(2004b;a); Wei et al. (2018) show that, in overparameter-
ized classification models, a vanishing amount of regular-
ization, or a diverging norm constraint can lead to max-
margin solutions, which in turn enjoy strong generalization
guarantees.

A second and more subtle source of inductive bias is
via the optimization algorithm used to minimize the un-
derdetermined training objective (Gunasekar et al., 2017,
Soudry et al., 2018b). Common algorithms used in neural
network training, such as stochastic gradient descent, iter-
atively refine the model parameters by making incremental
local updates. For different algorithms, the local updates
are specified by different geometries in the space of param-
eters. For example, gradient descent uses an Euclidean ¢
geometry, while coordinate descent updates are specified in
the /1 geometry. The minimizers to which such local search
based optimization algorithms converge to are indeed very
special and are related to the geometry of the optimization
algorithm (Gunasekar et al., 2018b) as well as the choice of
model parameterization (Gunasekar et al., 2018a).

In this work we similarly investigate the connection be-
tween margin maximization and the limits of

e The “optimization path” of unconstrained, unregular-
ized gradient descent.

e The “constrained path”, where we optimize with a di-
verging (increasingly loose) constraint on the norm of
the parameters.

e The closely related “regularization path”, of solutions
with decreasing penalties on the norm.
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To better understand the questions we tackle in this paper,
and our contribution toward understanding the inductive
bias introduced in training, let us briefly survey prior work.

Equivalence of the regularization or constrained paths
and margin maximization: Rossetetal. (2004b;a);
Wei et al. (2018) investigated the connection between the
regularization and constrained paths and the max-margin
solution. Rosset et al. (2004a;b) considered linear (hence
homogeneous) models with monotone loss and explicit
norm regularization or constraint, and proved convergence
to the max-margin solution for certain loss functions (e.g.,
logistic loss) as the regularization vanishes or the norm
constraint diverges. Wei et al. (2018) extended the regular-
ization path result to non-linear but positive-homogeneous
prediction functions,

Definition 1 (a-positive homogeneous function). A func-
tion g(0) : RY — R is a-positive homogeneous if Vp > 0
and¥9 € R : g(pB) = p®g(0).

e.g. as obtained by a ReLU network with uniform depth.

These results are thus limited to only positive homogeneous
predictors, and do not include deep networks with bias pa-
rameters, ensemble models with different depths, ResNets,
or other models with skip connections. Here, we extend
this connection beyond positive homogeneous predictors.

Furthermore, even for homogeneous or linear predictors,
there might be multiple margin maximizing solutions. For
linear models, Rosset et al. (2004b) alluded to a refined set
of maximum margin classifiers that in addition to maximiz-
ing the distance to the closest data point (max-margin), also
maximize the distance to the second closest data point, and
so on. We formulate such special maximum margin solu-
tions as “lexicographic max-margin” classifiers which we
introduce in Section 4.2. We show that for general contin-
uous homogeneous models, the constrained path with di-
verging norm constraint converges to these more refined
“lexicographic max-margin” classifiers.

Equivalence of the optimization path and margin max-
imization: Another line of works studied the connection
between unconstrained, unregularized optimization with
a specific algorithm (i.e., the limit of the “optimization
path”), and the max-margin solution. For linear predic-
tion with the logistic loss (or other exponential tail losses),
we now know gradient descent (Soudry etal., 2018b;
Ji & Telgarsky, 2018) as well as SGD (Nacson et al.,
2019b) converges in direction to the max-margin solution,
while steepest descent with respect to an arbitrary norm
converges to the max-margin w.r.t. the corresponding norm
(Gunasekar et al., 2018b). All the above results are for
linear prediction. Gunasekar et al. (2018a); Nacson et al.

(2019a); Ji & Telgarsky (2019) obtained results establish-
ing convergence to margin maximizing solutions also for
certain uniform-depth linear networks (including fully con-
nected networks and convolutional networks), which still
implement linear model. Separately, Xu et al. (2019) ana-
lyzed a single linear unit with ReL U activation—a limited
non-linear but still positive homogeneous model. Lastly,
Soudry et al. (2018a) analyzed a non-linear ReL.U network
where only a single weight layer is optimized.

Here, we extend this relationship to general, non-linear and
positive homogeneous predictors for which the loss can be
minimized only at infinity. We establish a connection be-
tween the limit of unregularized unconstrained optimiza-
tion and the max-margin solution.

Problems with finite minimizers: We note that the con-
nection between regularization path and optimization path
was previously considered in a different settings, where a
finite (global) minimum exists. In such settings the ques-
tions asked are different than the ones we consider here,
and are not about the limit of the paths. E.g., Alietal.
(2018) showed for gradient flow a multiplicative rela-
tion between the risk for the gradient flow optimization
path and the ridge-regression regularization path. Also,
Suggala et al. (2018) showed that for gradient flow and
strongly convex and smooth loss function — gradient de-
scent iterates on the unregularized loss function are point-
wise close to solutions of a corresponding regularized prob-
lem.

Contributions

We examine overparameterized realizable problems (i.e.,
where it is possible to perfectly classify the training data),
when training using monotone decreasing classification
loss functions. For simplicity, we focus on the exponential
loss. However, using similar techniques as in Soudry et al.
(2018a) our results should extend to other exponential-
tailed loss functions such as the logistic loss and its multi-
class generalization. This is indeed the common setting for
deep neural networks used in practice.

We show that in any model,

e As long as the margin attainable by a (unregularized,
unconstrained) model is unbounded, then the margin
of the constrained path converges to the max-margin.
See Corollary 1.

e If additional conditions hold, the constrained path also
converges to the “margin path” in parameter space (the
path of minimal norm solutions attaining increasingly
large margins). See section 3.1.
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We then demonstrate that

e If the model is a sum of homogeneous functions of dif-
ferent orders (i.e., it is not homogeneous itself), then
we can still characterize the asymptotic solution of
both the constrained path and the margin path. See
Theorem 3.2.

e This solution implies that in an ensemble of homoge-
neous neural networks, the ensemble will aim to dis-
card the most shallow network. This is in contrast
to what we would expect from considerations of op-
timization difficulty (since deeper networks are typi-
cally harder to train (He et al., 2016)).

e This also allows us to represent hard-margin SVM
problems with unregularized bias using such mod-
els. This is in contrast to previous approaches which
fail to do so, as pointed out recently (Nar et al., 2019).

Finally, for homogeneous models,

e We find general conditions under which the optimiza-
tion path converges to stationary points of the margin
path or the constrained path. See section 4.1.

e We show that the constrained path converges to a spe-
cific type max-margin solution, which we term the
“lexicographic max-margin”. ! See Theorem 4.

2. Preliminaries and Basic Results

In this paper, we will study the following exponential tailed
loss function

N
L(0)2> exp(—fa(0)), (1)
n=1

where f, : R? — R is a continuous function, and N is the
number of samples. Also, for any norm ||-|| in R¢ we define
S?-1 as the unit norm ball in R?.

We will use in our results the following basic lemma
Lemma 1. Let f and g be two functions from R% to R, such
that

¢(p) = min f(w) s.t. g(w) <p 2
weR

exists and is strictly monotonically decreasing in p, ¥Vp >
po, for some py. Then, Yp > po, the optimization problem
in eq. 2 has the same set of solutions (w) as

Inin g(w) s.t. f(w) < é(p), €)

whose minimum is obtained at g(w) = p.

'"The authors thank Rob Shapire for the suggestion of the
nomenclature during initial discussions.

Proof. See Appendix A. o

2.1. The Optimization Path

The optimization path in the Euclidean norm 6 (t), is given
by the direction of iterates of gradient descent algorithm
with initialization @ (0) and learning rates {n; },- .,

Optimization path: () = ||ZE2|’ where
0(1)=0(t—1)—nVL(O(—1)). @)

2.2. The Constrained Path

The constrained path for the loss in eq. 1 is given by mini-
mizer of the loss at a given norm value p > 0, i.e.,

Constrained path: O, (p) £ arg min L (p0) . (5)
min

The constrained path was previously considered for lin-
ear models (Rosset et al., 2004a). However, most previ-
ous works (e.g. Rosset et al. (2004b); Wei et al. (2018)) fo-
cused on the regularization path, which is the minimizer of
the regularized loss. These two paths are closely linked, as
we discuss in more detail in Appendix F.

Denote the constrained minimum of the loss as follows:

1>

L*(p) = min L(p0).

fesd—1

L* (p) exists for any finite p as the minimum of a continu-
ous function on a compact set.

By Lemma 1, the Assumption

Assumption 1. There exists po such that L* (p) is strictly
monotonically decreasing to zero for any p > po.

enables an alternative form of the constrained path

O, (p) = arg min [|6]|° s.t. £ (p8) < L* (p) .
OcR?

In addition, in the next lemma we show that under this as-
sumption the constrained path minimizers are obtained on
the boundary of S

Lemma 2. Under assumption 1, for all p > pg and for all
0. € O, (p), we have ||0.| = 1.

Proof. Let p > 0. We assume, in contradiction, that
30, € ©.(p) so that ||@.]] = b < 1. This implies that
L* (p) = L*(pb) which contradicts our assumption that
L* (p) is strictly monotonically decreasing. O



Lexicographic and Depth-Sensitive Margins

2.3. The Margin Path

For prediction functions f,, : R? — R on data points in-
dexedasn =1,2,..., N, we define the margin path as:

Margin path: 0,, (p) £ arg Jmax, min f, (p8) . (6)
cSd-1 n

For € S?~!, we denote the margin at scaling p > 0 as

7 (p,0) = min f,, (pB) ,

and the max-margin at scale of p > 0 as

* — - 0
7" (p) = max min f, (p8) .

Note that for all p, this maximum exists as the maximum
of a continuous function on a compact set.

Again, we make a simplifying assumption

Assumption 2. There exist pg such that v* (p) is strictly
monotonically increasing to oo for any p > po.

Many common prediction functions satisfy this assump-
tion, including the sum of positive-homogeneous predic-
tion functions.

Using Lemma 1 with Assumption 2, we have:

O (p) = arg max min f,, (p6) @)
fesi—1 n

= arg min ||0]|> s.t. min f, (p8) > 7" (p) .
OcRd n

3. Non-Homogeneous Models

We first study the constrained path in non-homogeneous
models, and relate it to the margin path. To do so, we need
to first define the e-ball surrounding a set A C R?

Bo(A)£{0cR |30 c A:|60—6|| <€},

and the notion of set convergence

Definition 2 (Set convergence). A sequence of sets A; C
R converges to another sequence of sets A, C R if Ve >

0 Jto such that Vit > tog Ay C B (A}).

3.1. Margin of Constrained Path Converges to
Maximum Margin

For all p, the constrained path margin deviation from the
max-margin is bounded, as we prove next.

Lemma 3. For all p, and every 0. (p) in ©. (p)

v (p) = (p,0c(p)) <logN . ®)

Proof. Note that V0 :

N
e 100 <N "exp (—fn (p0)) < Ne 7?9 (9)

n=1
Since, VO € S¥1 L (pf.(p)) < L(ph), we have,
V0. (p) € ©.(p) and V0, (p) € Oy, (p),

E(pHm (p)) o ij 1 €Xp (_fn (pem (p)))
L(pBc (p)) Zflvlexp( fn (B (p)))
< Nexp (= (7" (p) =7 (p. 0c (p)))) -

—7(p,0:(p)) <logN. 0

1<

=7"(p)

Lemma 3 immediately implies that

Corollary 1. Iflim, ,o v* (p) = oo, then for all p, and
every 0. (p) in O (p)

%
lim ’77(0) =1.
=2y (p,0c (p))

The last corollary states that the margin of the constrained
path converges to the maximum margin. However, this
does not necessarily imply convergence in parameter space,
i.e., this result does not guaranty that ©. (p) converges to
O, (p). We analyze some positive and negative examples
to demonstrate this claim.

Example 1: homogeneous models

It is straightforward to see that, for a-positive homoge-
neous prediction functions (Definition 1) the margin path
©,,,(p) in eq. 6 is the same set for any p, and is given by

an—arg max min f, (0) .
Sd 1 n

Additionally, as we show next, for such models Lemma 3
implies convergence in parameter space, i.e., ©. (p) con-
verges to ©,, (p). To see this, notice that for a-positive
homogeneous functions f,,, V0. (p) € O. (p):

—7(p,0c(p) =
- min fn (pec (P))

7" (p)
max min f, (p8)
0csd—-1 n

n

o> (910(1:3)(1 min f,, (6) — min f,, (6. (p))>
€S n
<logN.

For p — oo we must have

( max m;nfn( ) —

IS

min fn (6c (p))) —0.

By continuity, the last equation implies that O (p) con-
verges to ©,, (p). For full details see Appendix D.1.
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Connection to previous results: For linear models,
Rosset et al. (2004a) connected the L, constrained path and
maximum L; margin solution. In addition, for any norm,
Rosset et al. (2004b) showed that the regularization path
converges to the limit of the margin path. In a recent work,
Wei et al. (2018) extended this result to homogeneous mod-
els with cross-entropy loss. Here, for homogeneous mod-
els and any norm, we show a connection between the con-
strained path and the margin path.

Extension: Later, in Theorem 4 we prove a more refined
result: the constrained path converges to a specific subset
of the margin path set (the lexicographic max-margin set).

In contrast, in general models, 8 does not necessarily imply
convergence in the parameter space. We demonstrate this
result in the next example.

Example 2: log predictor: We denote z, = y,Xx,
N R

for some dataset {x,,y,},_,, with features x,, and la-

bel y,,. We examine the prediction function f,, (p,0) =

log (pOTzn) for @ ' z,, > 0. We focus on the loss function

tail behaviour and thus only care about the loss function be-
haviour in 8"z, > 0 region. We assume that a separator
which satisfy this constraint exists since we are focusing on
realizable problems.

Since log(.) is strictly increasing and p > 0, we have
¥ (p,0) = min f, (p@) = log (p min OTZn) .

We denote 7 (#) = min@'z, and 3* = max 7 (6
n fcsd—1

).
Note that v* (p) = log(py*). Now consider 8. (p) €
©. (p) such that for some py and Vp > po: 7 (0. (p)) =
min @, (p)—r 2, > . For this case, we still have,

Y (p) =7 (p,0c(p)) = log (p7*) — log (p¥ (6. (p)))

= log <7§ ((j:(p))) <logN.

but clearly, 7 (6. (p)) - 7*. Thus, Lemma 3 does not
guarantee that ¥ (6. (p)) — 7" as p — oo, or that ©, (p)
converges to ©,, (p).

Analogies with regularization and optimization paths:
This example demonstrates that for the prediction function
log(p@ ' z) for 87z > 0, the constrained path does not
necessarily converge to the margin path. This is equiva-
lent to setup A: linear prediction models with loss function
exp (—log (u)). Rossetetal. (2004b) and Nacson et al.
(2019a) state related results for setup A. Both works derived
conditions on the loss function that ensure convergence to
the margin path from the regularization/ optimization path
respectively. Rosset et al. (2004b) showed that in setup A
the regularization path does not necessarily converge to the

margin path. (Nacson et al., 2019a) showed a similar result
for the optimization path, i.e., that in setup A the optimiza-
tion path does not necessarily converge to the margin path.
Both results align with our results for the constrained path.

In contrast, according to the conditions of Rosset et al.
(2004b); Nacson et al. (2019a), we know that if the pre-
diction function is log'™“(p@ "' z) for some ¢ > 0 and
6"z > 0, then the regularization path and optimization
path do converge to the margin path. In the next example,
we show that this is also true for the constrained path.

Example 3: (14 ¢)-log predictor: We examine the predic-
tion function f,, (p,8) = log*™* (pOTzn) for 8"z, > 0
and some € > 0. Since the log function is strictly increas-
ing and €, p > 0, we have

7 (p,8) = min f,, (pB) = log"** (P min 6 TZ") '
Forall 8. (p) € ©.(p):

7" (p) = (p, 0c (p))
= (14 ¢€)log® (p) (log (¥*) — log (7 (8. (p))))
+o(log" (p) < N.
For p — oo we must have (log (¥*) — log (7 (0. (p)))) —

0, which implies, by continuity, that . (p) converges to
O, (p). For details, see Appendix D.2.

3.2. Sum of Positively Homogeneous Functions

Remark: The results in this subsection are specific for the
Euclidean or Ly norm.

Let f,, (p@) be functions that are a finite sum of positively
homogeneous functions, i.e., for some finite K:

K
Vi fu(p0) =Y 1 (061) (10)
k=1
B (k) I _
where @ = [01,...,0k] and [’ (0}) are ay-positive ho

mogeneous functions, where 0 < a1 < ag < -+ < ak.

First, we characterize the asymptotic form of the margin
path in this setting.
Lemma 4. Let f,, (0) be a sum of positively homogeneous
functions as in eq. 10. Then, the set of solutions of
arg min [|0]° st. Vn: fo (00) =" (p) . (11)
6cR4
can be written as

o) = % (wi, + 0 (1) (7" (p))** (12)

where the o (1) term is vanishing as v* (p) — oo, and

*

w' = [wi,...,wk] €W,
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where

W = arg min wi | s.t. Vn: fo(w)>1.  (13)
wekR
Proof. We write the original optimization problem

K K
3 2 . (k) *
arg;relﬁglwkl\ s.t. Vn-;fn (00%) > 7" (p) -

Dividing by v* (p), using the ay, positive homogeneity of
1
*) and changing the variables as 0, = %wk (v* (p))w,

we obtain an equivalent optimization problem

K
; () an 2 :
arg min, ,;_17 (p)o* |Jwg||” s.t. Vn: fr (w) > 1.

(14)
We denote the set of solutions of eq. 14 as W (v* (p)). Tak-
ing the limit of v* (p) — oo of this optimization problem
we find that any solution w € W (v* (p)) must minimize
the first term in the sum ||w1||®, and only then the other
terms. Therefore the asymptotic solution is of the form of
eqgs. 12 and 13. We prove this reasoning formally in Ap-
pendix B, i.e., we show that

Claim 1. The solution of eq. 14 is the same solution de-

scribed in Lemma 4, i.e., eqs. 12 and 13. 0

The following Lemma will be used to connect the con-
strained path to the characterization of the margin path.

Lemma 5. Let f,, (p0) be a sum of positively homogeneous
Sfunctions as in eq. 10. Any path 0 (p) such that

Y (p) =7 (p,0(p) <C. (15)

is of the form described in eqs. 12 and 13.
Proof. See Appendix C. O

Combining Lemma 3, 4 and Lemma 5 we obtain the fol-
lowing Theorem

Theorem 1. Under Assumption 1 and 2, any solution in
argmin g <1 L£(p8) converges to

== (w) +0(1) (4" (p) 7" (16)

1
P
where the o (1) term is vanishing as v*(p) — oo, and

* * *
w' = [wi,...,wk] €W,
where

W =arg min [w;|® s.t. Vn: f (w) > 1. (17)
weR

Theorem 1 implications: An important implication of
Theorem 1 is that an ensemble on neural networks will
aim to discard the shallowest network in the ensemble.
Consider the following setting: for each k € {1,..., K},
the function Vn : fr(f) (pB},) represents a prediction func-
tion of some feedforward neural network with no bias, all
with the same positive-homogeneous activation function
o () of some degree « (e.g., ReLU activation is positive-
homogeneous of degree 1). Note that in this setup, each
of the k prediction functions f,(lk) (pBy) is also a positive-
homogeneous function. In particular, network k& with depth
dy, is positive homogeneous with degree o, = audy, where
« is the activation function degree. Since all the networks
have the same activation function, deeper networks will
have larger degree. We assume WLOG that d; < dg <
-+ < dg. This implies that a; < g < -+ < ag. In this
setting, Vn : f, (p@) = Z?:l F (pB};) represents an
ensemble of these networks. From Theorem 1, the solution
of the constrained path will satisfy

K
Fn (p0%) =" £ (p6%)
k=1

K
=379 (i + 0 (1) (7 ()7

=1

K
=77(p) D S (wj +o(1))

k=1

where w* € W and W is calculated using eq. 13. Ex-
amining equation 13, we observe that the network aims to
minimize the w; norm. In particular, if the network en-
semble can satisfy the constraints Vn : f, (w) > 1 with
w; = 0, then the first equation obtained solutions will sat-
isfy w; = 0. Thus the ensemble will discard the shallowest
network if it is “unnecessary” to satisfy the constraint.

Furthermore, from eq. 14 we conjecture that after dis-
carding the shallowest “unnecessary” network, the ensem-
ble will tend to minimize ||ws||, i.e., to discard the second
shallowest “unnecessary” network. This will continue un-
til there are no more “unnecessary” shallow networks. In
other words, we conjecture that the an ensemble of neural
networks will aim to discard the shallowest “unnecessary”
networks.

Additionally, using Theorem 1 we can now represent hard-
margin SVM problems with unregularized bias. Previous
results only focused on linear prediction functions without
bias. Trying to extend these results to SVM with bias by ex-
tending all the input vectors x,, with an additional 1’ com-
ponent would fail since the obtained solution in the original
x space is the solution of

argmin ||w|® + b7 s.t. yn (w'x, +b) >1,
weRd beR
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which is not the Lo max-margin (SVM) solution, as
pointed out by (Nar et al., 2019). However, we can now
achieve this goal using Theorem 1. For some dataset
(Xn,yn}2_1, X, € RY, y, € {—1,1}, we use the follow-

ing prediction function f,, (0) = y, (01Txn + b2) where
6 = [61,b]. From egs. 12, 13 the asymptotic solution will
satisfy argrgmbl 16117 s.t. Vi : yn (Oirxn + b2) > 1.

1,

4. Homogeneous Models

In the previous section we connected the constrained path
to the margin path. We would like to refine this characteri-
zation and also understand the connection to the optimiza-
tion path. In this section we are able to do so for prediction
functions f,, (@) which are a-positive homogeneous func-
tions (definition 1).

In the homogeneous case, eq. 7 is equivalent, Vp, to

©F, = arg min |0 s.t. min f,(8) >~*(1)  (18)
OcRd n
since f,, is homogeneous.

4.1. Optimization Path Converges to Stationary Points
of the Margin Path and Constrained Path

Remark: The results in this subsection are specific for the
Euclidean or Ly norm, as opposed to many of the results in
this paper which are stated for any norm.

In this section, we link the optimization path to the margin
path and the constrained path. These results require the
following smoothness assumption:

Assumption 3 (Smoothness). We assume f,(-) is a C?
function.

Relating optimization path and margin path. The limit
of the margin path for homogeneous models is given by eq.
18. In this section we first relate the optimization path to
this limit of margin path.

Note that for general homogeneous prediction functions
fn»>€q. 18 is a non-convex optimization problem, and thus
it is unlikely for an optimization algorithm such as gradient
descent to find the global optimum. We can relax the set
to @ that are first-order stationary, i.e., critical points of 18.
For @ € S?~!, denote the set of support vectors of @ as

Sm(0) ={n: fn(0) =7 (1)}. (19)

Definition 3 (First-order Stationary Point). The first-order
optimality conditions of 18 are:

1. Yn, £o(0) > v*(1)

2. There exists X € RY suchthat® =%, A,V f,(0) and
An =0forn ¢ S5,,(0).

We denote by O3, the set of first-order stationary points.

Let 0(t) be the iterates of gradient descent. Define £,,(t) =
exp(—f»(0(t))) and £(t) be the vector with entries £y, (t).
The following two assumptions assume that the limiting di-
rection % exist and the limiting direction of the losses

% exist. Such assumptions are natural in the context

of max-margin problems, since we want to argue that 0(t)
converges to a max-margin direction, and also the losses
£(t)/]]€(t)]]1 converges to an indicator vector of the sup-
port vectors. The first step to argue this convergence is to
ensure the limits exist.

Assumption 4 (Asymptotic Formulas). Assume that

L(0(t)) — 0, that is we converge to a global minimizer.

Further assume that lim % and lim % exist.

t—o0 t—o0
Equivalently,
£a(t) = h(t)an + h(t)en(?) (20)
0(t) = 9(t)0 + g(t)d(t), @1

with |lally = 1, ||0]]2 = 1, tli)ngo h(t) =0, tli)ngo en(t) =0,
and lim 6(t) = 0.
t—o0

Assumption 5 (Linear Independence Constraint Qualifica-
tion). Let @ € S~ be a unit vector. LICQ holds at  if the
vectors {V fn(0)}nes,.(0) are linearly independent.

Remark 1. Constraint qualifications allow the first-order
optimality conditions of Definition 3 to be a necessary con-
dition for optimality. Without constraint qualifications, the
global optimum need not satisfy the optimality conditions.

LICQ is the simplest among many constraint qualifica-
tion conditions identified in the optimization literature

(Nocedal & Wright, 2006).

For example, in linear SVM, LICQ is ensured if the set of
support vectors is linearly independent. Consider f,,(0) =
X, 0 and x,, be the support vectors. Then V f,,(0) = x,, ,
and so linear independence of the support vectors implies
LICQ. For data sampled from an absolutely continuous dis-
tribution, the SVM solution will always have linearly inde-
pendent support vectors (Soudry et al., 2018b, Lemma 12),
but LICQ may fail when the data is degenerate.
ot

Theorem 2. Define = lim OO Under Assumptions
t—oo 101112

3, 4, and constraint qualification at 0 (Assumption 5), 0is
a first-order stationary point of 18.

The proof of Theorem 2 can be found in Appendix E.1.

Optimization path and constrained path. Next, we
study how the optimization path as ¢ — oo converges to
stationary points of the constrained path with p — co.
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The first-order optimally conditions of the constrained path
minj g <1 L(pB), require that the constraints hold, and the
gradient of the Lagrangian of the constrained path

pVoL(p8) + A(p)® (22)

is equal to zero. In other words,

Remark 2. Under Assumption 1, 0 is first-order optimal
for the problem min o<1 L(p8) if it satisfies:

VoL(p0) 0

O — = =
Ve L(pO)I — TI61~

o l6]| = 1.
On many paths the gradient of the Lagrangian goes to zero
as p — oco. However, we have a faster vanishing rate for the
specific optimization paths that follow Definition 4 below.
Therefore, these paths better approximate true stationary
points:

Definition 4 (First-order optimal for p — o0). A se-
quence O(t) is first-order optimal for min| g <1 L(p0) with
p— o0 if

— i 00

oo 6]

VoL(pf(1))
[VoL(pB(1)]

o 6()] =

e lim —
t—o0
To relate the limit points of gradient decent to the con-
strained path, we will focus on stationary points of the con-

strained path that minimize the loss.

Theorem 3. Let 6 = hm ||0§t)|| be the limit direction of
t—o00

gradient descent. Under Assumptions 1, 3, 4, and con-

straint qualification at @ (Assumption 5), the sequence

0(t)/10(t)|| is a first-order optimal point for p — oo (Def-

inition 4).

The proof of Theorem 3 can be found in Appendix E.2.

4.2. Lexicographic Max-Margin

Recall that for positive homogeneous prediction functions,
the margin path ©,,(p) in eq. 11 is the same set for any p
and is given by
o, = arg max min f, (0) .
€sd-1 n

For non-convex functions f,, or non-Euclidean norms ||.|,
the above set need not be unique. In this case, we define
the following refined set of maximum margin solution set

Definition 5 (Lexicographic maximum margin set). The
lexicographic margin set denoted by Oy, \ is given by the
following iterative definition of ©y, , fork =1,2,...,N:
Sd 1

mO_

0€07, k_1 \{ne}i_, £€lk]

ne (0)> C 6;kn,lc—l .

O, = arg max < min max f

In the above definition, ©}, ; = Oj, denotes the set of
maximum margin solutions, ©7, ; denotes the subset of
©;,, 1 with second smallest margin, and so on.

For an alternate representation of ©}, ;, we introduce the
following notation: for @ € S?~1, let n}(0) € [N] denote
the index corresponding to the /" smallest margin of 0 as
defined below by breaking ties in the arg min arbitrarily:

n;(6) = argmin £,,(6)
! (23)

ng(0) =arg  min

In(6)
ng{n; ()} -}

for k > 2.

Using this notation, we can rewrite ©7, , ., as

(0)(0) .

or = arg max
m,k+1 g@ O fn

We also define the limit set of constrained path as follows:

Definition 6 (Limit set of constrained path). The limit set
of constrained path is defined as follows:

@go _ {0 _H{M, 0/)1:}19;1 with pPi — 0, 0/)1: € 90(pi)} ]

" such that 0,, — 0
Theorem 4. For a-positive homogeneous prediction func-
tions the limit set of constrained path is contained in the
lexicographic maximum margin set, i.e., ©° C ©F

The proof of the above Theorem follows from adapting
the arguments of (Rosset et al., 2004a) (Theorem 7 in Ap-
pendix B.2) for general homogeneous models. We show
the complete proof in Appendix E.3.

S. Summary

In this paper we characterized the connections between the
constrained, margin and optimization paths. First, in Sec-
tion 3, we examined general non-homogeneous models.
We showed that the margin of the constrained path solu-
tion converges to the maximum margin. We further ana-
lyzed this result and demonstrated how it implies conver-
gence in parameters, i.e., ©. (p) converges to ©,, (p), for
some models. Then, we examined functions that are a finite
sum of positively homogeneous functions. These predic-
tion function can represent an ensemble of neural networks
with positive homogeneous activation functions. For this
model, we characterized the asymptotic constrained path
and margin path solution. This implies a surprising result:
ensembles of neural networks will aim to discard the most
shallow network. In the future work we aim to analyze
sum of homogeneous functions with shared variables, such
as ResNets.

Second, in Section 4 we focus on homogeneous models.
For such models we link the optimization path to the mar-
gin and constrained paths. Particularly, we show that the
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optimization path converges to stationary points of the con-
strained path and margin path. In future work, we aim to
extend this to non-homogeneous models. In addition, we
give a more refined characterization of the constrained path
limit. It will be interesting to find whether this character-
ization be further refined to answer whether the weighting
of the data point can have any effect on the selection of the
asymptotic solution — as (Byrd & Lipton, 2018) observed
empirically that it did not.
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Appendix

A. Proof of Lemma 1

Proof. Let w* (p) be a solution of the optimization problem in eq. 2. Then, g (w* (p)) = p, since otherwise we could have
decreased p without changing w* (p) or ¢(p) — and this is impossible, since ¢(p) is strictly monotonically decreasing.
Therefore, we cannot decrease g (w) below p without increasing f(w) above ¢(p). This implies that w* (p) is a solution
of the optimization problem in eq. 3 with ¢ (p). Next, all that is left to show that eq. 3 has no additional solutions. Suppose
by contradiction there were such solutions w’ (p). Since they are also minimizers of eq. 3, like w* (p), they have the same
minimum value g (W' (p)) = p. Since they are not solutions of eq. 2, we have f(w) > ¢(p). However, this means they
are not feasible for eq. 3, and therefore cannot be solutions. O

B. Proof of Claim 1

Proof. Recall we denoted the set of solutions of eq. 14 as W (v* (p)), and recall W from eq. 13. To simplify notations
we omit the dependency on p from the notation, i.e., we replace v* (p) with ~. Suppose the claim was not correct. Then,
there would have existed ¢ > 0 such that V-, 3" > ~ such that Jw* (v') € W (v') \ Be (W) . Note that w* (7') € W (v')
is feasible in both optimization problems (eq. 13 and 14), since both problems have the same constraints. Moreover, since
w* (v') ¢ B (W) it must be sub-optimal in comparison to the solution of eq. 13. Therefore, 3¢’ > 0 such that for any 7/,
w? (v)]|* > mingew |Jw:]|* + €. Then we can write (from eq. 14)

K
2 _ 2
W(y') =arg min |[lwy |+ ()% " wl*| st Vn: fo (w) > 1. (24)
weR P!

From Assumption 2 we know that 3¢ > 0 such that Vy > ¢ a solution of the margin path exists. Therefore, Vy > ¢,
eq. 11 is feasible. We assume, WLOG, that ¢ < +'. This implies that there exist a feasible finite solution w to eq. 24
which does not depend on +'. Therefore, V', Vw € W (v/), and Vk € [K] the values of ||wy || are respectively bounded
below the values of ||@||®, which are independent of 4/. This implies that if we select 7/ large enough, we will have

ZkK:Q(w’ )or 1 [Jwg || < €. This would contradict the assumption that w* (v') € W (') and therefore minimizes eq.
24. This implies that Ve, 3o such that Vv > 7o, we have W () C Be (W), which entails the Theorem.

O

C. Proof of Lemma 5

Proof. We assume by contradiction that yet 8 (p) does not have the form of egs. 12 and 13. Without loss of generality we
can write

1
P8 (p) = vi (p) [y (p, 0 (p))] " . (25)
If vi, (p/) = wj + o (1), for some w* = [w}, ..., wj] € W. Then we could have written, from eqs. 25 and 15

1

= . . L
p6 (p) = (wi, + 0 (1)) [y (p, 0 (p))]*F = (wi +0 (1)) [7" (p)]
which contradicts out assumption that p@ (p) does not have the form of eq. 13 and 14.

Therefore 36 > 0, such that Vp, 3p" > p: v (p’) ¢ Bs (W). The norm of the solution in eq. 25

K
2 =" v ()P [ (0.8 ()5
k=1

is equal to the norm of the solution with margin v* (p’)

2

K
PP =Y llwi +o I [y ()]
k=1
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Therefore, from eq. 15 we have

K K
3 Jwi + o (I [y (0,8 (0) + Cloe > S vie ()17 [7 (0,8 (0))]
k=1

k=1
and so, dividing by [ (p, 0 (p))] = we obtain
[wil* +0(1) > [lva (I +0(1) (26)
However, since v (p') & Bs (W), 3¢’ > 0 such that for all p': ||vy (')||* > ||w?||* + ¢ plugging this into eq. 26 we obtain
o(1)>€ +o0(1)

which is a contradiction. Therefore, v (p') converges into W, and eq. 25 can be written in the form of egs. 12 and 13. [

D. Examples Section: Auxiliary Results
D.1. Showing that margin convergence implies convergence in the parameter space for homogeneous models

We need to show that max min f,, (6) — min f,, (6. (p)) — 0 implies that ©. (p) converges to O, (p).
fcsd—1 n n

We denote g () = min f, (6). This is a continues function since Vn : f,, is continues. In addition, we define for some
n
po >0

Ar={0e(0:c(0)},,, :19(0) — g (Om) <7}

where 0,, € ©,,. Using this definition we also define d (0) as the Euclidean distance between 8 and any point in the set
O,,, and d (r) as the maximal distance for 6 € A,.:

d(6) = mi .y
(9) yrg(l_illy s

d(r)= gé%)idw) .

Note that the maximum in the last equation is obtained as the maximum of a continues function over a compact set.

We want to show that ©. (p) converges to O,,,. From definition, this implies that Ve > 0 Jpg such that Vp > pg O, (p) C
Be (Om), ie., V0.(p) € Oc (p): 30" € Oy, : ||0.(p) — 0'|| < e.

Assume in contradiction that this is not the case. This means that Je > 0 such that Vpg : 3p > po and 30.(p) € O, (p) so
that V0’ € O, : ||6:(p) — 0'|| > e.

This implies that lim,_,o d (r) # 0 . Using the limit definition we get that e > 0 so that Vd > 0, 3|r| < d and d (r) > e.
Using our notations this implies that

Fe>0:V6:30" € A, st }g(@')—g(@m)}§7’<5andd(0/) > €.

Next, we build a subsequence {0;};- by taking a decreasing series of {4;};~, and their associated 0’ from the last

equation. Since @ are bounded, there exist a convergent subsequence {01} . For this subsequence, we obtain, using g
i=1

continuity
zl—lglog (51) —9 (zliglo Aél) =9(0m)

which implies that 30, € ©,, so that lim;_, 0, = 67, which contradicts the fact that d (51) >e>0. O
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D.2. Auxiliary results for f,, (p,8) = log"** (pOTZn)

First, we show the full derivation of v* (p) — v (p, 8. (p)).

v (p) =7 (ps0c(p))

=log' " (p7*) — log' ™ (p7 (8. ()
= (log (p) +log (7)) — (log (p) + log (7 (B (p))))
=1log' * (p) + (1 + €) log" (p) log (7")
—log'™ (p) — (1 + €)log* (p) log (3 (8 ())) + 0 (log® (p))

= (14 ¢€)log® (p) (log (¥*) — log (7 (0c (p)))) + o (log" (p))
<N.

Second, we need to show that (log (7*) — log (7 (6. (p)))) — 0 implies that O, (p) converges to ©,, (p).

We denote g (0) = log (min 0Txn). The rest of the proof is identical to the proof for the homogeneous case in Ap-
pendix D.1.

E. Proofs in Section 4
E.1. Proof of Theorem 2

Define S = {n : f,(8) = v*(1)}, where 4*(1) is the optimal margin attainable by a unit norm 6.
Lemma 6. Under the setting of Theorem 2,

Vin(0(t) =V ulg(t)8) + O(Bg(t)*|6(t)])- 27)

Forn € S, the second term is asymptotically negligible as a function of t,

Vin(0(1) = V u(g(t)0) + o(Vfn(g(t)0))

Proof. By Taylor’s theorem,

VIa(0(t) = Vulg(t)0) + /S: V2 falg(t)8 + sg(t)8(t))g(t)d(t) ds.

=0

Let ,(t) := g(t)0 + sg(t)6(t). We bound the integrand in the second term.

s(t)

V2 £ (85(8)]| = 2f”(||¢9 [

Y0507~ < Blos @),

where B = max|g| <1 || V2fn(8)| < oo since V2 f, is a continuous function maximized over a compact set.
Thus
VI (0(t)) =V fulg(t)8) + O(B|10s(t)|*~8(t)II)
= Vfa(g()8) + O(Bg(t)*(1+ (1)~ [|8(t)]1)
= V. (g(t)0) +O(Bgt)* H6(t)|) (o is a constant independent of ¢.)

Via(g(t)8) = g(t)* 'V £,(0), and for n € S, |V £.(0)|| > 0 via constraint qualification (Assumption 5). Thus for
n € S and using ||6(¢)]] = o(1),

Vin(0(t) =V u(g(t)0) + o(V fu(g(t)0)).
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Lemma 7. Let S = {n : f,,(8) = v*(1)}. Under the conditions of Theorem 2, a,, = 0 forn ¢ S.

Proof.

Ca(t) = exp(=fn(6(1))) = exp(=g(1)* fn(8)) exp(—g(t)*V fu(8)78(1)) exp(—g(t)*0(8(1))).
On the other hand, ¢,,(t) = h(t)a, + h(t)en(t), so ||13(t() ‘)‘ = ap.
Consider n & S 5o f,,(8) = v, > v*(1).

ba(t)  exp(=g()* (7 — )
[l ~ exp(=g()*(v*(1) +€)
-0 (since v*(1) 4+ € < 7, — € for € appropriately small)

Thus a,, > Oonlyifn € S.

Theorem 5 (Theorem 2). 8 satifies the first-order optimality of margin problem.

Proof. From the gradient dynamics,

= 2 (= Fn(BEN)V1(0)
= Z )+ h(t)en(D)(VFn(9(1)0) + An (1)),
where A, (t) = [, ' V2 1, (g(t)8 + sg(t)5(t))g(t)8(t)ds. By multiplying out and using a,, = 0 for n ¢ S (Lemma 7),

=Y h(t)anV fulg(t)0)

nes

I
t)ZanAn Zen YW in(g —|—Zh en(t

nes n

11 111 v

Via constraint qualification (Assumption 5), I = (g(t)*~'h(t)) and the second part of Lemma 6, IT = o(I).
Since €4, = o(1), then I1I = o(I). By the first part of Lemma 6, IV = O(Bg(t)*~}||6(t)||) = o(I) since ||6(¢)|| — 0.

Since I is the largest term then after normalization,

t _
=" anVialg(t)0) +o(1). 28)
16t)]  nes
Since lim 23 — Jim ? t) (Gunasekar et al., 2018b), then
t=00 IO ™ 500 1501
t =Y anVialg (29)
an n

nes

Thus 6 satisfies the first-order optimality conditions of 18. O
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E.2. Proof of Theorem 3
Proof. The proof is similar to the proof of Theorem 2. From Equations 29 and 28 in the proof of Theorem 2, we see that

VoL(pB1) . 8

lim — = = lim — . O
oo [VoL(pB(t) o [l0(D)]|

E.3. Proof of Theorem 4
Proof. The proof is adapted from the ideas outlined in Theorem 7 in (Rosset et al., 2004a).

For any 8, € ©2°, from definition, let {p;, 8,, }32, denote a sequence such that p; — 00, 8,, € O.(p;) and ,, — O
Thus, for any € > 0, 3o such that Vi > g, ||0 — 0,

We need to show that 8, € @;‘n_’ - We will prove this theorem by induction, where we show that forallk = 0,1,2,..., N,
0 €0, .

Recall that ©7, ; = S9=1. From the definition of constrained path Vi : 0,, € O.(p;) C S~ Thus, lim;_s oo 0, =0, c
Sd-1 = =0 0 which proves the base case of induction.

Assume that for some k, 8 € ©; . We need to show the inductive argument that 8., € O} T

Recall that for all € S?~1, we introduced the notation n} (0) € [N] reiterated below to denote the index corresponding
to the /" smallest margin of 8

n3(6) = argmin £, (0)

*

nj(0) =arg min fn(0) fork > 2,
né{n; (0)}; -,

(30)
where in the minimization on the right, ties are broken arbitrarily.
Using the above notation, O} ;. is given by

921.,“1 = argegggk fnz+1(9) (6).

If possible, let 8, ¢ 07, k+1 and let 0 < 07, k+1- Using the inductive assumption and the definition of ©7, ; . ;, we have
we have 0,0 € @;‘n_’ ;.- From the definition of @;‘n_’ x+1- We can deduce the following,

V< k, fn (0 )( ) fn*(@’( )

(3D
V= Sz, 00)(00) > frz, (0)(0) =1
Recall that £(0) = >, exp(—fn(0)), where f,, are a-positive homogeneous
Step 1. Upper bound on L(p8'").
N
L(p8') = ZeXp P fn(0")) ZGXP 0% faz0)(0)) + Y exp(—p® faz(e)(6))
t=k+1
@< an ® o ot
<Y exp(—p fuz(01(0) + N exp(—p®y') = Zexp(—p fnz(0)(00)) + Nexp(—p™Y'),  (32)
=1 —

where (a) follows since for all £ > k + 1, we have f.:(6/)(8") > fu: (6/)(0") = 7', and (b) follows since V¢ < k,
fnl (900)( ) fn /)(0/)
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Step 2. Lower bound on L(p8 ).

N

k
L(p) = ZGXP(_Pan;(Om)(OOO)) + Z exp(—po‘fnz(goo)(Ooo))

(=1 l=k+1

k
> > exp(=p" fu; (0) (Boc)) + exp(—p™7), (33)
(=1

where (a) follows from using f,,+(g..)(€) > 0 for all £ and using fnzﬂ(gw)(ooo) =.

Step 3. Lower bound on L(p;8,,) for large enough i. Recall that the sequence of 8,, — 0 satisfies 8,, € O.(p;).
From the definition of constrained path, we have for all ¢, £(p;0,,) < L(pi0c).

We first show the following lemma:

Lemma 8. Forany € > 0, 3ig > 0 such that Vi > iy, L(p;0,,) > Ze 1€XP(=p [z (00)(00)) + exp(—pf (v — €)).

Proof. Recall that V¢ < k, O € O}, ,. Note from the definition of nj (0) that

w0y (0) = min max
frz0)(0) (in. [Z]f

Since 6,, — 0, using continuity of min and max of finite number of continuous functions, we have
Ve > 0, Jip(€), such that Vi > ig(€), V¢ < N, frz0,)(0p:) < frr(0.)(0) — € (34)
Now consider the two cases for i > ig(e):

(a) If 8, € O}, ;. then by definition, V£ < k, f,x(0, )(0p,) = fn:(6.)(0). Thus,

m,k>

P?fn;(ew)(eoo)) + eXp(_p?fn;Jrl(Gpi)(ePi))

—~

i M

a)

2 D exp(=pi fn;(0.)(0)) + exp(=pi (v =€),

~
Il

1
where (a) follows from using eq. 34 to get fn2+1(9pi)(0m) < fn;+1(9m)(000) —e=v—¢

(b) If 0,, ¢ Oy, ., let £ < k be the smallest number such that 8,, ¢ ©; ;. So for all ¢ < /, fn;(gpi)(opi) =
fnl, 0.) ( ) but fn;(em)(eoo)_fnz(Opi)(epi) =€ > 0.

{—1
L(pi0p.) > > exp(—p{ fnz,(0.0)(0o0)) + exD(—p{ fuz(6,,)(6,,))
=1

-1
=D exP(=p fn, (0) (Bo0)) + exp(pfiei) exp(—=pf frz (0, ) (Op )
=1

On the other hand,

0) < Z eXP(—P?fn;,(ow)(Ooo)) + NeXP(—P?fn;(opm)(opoo))
=1

Since, p; — oo and €; > 0, for large enough ¢, we have exp(p$e;) — N > 0 Thus, for large enough 4, from the above
two equations, we will have £(p;0,,) — L(pi0) > 0, which is a contradiction, since 8,, € O.(p;). Thus, this case
cannot happen for large enough ¢
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This completes the proof of the claim o

Step 4. Remaining steps in the proof. For any € > 0, from eqs. 32, 33, and Lemma 8 in Step 3, we have the following for
large enough ¢’s

(a)
L(pi0,,) — L(pi8") > exp(—p(m1 — €)) — N exp(pf'ms) > 0. (35)

where (a) follows since mo < m; and above equation holds for arbitrarily small e.
In eq. 35, we have obtained a contradiction since for 8’ € S=1, 0, € O.(p;) = L(pi0,,) < L(p:0).

This completes the proof of the theorem. o

F. The Regularization Path
F.1. The Regularization Path

The regularization path is given by the following set, Vc > 0:
O,(c) = {i : argmin £ (0) + ! ||0|2} (36)
' el 0 ¢ '
Lemma9. Vc > 0: ©, (c) is not empty, i.e., Vc : ming L£(0) + 1 6] exists.

Proof. Note thatVe > 0: L£(0)+1 6]|? is coercive since £ (6) is lower bounded. Thus, the minimum of £ (8) + 1 16|
is attained as the minimum of a continuous coercive function over a nonempty closed set. o

If Assumption 1 is satisfied, then as ¢ — co we have that ||@,. (¢)|| — oo where 6,. (¢) € ©, (¢). We state this result in the
following lemma.

Lemma 10. [f 3pg such that L* (p) is strictly monotonically decreasing for any p > po, and 0,. (¢) € argming L (0) +
1 1017 then as ¢ — oo, we have ||6,. (¢)|| — .

Proof. From lemma 9 we have that Ve > 0, argming £ (8) + 1 6]|* has an optimal solution (at least one). We
assume, in contradiction, that IM > pg so that Vey : J¢ > ¢¢ with [|0, (¢)|| < M. For some ¢ > 0 we denote
0" € argmingega-1 L (M +¢€)0),i.e., L((M +¢)0*) = L* (M + ¢). We have that
1
L((M+¢€)0%)+ EH(M+ €) 0"
1 i} 1 L1
=L(0:(c)) + 18 ()| + LUM +¢€)87) = L(8: () + —[|(M +¢€) 87[| = —[|0: (c)]
1 * * 1 *
< L0 (c) + EHOT (Ol +L°(M+¢€) —L(M)+ E”(M+ €) 0"

Note that £* (M + ¢€) — £* (M) < 0 since we assume that L* (p) is strictly monotonically decreasing for any p > po. For
sufficiently large c we get that

sy o L . 1
LM+ 6+~ [[(M +) 8" < L6, () + -6, (c)]
which contradicts our assumption that 6,. (¢) is an optimal solution. O

F.2. Connections between regularization and constrained paths

For convex loss function, the regularization and constrained paths are known to be equivalent. For general loss function,
we state the following basic result.
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Lemma 11. Ve > 0, V0, € O, (¢) : 3p so that 0, € O.(p), and, If Ipo such that L* (p) is strictly monotonically
decreasing for any p > pg then Y0, € O, (c): O, (||0-||) C ©, (c).

Proof. To prove Lemma 11 we combine the results from the following two lemmas. O
Lemma 12. Vc > 0, V6, € ©,.(c) : 3p so that 0, € O.(p).
Proof. For some ¢ > 0, let 8 (¢) € ©,(c). From ©,(c) definition (eq. 36) ||6} (¢)|| = 1 and thus 6} (¢) is a feasible

solution of eq. 5. Additionally, 3o > 0 so that voW:

£(06; (@) + - 06; ()] < £ (a6 (0)) + © a6 ()]

For p = o we have that 87 (¢) € ©.(p) since VO):

g

£(p8; (e) = £(p87 () + 2 6 (O = = < £ (06D (0)) + 2 ||o (0)]| - &

and particularly, v6® such that HO(Q) H <1

£00; (@) < £(p6? (@) + 2 [0 @ -2 < £ (6 (0) .

Lemma 13. Vc > 0, V0, € O, (¢): ©.(]|6,]]) C O, (¢).

Proof. Note that from Lemma 2

) )
CH =arg min L(pf) =< —: argminL | p— .
() = arg , main | £ (o6) {|w any (ﬁmﬂ}

For some ¢ > 0, let 8 (c) € argming L (6) + 1 |6|°. For p = |67 ()| and 8" € argming £ (pHi) we have that V6

o]
o* (7]
__c < _— .
£<ﬁ0w>—£<ﬁw)

Thus, we have that

02 1 *112 0 1 * 12
Z < _— Z
EGWW)+JMJ_E(%N)+CWA

C

Thus, V8? so that HH(Q) H = p = |0} (¢)|| we have that

0 p? 1 2
c )+ Z <r(6@) 42 H0<2>H .
E(ﬁwy)+(:—£( )+

In particular, this implies that

0. P 1 2
_—c_ < * Ze* .
£ (oige ) + % < £ + 2107 @)



